cvw/synthDC/ppaAnalyze.py
2022-05-22 23:23:02 +00:00

297 lines
8.7 KiB
Python
Executable File

#!/usr/bin/python3
# Madeleine Masser-Frye mmasserfrye@hmc.edu 5/22
from distutils.log import error
from statistics import median
import subprocess
import statistics
import csv
import re
import matplotlib.pyplot as plt
import matplotlib.lines as lines
import numpy as np
def getData(mod=None, width=None):
specStr = ''
if mod != None:
specStr = mod
if width != None:
specStr += ('_'+str(width))
specStr += '*'
bashCommand = "grep 'Critical Path Length' runs/ppa_{}/reports/*qor*".format(specStr)
outputCPL = subprocess.check_output(['bash','-c', bashCommand])
linesCPL = outputCPL.decode("utf-8").split('\n')[:-1]
bashCommand = "grep 'Design Area' runs/ppa_{}/reports/*qor*".format(specStr)
outputDA = subprocess.check_output(['bash','-c', bashCommand])
linesDA = outputDA.decode("utf-8").split('\n')[:-1]
bashCommand = "grep '100' runs/ppa_{}/reports/*power*".format(specStr)
outputP = subprocess.check_output(['bash','-c', bashCommand])
linesP = outputP.decode("utf-8").split('\n')[:-1]
cpl = re.compile('\d{1}\.\d{6}')
f = re.compile('_\d*_MHz')
wm = re.compile('ppa_\w*_\d*_qor')
da = re.compile('\d*\.\d{6}')
p = re.compile('\d+\.\d+[e-]*\d+')
allSynths = []
for i in range(len(linesCPL)):
line = linesCPL[i]
mwm = wm.findall(line)[0][4:-4].split('_')
freq = int(f.findall(line)[0][1:-4])
delay = float(cpl.findall(line)[0])
area = float(da.findall(linesDA[i])[0])
mod = mwm[0]
width = int(mwm[1])
power = p.findall(linesP[i])
lpower = float(power[2])
denergy = float(power[1])*delay
oneSynth = [mod, width, freq, delay, area, lpower, denergy]
allSynths += [oneSynth]
return allSynths
def getVals(module, var, freq=None):
allSynths = getData(mod=module)
if (var == 'delay'):
ind = 3
units = " (ns)"
elif (var == 'area'):
ind = 4
units = " (sq microns)"
elif (var == 'lpower'):
ind = 5
units = " (nW)"
elif (var == 'denergy'):
ind = 6
units = " (pJ)"
else:
error
widths = []
metric = []
if (freq != None):
for oneSynth in allSynths:
if (oneSynth[2] == freq):
widths += [oneSynth[1]]
metric += [oneSynth[ind]]
else:
widths = [8, 16, 32, 64, 128]
for w in widths:
m = 10000 # large number to start
for oneSynth in allSynths:
if (oneSynth[1] == w):
if (oneSynth[3] < m):
m = oneSynth[3]
met = oneSynth[ind]
metric += [met]
return widths, metric, units
def writeCSV():
allSynths = getData()
file = open("ppaData.csv", "w")
writer = csv.writer(file)
writer.writerow(['Module', 'Width', 'Target Freq', 'Delay', 'Area', 'L Power (nW)', 'D energy (mJ)'])
for one in allSynths:
writer.writerow(one)
file.close()
def genLegend(fits, coefs, module, r2):
coefsr = [str(round(c, 3)) for c in coefs]
eq = ''
ind = 0
if 'c' in fits:
eq += coefsr[ind]
ind += 1
if 'l' in fits:
eq += " + " + coefsr[ind] + "*N"
ind += 1
if 's' in fits:
eq += " + " + coefsr[ind] + "*N^2"
ind += 1
if 'g' in fits:
eq += " + " + coefsr[ind] + "*log2(N)"
ind += 1
if 'n' in fits:
eq += " + " + coefsr[ind] + "*Nlog2(N)"
ind += 1
legend_elements = [lines.Line2D([0], [0], color='orange', label=eq),
lines.Line2D([0], [0], color='steelblue', ls='', marker='o', label=' R^2='+ str(round(r2, 4)))]
return legend_elements
def oneMetricPlot(module, var, freq=None, ax=None, fits='clsgn'):
'''
module: string module name
freq: int freq (MHz)
var: string delay, area, lpower, or denergy
fits: constant, linear, square, log2, Nlog2
plots chosen variable vs width for all matching syntheses with regression
'''
widths, metric, units = getVals(module, var, freq=freq)
coefs, r2, funcArr = regress(widths, metric, fits)
xp = np.linspace(8, 140, 200)
pred = []
for x in xp:
y = [func(x) for func in funcArr]
pred += [sum(np.multiply(coefs, y))]
if ax is None:
singlePlot = True
ax = plt.gca()
else:
singlePlot = False
ax.scatter(widths, metric)
ax.plot(xp, pred, color='orange')
legend_elements = genLegend(fits, coefs, module, r2)
ax.legend(handles=legend_elements)
ax.set_xticks(widths)
ax.set_xlabel("Width (bits)")
ax.set_ylabel(str.title(var) + units)
if singlePlot:
ax.set_title(module + " (target " + str(freq) + "MHz)")
plt.show()
def regress(widths, var, fits='clsgn'):
funcArr = genFuncs(fits)
mat = []
for w in widths:
row = []
for func in funcArr:
row += [func(w)]
mat += [row]
y = np.array(var, dtype=np.float)
coefsResid = np.linalg.lstsq(mat, y, rcond=None)
coefs = coefsResid[0]
try:
resid = coefsResid[1][0]
except:
resid = 0
r2 = 1 - resid / (y.size * y.var())
return coefs, r2, funcArr
def makeCoefTable():
file = open("ppaFitting.csv", "w")
writer = csv.writer(file)
writer.writerow(['Module', 'Metric', 'Freq', '1', 'N', 'N^2', 'log2(N)', 'Nlog2(N)', 'R^2'])
for mod in ['add', 'mult', 'comparator', 'shifter']:
for comb in [['delay', 5000], ['area', 5000], ['area', 10]]:
var = comb[0]
freq = comb[1]
widths, metric, units = getVals(mod, freq, var)
coefs, r2, funcArr = regress(widths, metric)
row = [mod] + comb + np.ndarray.tolist(coefs) + [r2]
writer.writerow(row)
file.close()
def genFuncs(fits='clsgn'):
funcArr = []
if 'c' in fits:
funcArr += [lambda x: 1]
if 'l' in fits:
funcArr += [lambda x: x]
if 's' in fits:
funcArr += [lambda x: x**2]
if 'g' in fits:
funcArr += [lambda x: np.log2(x)]
if 'n' in fits:
funcArr += [lambda x: x*np.log2(x)]
return funcArr
def noOutliers(freqs, delays, areas):
f=[]
d=[]
a=[]
try:
med = statistics.median(freqs)
for i in range(len(freqs)):
norm = freqs[i]/med
if (norm > 0.25) & (norm<1.75):
f += [freqs[i]]
d += [delays[i]]
a += [areas[i]]
except: pass
return f, d, a
def freqPlot(mod, width):
allSynths = getData(mod=mod, width=width)
freqsV, delaysV, areasV, freqsA, delaysA, areasA = ([] for i in range(6))
for oneSynth in allSynths:
if (mod == oneSynth[0]) & (width == oneSynth[1]):
if (1000/oneSynth[3] < oneSynth[2]):
freqsV += [oneSynth[2]]
delaysV += [oneSynth[3]]
areasV += [oneSynth[4]]
else:
freqsA += [oneSynth[2]]
delaysA += [oneSynth[3]]
areasA += [oneSynth[4]]
freqsV, delaysV, areasV = noOutliers(freqsV, delaysV, areasV)
freqsA, delaysA, areasA = noOutliers(freqsA, delaysA, areasA)
adprodA = np.multiply(areasA, delaysA)
adsqA = np.multiply(adprodA, delaysA)
adprodV = np.multiply(areasV, delaysV)
adsqV = np.multiply(adprodV, delaysV)
legend_elements = [lines.Line2D([0], [0], color='green', ls='', marker='o', label='timing achieved'),
lines.Line2D([0], [0], color='blue', ls='', marker='o', label='slack violated')]
f, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, sharex=True)
ax1.scatter(freqsA, delaysA, color='green')
ax1.scatter(freqsV, delaysV, color='blue')
ax2.scatter(freqsA, areasA, color='green')
ax2.scatter(freqsV, areasV, color='blue')
ax3.scatter(freqsA, adprodA, color='green')
ax3.scatter(freqsV, adprodV, color='blue')
ax4.scatter(freqsA, adsqA, color='green')
ax4.scatter(freqsV, adsqV, color='blue')
ax1.legend(handles=legend_elements)
ax4.set_xlabel("Target Freq (MHz)")
ax1.set_ylabel('Delay (ns)')
ax2.set_ylabel('Area (sq microns)')
ax3.set_ylabel('Area * Delay')
ax4.set_ylabel('Area * Delay^2')
ax1.set_title(mod + '_' + str(width))
plt.show()
def plotPPA(mod, freq=None):
fig, axs = plt.subplots(2, 2)
oneMetricPlot(mod, 'delay', ax=axs[0,0], fits='clg', freq=freq)
oneMetricPlot(mod, 'area', ax=axs[0,1], fits='s', freq=freq)
oneMetricPlot(mod, 'lpower', ax=axs[1,0], fits='c', freq=freq)
oneMetricPlot(mod, 'denergy', ax=axs[1,1], fits='s', freq=freq)
titleStr = " (target " + str(freq)+ "MHz)" if freq != None else " min delay"
plt.suptitle(mod + titleStr)
plt.show()
# writeCSV()
# makeCoefTable()
freqPlot('flopr', 128)
# plotPPA('add')