cvw/pipelined/src/ifu/bpred/speculativegshare.sv
2023-02-01 10:27:58 -06:00

128 lines
5.6 KiB
Systemverilog

///////////////////////////////////////////
// gsharePredictor.sv
//
// Written: Shreya Sanghai
// Email: ssanghai@hmc.edu
// Created: March 16, 2021
// Modified:
//
// Purpose: Global History Branch predictor with parameterized global history register
//
// A component of the CORE-V-WALLY configurable RISC-V project.
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
//
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
//
// Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
// may obtain a copy of the License at
//
// https://solderpad.org/licenses/SHL-2.1/
//
// Unless required by applicable law or agreed to in writing, any work distributed under the
// License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module speculativegshare #(parameter int k = 10 ) (
input logic clk,
input logic reset,
input logic StallF, StallD, StallE, StallM, StallW,
input logic FlushD, FlushE, FlushM, FlushW,
output logic [1:0] DirPredictionF,
output logic DirPredictionWrongE,
// update
input logic [`XLEN-1:0] PCNextF, PCF, PCD, PCE,
input logic [3:0] PredInstrClassF, InstrClassD, InstrClassE,
input logic [3:0] WrongPredInstrClassD,
input logic PCSrcE
);
logic MatchF, MatchD, MatchE;
logic MatchNextX, MatchXF;
logic [1:0] TableDirPredictionF, DirPredictionD, DirPredictionE;
logic [1:0] NewDirPredictionE;
logic [k-1:0] GHRF, GHRD, GHRE;
logic GHRLastF;
logic [k-1:0] GHRNextF, GHRNextD, GHRNextE;
logic [k-1:0] IndexNextF, IndexF, IndexD, IndexE;
logic [1:0] ForwardNewDirPrediction, ForwardDirPredictionF;
logic FlushDOrDirWrong;
assign IndexNextF = GHRNextF ^ {PCNextF[k+1] ^ PCNextF[1], PCNextF[k:2]};
assign IndexF = GHRF ^ {PCF[k+1] ^ PCF[1], PCF[k:2]};
assign IndexD = GHRD[k-1:0] ^ {PCD[k+1] ^ PCD[1], PCD[k:2]};
assign IndexE = GHRE[k-1:0] ^ {PCE[k+1] ^ PCE[1], PCE[k:2]};
ram2p1r1wbe #(2**k, 2) PHT(.clk(clk),
.ce1(~StallF | reset), .ce2(~StallM & ~FlushM),
.ra1(IndexNextF),
.rd1(TableDirPredictionF),
.wa2(IndexE),
.wd2(NewDirPredictionE),
.we2(InstrClassE[0]),
.bwe2(1'b1));
// if there are non-flushed branches in the pipeline we need to forward the prediction from that stage to the NextF demi stage
// and then register for use in the Fetch stage.
assign MatchF = PredInstrClassF[0] & ~FlushD & (IndexNextF == IndexF);
assign MatchD = InstrClassD[0] & ~FlushE & (IndexNextF == IndexD);
assign MatchE = InstrClassE[0] & ~FlushM & (IndexNextF == IndexE);
assign MatchNextX = MatchF | MatchD | MatchE;
flopenr #(1) MatchReg(clk, reset, ~StallF, MatchNextX, MatchXF);
assign ForwardNewDirPrediction = MatchF ? {2{DirPredictionF[1]}} :
MatchD ? {2{DirPredictionD[1]}} :
NewDirPredictionE ;
flopenr #(2) ForwardDirPredicitonReg(clk, reset, ~StallF, ForwardNewDirPrediction, ForwardDirPredictionF);
assign DirPredictionF = MatchXF ? ForwardDirPredictionF : TableDirPredictionF;
// DirPrediction pipeline
flopenr #(2) PredictionRegD(clk, reset, ~StallD, DirPredictionF, DirPredictionD);
flopenr #(2) PredictionRegE(clk, reset, ~StallE, DirPredictionD, DirPredictionE);
satCounter2 BPDirUpdateE(.BrDir(PCSrcE), .OldState(DirPredictionE), .NewState(NewDirPredictionE));
// GHR pipeline
// If Fetch has a branch, speculatively insert prediction into the GHR
// If the front end is flushed or the direction prediction is wrong, reset to
// most recent valid GHR. For a BP wrong this is GHRD with the correct prediction shifted in.
// For FlushE this is GHRE. GHRNextE is both.
assign FlushDOrDirWrong = FlushD | DirPredictionWrongE;
mux3 #(k) GHRFMux(GHRF, {DirPredictionF[1], GHRF[k-1:1]}, GHRNextE[k-1:0],
{FlushDOrDirWrong, PredInstrClassF[0]}, GHRNextF);
// Need 1 extra bit to store the shifted out GHRF if repair needs to back shift.
flopenr #(k) GHRFReg(clk, reset, ~StallF | FlushDOrDirWrong, GHRNextF, GHRF);
flopenr #(1) GHRFLastReg(clk, reset, ~StallF | FlushDOrDirWrong, GHRF[0], GHRLastF);
// With instruction class prediction, the class could be wrong and is checked in Decode.
// If it is wrong and branch does exist then shift right and insert the prediction.
// If the branch does not exist then shift left and use GHRLastF to restore the LSB.
logic [k-1:0] GHRClassWrong;
mux2 #(k) GHRClassWrongMux({DirPredictionD[1], GHRF[k-1:1]}, {GHRF[k-2:0], GHRLastF}, InstrClassD[0], GHRClassWrong);
// As with GHRF FlushD and wrong direction prediction flushes the pipeline and restores to GHRNextE.
mux3 #(k) GHRDMux(GHRF, GHRClassWrong, GHRNextE, {FlushDOrDirWrong, WrongPredInstrClassD[0]}, GHRNextD);
flopenr #(k) GHRDReg(clk, reset, ~StallD | FlushDOrDirWrong, GHRNextD, GHRD);
mux3 #(k) GHREMux(GHRD, GHRE, {PCSrcE, GHRD[k-2:0]}, {InstrClassE[0] & ~FlushM, FlushE}, GHRNextE);
flopenr #(k) GHREReg(clk, reset, ((InstrClassE[0] & ~FlushM) & ~StallE) | FlushE, GHRNextE, GHRE);
assign DirPredictionWrongE = PCSrcE != DirPredictionE[1] & InstrClassE[0];
endmodule