cvw/tests/wally-riscv-arch-test/riscv-test-suite/rv64i_m/privilege/src/WALLY-TEST-LIB-64.h

625 lines
22 KiB
C

///////////////////////////////////////////
//
// WALLY-TEST-LIB-64.S
//
// Author: Kip Macsai-Goren <kmacsaigoren@g.hmc.edu>
//
// Created 2021-07-19
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
#include "model_test.h"
#include "arch_test.h"
RVTEST_ISA("RV64I")
.section .text.init
.globl rvtest_entry_point
rvtest_entry_point:
RVMODEL_BOOT
RVTEST_CODE_BEGIN
// ---------------------------------------------------------------------------------------------
// Initialization Overview:
//
// Initialize x6 as a virtual pointer to the test results
// Initialize x16 as a physical pointer to the test results
// Set up stack pointer (sp = x2)
// Set up the exception Handler, keeping the original handler in x4.
//
// ---------------------------------------------------------------------------------------------
// address for test results
la x6, test_1_res
la x16, test_1_res // x16 reserved for the physical address equivalent of x6 to be used in trap handlers
// any time either is used, both must be updated.
// address for stack
la sp, top_of_stack
// trap handler setup
la x1, machine_trap_handler
csrrw x4, mtvec, x1 // x4 reserved for "default" trap handler address that needs to be restored before halting this test.
li a0, 0
li a1, 0
li a2, 0 // reset trap handler inputs to zero
// go to first test!
j test_setup
// ---------------------------------------------------------------------------------------------
// General traps Handler
//
// Handles traps by branching to different behaviors based on mcause.
//
// Note that allowing the exception handler to change mode for a program is a huge security
// hole, but this is an expedient way of writing tests that need different modes
//
// input parameters:
//
// a0 (x10):
// 0: halt program with no failures
// 1: halt program with failure in x11 = a1
// 2: go to machine mode
// 3: go to supervisor mode
// 4: go to user mode
// others: do nothing
//
// a1 (x11):
// VPN for return address after changing privilege mode.
// This should be the base VPN with no offset.
// 0x0 : defaults to next instruction on the same page the trap was called on.
//
// a2 (x12):
// Pagetype of the current address VPN before changing privilge mode
// Used so that we can know how many bits of the adress are the offset.
// Ignored if a1 == 0x0
// 0: Kilopage
// 1: Megapage
// 2: Gigapage
// 3: Terapage
//
// --------------------------------------------------------------------------------------------
machine_trap_handler:
// The processor is always in machine mode when a trap takes us here
// save registers on stack before using
sd x1, -8(sp)
sd x5, -16(sp)
// Record trap
csrr x1, mcause // record the mcause
sd x1, 0(x16)
addi x6, x6, 8
addi x16, x16, 8 // update pointers for logging results
// Respond to trap based on cause
// All interrupts should return after being logged
li x5, 0x8000000000000000 // if msb is set, it is an interrupt
and x5, x5, x1
bnez x5, trapreturn // return from interrupt
// Other trap handling is specified in the vector Table
slli x1, x1, 3 // multiply cause by 8 to get offset in vector Table
la x5, trap_handler_vector_table
add x5, x5, x1 // compute address of vector in Table
ld x5, 0(x5) // fectch address of handler from vector Table
jr x5 // and jump to the handler
segfault:
ld x5, -16(sp) // restore registers from stack before faulting
ld x1, -8(sp)
j terminate_test // halt program.
trapreturn:
// look at the instruction to figure out whether to add 2 or 4 bytes to PC, or go to address specified in a1
csrr x1, mepc // get the mepc
addi x1, x1, 4 // *** should be 2 for compressed instructions, see note.
// ****** KMG: the following is no longer as easy to determine. mepc gets the virtual address of the trapped instruction,
// ******** but in the handler, we work in M mode with physical addresses
// This means the address in mepc is suddenly pointing somewhere else.
// to get this to work, We could either retranslate the vaddr back into a paddr (probably on the scale of difficult to intractible)
// or we could come up with some other ingenious way to stay in M mode and see if the instruction was compressed.
// lw x5, 0(x1) // read the faulting instruction
// li x1, 3 // check bottom 2 bits of instruction to see if compressed
// and x5, x5, x1 // mask the other bits
// beq x5, x1, trapreturn_uncompressed // if 11, the instruction is return_uncompressed
// trapreturn_compressed:
// csrr x1, mepc // get the mepc again
// addi x1, x1, 2 // add 2 to find the next instruction
// j trapreturn_specified // and return
// trapreturn_uncompressed:
// csrr x1, mepc // get the mepc again
// addi x1, x1, 4 // add 4 to find the next instruction
trapreturn_specified:
// reset the necessary pointers and registers (x1, x5, x6, and the return address going to mepc)
// so that when we return to a new virtual address, they're all in the right spot as well.
beqz a1, trapreturn_finished // either update values, of go to default return address.
la x5, trap_return_pagetype_table
slli a2, a2, 3
add x5, x5, a2
ld a2, 0(x5) // a2 = number of offset bits in current page type
li x5, 1
sll x5, x5, a2
addi x5, x5, -1 // x5 = mask bits for offset into current pagetype
// reset the top of the stack, x1
ld x7, -8(sp)
and x7, x5, x7 // x7 = offset for x1
add x7, x7, a1 // x7 = new address for x1
sd x7, -8(sp)
// reset the second spot in the stack, x5
ld x7, -16(sp)
and x7, x5, x7 // x7 = offset for x5
add x7, x7, a1 // x7 = new address for x5
sd x7, -16(sp)
// reset x6, the pointer for the virtual address of the output of the tests
and x7, x5, x6 // x7 = offset for x6
add x6, x7, a1 // x6 = new address for the result pointer
// set return address, stored temporarily in x1, to the next instruction, but in the new virtual page.
and x1, x5, x1 // x1 = offset for the return address
add x1, x1, a1 // x1 = new return address.
li a1, 0
li a2, 0 // reset trapreturn inputs to the trap handler
trapreturn_finished:
csrw mepc, x1 // update the mepc with address of next instruction
ld x5, -16(sp) // restore registers from stack before returning
ld x1, -8(sp)
mret // return from trap
ecallhandler:
// Check input parameter a0. encoding above.
// *** ASSUMES: that this trap is being handled in machine mode. in other words, that nothing odd has been written to the medeleg or mideleg csrs.
li x5, 2 // case 2: change to machine mode
beq a0, x5, ecallhandler_changetomachinemode
li x5, 3 // case 3: change to supervisor mode
beq a0, x5, ecallhandler_changetosupervisormode
li x5, 4 // case 4: change to user mode
beq a0, x5, ecallhandler_changetousermode
// unsupported ecalls should segfault
j segfault
ecallhandler_changetomachinemode:
// Force mstatus.MPP (bits 12:11) to 11 to enter machine mode after mret
li x1, 0b1100000000000
csrs mstatus, x1
j trapreturn
ecallhandler_changetosupervisormode:
// Force mstatus.MPP (bits 12:11) to 01 to enter supervisor mode after mret
li x1, 0b1100000000000
csrc mstatus, x1
li x1, 0b0100000000000
csrs mstatus, x1
j trapreturn
ecallhandler_changetousermode:
// Force mstatus.MPP (bits 12:11) to 00 to enter user mode after mret
li x1, 0b1100000000000
csrc mstatus, x1
j trapreturn
instrfault:
ld x1, -8(sp) // load return address int x1 (the address AFTER the jal into faulting page)
j trapreturn_finished // puts x1 into mepc, restores stack and returns to program (outside of faulting page)
accessfault:
// *** What do I have to do here?
j trapreturn
// Table of trap behavior
// lists what to do on each exception (not interrupts)
// unexpected exceptions should cause segfaults for easy detection
// Expected exceptions should increment the EPC to the next instruction and return
.align 3 // aligns this data table to an 8 byte boundary
trap_handler_vector_table:
.8byte segfault // 0: instruction address misaligned
.8byte instrfault // 1: instruction access fault
.8byte segfault // 2: illegal instruction
.8byte segfault // 3: breakpoint
.8byte segfault // 4: load address misaligned
.8byte accessfault // 5: load access fault
.8byte segfault // 6: store address misaligned
.8byte accessfault // 7: store access fault
.8byte ecallhandler // 8: ecall from U-mode
.8byte ecallhandler // 9: ecall from S-mode
.8byte segfault // 10: reserved
.8byte ecallhandler // 11: ecall from M-mode
.8byte instrfault // 12: instruction page fault
.8byte trapreturn // 13: load page fault
.8byte segfault // 14: reserved
.8byte trapreturn // 15: store page fault
.align 3
trap_return_pagetype_table:
.8byte 0xC // 0: kilopage has 12 offset bits
.8byte 0x15 // 1: megapage has 21 offset bits
.8byte 0x1E // 2: gigapage has 30 offset bits
.8byte 0x27 // 3: terapage has 39 offset bits
// ---------------------------------------------------------------------------------------------
// Test Handler
//
// This test handler works in a similar wy to the trap handler. It takes in a few things by reading from a table in memory
// (see test_cases) and performing certain behavior based on them.
//
// Input parameters:
//
// x28:
// Address input for the test taking place (think address to read/write, new address to return to, etc...)
//
// x29:
// Value input for the test taking place (think value to write, any other extra info needed)
//
// x30:
// Test type input that determines which kind of test will take place. Encoding for this input is in the table/case statements below
//
// ------------------------------------------------------------------------------------------------------------------------------------
test_setup:
la x5, test_cases
test_loop:
ld x28, 0(x5) // fetch test case address
ld x29, 8(x5) // fetch test case value
ld x30, 16(x5) // fetch test case flag
addi x5, x5, 24 // set x5 to next test case
// x5 has the symbol for a test's location in the assembly
li x7, 0x1FFFFF
and x30, x30, x7 // This program is always on at least a megapage, so this masks out the megapage offset.
auipc x7, 0x0
srli x7, x7, 21
slli x7, x7, 21 // zero out the bottom 21 bits so the megapage offset of the symbol can be placed there
or x30, x7, x30 // x30 = virtual address of the symbol for this type of test.
jr x30
// Test Name : Description : Fault output value : Normal output values
// ----------------------:-------------------------------------------:------------------------:------------------------------------------------------
// write64_test : Write 64 bits to address : 0xf : None
// write32_test : Write 32 bits to address : 0xf : None
// write16_test : Write 16 bits to address : 0xf : None
// write08_test : Write 8 bits to address : 0xf : None
// read64_test : Read 64 bits from address : 0xd, 0xbad : readvalue in hex
// read32_test : Read 32 bitsfrom address : 0xd, 0xbad : readvalue in hex
// read16_test : Read 16 bitsfrom address : 0xd, 0xbad : readvalue in hex
// read08_test : Read 8 bitsfrom address : 0xd, 0xbad : readvalue in hex
// executable_test : test executable on virtual page : 0xc, 0xbad : value of x7 modified by exectuion code (usually 0x111)
// terminate_test : terminate tests : mcause value for fault : from M 0xb, from S 0x9, from U 0x8
// goto_baremetal : satp.MODE = bare metal : None : None
// goto_sv39 : satp.MODE = sv39 : None : None
// goto_sv48 : satp.MODE = sv48 : None : None
// write_mxr_sum : write sstatus.[19:18] = MXR, SUM bits : None : None
// goto_m_mode : go to mahcine mode : mcause value for fault : from M 0xb, from S 0x9, from U 0x8
// goto_s_mode : go to supervisor mode : mcause value for fault : from M 0xb, from S 0x9, from U 0x8
// goto_u_mode : go to user mode : mcause value for fault : from M 0xb, from S 0x9, from U 0x8
// write_pmpcfg_x : Write one of the pmpcfg csr's : mstatuses?, 0xD : readback of pmpcfg value
// write_pmpaddr_x : Write one of the pmpaddr csr's : None : readback of pmpaddr value
write64_test:
// address to write in x28, double value in x29
sd x29, 0(x28)
j test_loop // go to next test case
write32_test:
// address to write in x28, word value in x29
sw x29, 0(x28)
j test_loop // go to next test case
write16_test:
// address to write in x28, halfword value in x29
sh x29, 0(x28)
j test_loop // go to next test case
write08_test:
// address to write in x28, value in x29
sb x29, 0(x28)
j test_loop // go to next test case
read64_test:
// address to read in x28, expected 64 bit value in x29 (unused, but there for your perusal).
li x7, 0xBAD // bad value that will be overwritten on good reads.
ld x7, 0(x28)
sd x7, 0(x6)
addi x6, x6, 8
addi x16, x16, 8
j test_loop // go to next test case
read32_test:
// address to read in x28, expected 32 bit value in x29 (unused, but there for your perusal).
li x7, 0xBAD // bad value that will be overwritten on good reads.
lw x7, 0(x28)
sd x7, 0(x6)
addi x6, x6, 8
addi x16, x16, 8
j test_loop // go to next test case
read16_test:
// address to read in x28, expected 16 bit value in x29 (unused, but there for your perusal).
li x7, 0xBAD // bad value that will be overwritten on good reads.
lh x7, 0(x28)
sd x7, 0(x6)
addi x6, x6, 8
addi x16, x16, 8
j test_loop // go to next test case
read08_test:
// address to read in x28, expected 8 bit value in x29 (unused, but there for your perusal).
li x7, 0xBAD // bad value that will be overwritten on good reads.
lb x7, 0(x28)
sd x7, 0(x6)
addi x6, x6, 8
addi x16, x16, 8
j test_loop // go to next test case
goto_s_mode:
// return to address in x28,
li a0, 3 // Trap handler behavior (go to supervisor mode)
mv a1, x28 // return VPN
mv a2, x29 // return page types
ecall // writes mcause to the output.
// now in S mode
j test_loop
goto_m_mode:
li a0, 2 // Trap handler behavior (go to machine mode)
mv a1, x28 // return VPN
mv a2, x29 // return page types
ecall // writes mcause to the output.
j test_loop
goto_u_mode:
li a0, 4 // Trap handler behavior (go to user mode)
mv a1, x28 // return VPN
mv a2, x29 // return page types
ecall // writes mcause to the output.
j test_loop
goto_baremetal:
// Turn translation off
li x7, 0 // satp.MODE value for bare metal (0)
slli x7, x7, 60
li x28, 0x8000D // Base Pagetable physical page number, satp.PPN field.
add x7, x7, x28
csrw satp, x7
sfence.vma x0, x0 // *** flushes global pte's as well
j test_loop // go to next test case
goto_sv39:
li x7, 8 // satp.MODE value for Sv39 (8)
slli x7, x7, 60
li x28, 0x8000D // Base Pagetable physical page number, satp.PPN field.
add x7, x7, x28
csrw satp, x7
sfence.vma x0, x0 // *** flushes global pte's as well
j test_loop // go to next test case
goto_sv48:
li x7, 9 // satp.MODE value for Sv48
slli x7, x7, 60
li x28, 0x8000D // Base Pagetable physical page number, satp.PPN field.
add x7, x7, x28
csrw satp, x7
sfence.vma x0, x0 // *** flushes global pte's as well
j test_loop // go to next test case
write_mxr_sum:
// writes sstatus.[mxr, sum] with the (assumed to be) 2 bit value in x29. also assumes we're in S. M mode
li x30, 0xC0000 // mask bits for MXR, SUM
not x7, x29
slli x7, x7, 18
and x7, x7, x30
slli x29, x29, 18
csrc sstatus, x7
csrs sstatus, x29
j test_loop
write_pmpcfg_0:
// writes the value in x29 to the pmpcfg register specified in x28.
// then writes the final value of pmpcfgX to the output.
li x7, 0x0
bne x7, x28, write_pmpcfg_2
csrw pmpcfg0, x29
csrr x30, pmpcfg0
write_pmpcfg_2:
li x7, 0x2
bne x7, x28, write_pmpcfg_end
csrw pmpcfg2, x29
csrr x30, pmpcfg2 // I would use csrrw but we need the value AFTER the csr has been written
write_pmpcfg_end:
sd x30, 0(x6)
addi x6, x6, 8
addi x16, x16, 8
j test_loop
write_pmpaddr_0:
// writes the value in x29 to the pmpaddr register specified in x28.
// then writes the final value of pmpaddrX to the output.
li x7, 0x0
bne x7, x28, write_pmpaddr_1
csrw pmpaddr0, x29
csrr x30, pmpaddr0
j write_pmpaddr_end
write_pmpaddr_1:
li x7, 0x1
bne x7, x28, write_pmpaddr_2
csrw pmpaddr1, x29
csrr x30, pmpaddr1
j write_pmpaddr_end
write_pmpaddr_2:
li x7, 0x2
bne x7, x28, write_pmpaddr_3
csrw pmpaddr2, x29
csrr x30, pmpaddr2
j write_pmpaddr_end
write_pmpaddr_3:
li x7, 0x3
bne x7, x28, write_pmpaddr_4
csrw pmpaddr3, x29
csrr x30, pmpaddr3
j write_pmpaddr_end
write_pmpaddr_4:
li x7, 0x4
bne x7, x28, write_pmpaddr_5
csrw pmpaddr4, x29
csrr x30, pmpaddr4
j write_pmpaddr_end
write_pmpaddr_5:
li x7, 0x5
bne x7, x28, write_pmpaddr_6
csrw pmpaddr5, x29
csrr x30, pmpaddr5
j write_pmpaddr_end
write_pmpaddr_6:
li x7, 0x6
bne x7, x28, write_pmpaddr_7
csrw pmpaddr6, x29
csrr x30, pmpaddr6
j write_pmpaddr_end
write_pmpaddr_7:
li x7, 0x7
bne x7, x28, write_pmpaddr_8
csrw pmpaddr7, x29
csrr x30, pmpaddr7
j write_pmpaddr_end
write_pmpaddr_8:
li x7, 0x8
bne x7, x28, write_pmpaddr_9
csrw pmpaddr8, x29
csrr x30, pmpaddr8
j write_pmpaddr_end
write_pmpaddr_9:
li x7, 0x9
bne x7, x28, write_pmpaddr_10
csrw pmpaddr9, x29
csrr x30, pmpaddr9
j write_pmpaddr_end
write_pmpaddr_10:
li x7, 0xA
bne x7, x28, write_pmpaddr_11
csrw pmpaddr10, x29
csrr x30, pmpaddr10
j write_pmpaddr_end
write_pmpaddr_11:
li x7, 0xB
bne x7, x28, write_pmpaddr_12
csrw pmpaddr11, x29
csrr x30, pmpaddr11
j write_pmpaddr_end
write_pmpaddr_12:
li x7, 0xC
bne x7, x28, write_pmpaddr_13
csrw pmpaddr12, x29
csrr x30, pmpaddr12
j write_pmpaddr_end
write_pmpaddr_13:
li x7, 0xD
bne x7, x28, write_pmpaddr_14
csrw pmpaddr13, x29
csrr x30, pmpaddr13
j write_pmpaddr_end
write_pmpaddr_14:
li x7, 0xE
bne x7, x28, write_pmpaddr_15
csrw pmpaddr14, x29
csrr x30, pmpaddr14
j write_pmpaddr_end
write_pmpaddr_15:
li x7, 0xF
bne x7, x28, write_pmpaddr_end
csrw pmpaddr15, x29
csrr x30, pmpaddr15
j write_pmpaddr_end
write_pmpaddr_end:
sd x30, 0(x6)
addi x6, x6, 8
addi x16, x16, 8
j test_loop
executable_test:
// Execute the code at the address in x28, returning the value in x7.
// Assumes the code modifies x7, to become the value stored in x29 for this test.
fence.i // forces cache and main memory to sync so execution code written by the program can run.
li x7, 0xBAD
jalr x28
sd x7, 0(x6)
addi x6, x6, 8
addi x16, x16, 8
j test_loop
terminate_test:
li a0, 2 // Trap handler behavior (go to machine mode)
ecall // writes mcause to the output.
csrw mtvec, x4 // restore original trap handler to halt program
RVTEST_CODE_END
RVMODEL_HALT
RVTEST_DATA_BEGIN
.align 4
rvtest_data:
.word 0xbabecafe
RVTEST_DATA_END
.align 3 // align stack to 8 byte boundary
bottom_of_stack:
.fill 1024, 4, 0xdeadbeef
top_of_stack:
RVMODEL_DATA_BEGIN
test_1_res:
.fill 1024, 4, 0xdeadbeef
RVMODEL_DATA_END
#ifdef rvtest_mtrap_routine
mtrap_sigptr:
.fill 64*(XLEN/32),4,0xdeadbeef
#endif
#ifdef rvtest_gpr_save
gpr_save:
.fill 32*(XLEN/32),4,0xdeadbeef
#endif
.align 3
test_cases: