cvw/pipelined/srt/stine/lzd.sv

183 lines
4.3 KiB
Systemverilog
Executable File

///////////////////////////////////////////
// lzd.sv
//
// Written: James.Stine@okstate.edu 1 February 2021
// Modified:
//
// Purpose: Integer Divide instructions
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
module lzd2 (P, V, B);
input logic [1:0] B;
output logic P;
output logic V;
assign V = ~(B[0] & B[1]);
assign P = B[1];
endmodule // lzd2
module lzd_hier #(parameter WIDTH=8)
(input logic [WIDTH-1:0] B,
output logic [$clog2(WIDTH)-1:0] ZP,
output logic ZV);
if (WIDTH == 128)
lzd128 lzd127 (ZP, ZV, B);
else if (WIDTH == 64)
lzd64 lzd64 (ZP, ZV, B);
else if (WIDTH == 32)
lzd32 lzd32 (ZP, ZV, B);
else if (WIDTH == 16)
lzd16 lzd16 (ZP, ZV, B);
else if (WIDTH == 8)
lzd8 lzd8 (ZP, ZV, B);
else if (WIDTH == 4)
lzd4 lzd4 (ZP, ZV, B);
endmodule // lzd_hier
module lzd4 (ZP, ZV, B);
input logic [3:0] B;
logic ZPa;
logic ZPb;
logic ZVa;
logic ZVb;
output logic [1:0] ZP;
output logic ZV;
lzd2 l1 (ZPa, ZVa, B[1:0]);
lzd2 l2 (ZPb, ZVb, B[3:2]);
assign ZP[0:0] = ZVb ? ZPb : ZPa;
assign ZP[1] = ~ZVb;
assign ZV = ZVa | ZVb;
endmodule // lzd4
module lzd8 (ZP, ZV, B);
input logic [7:0] B;
logic [1:0] ZPa;
logic [1:0] ZPb;
logic ZVa;
logic ZVb;
output logic [2:0] ZP;
output logic ZV;
lzd4 l1 (ZPa, ZVa, B[3:0]);
lzd4 l2 (ZPb, ZVb, B[7:4]);
assign ZP[1:0] = ZVb ? ZPb : ZPa;
assign ZP[2] = ~ZVb;
assign ZV = ZVa | ZVb;
endmodule // lzd8
module lzd16 (ZP, ZV, B);
input logic [15:0] B;
logic [2:0] ZPa;
logic [2:0] ZPb;
logic ZVa;
logic ZVb;
output logic [3:0] ZP;
output logic ZV;
lzd8 l1 (ZPa, ZVa, B[7:0]);
lzd8 l2 (ZPb, ZVb, B[15:8]);
assign ZP[2:0] = ZVb ? ZPb : ZPa;
assign ZP[3] = ~ZVb;
assign ZV = ZVa | ZVb;
endmodule // lzd16
module lzd32 (ZP, ZV, B);
input logic [31:0] B;
logic [3:0] ZPa;
logic [3:0] ZPb;
logic ZVa;
logic ZVb;
output logic [4:0] ZP;
output logic ZV;
lzd16 l1 (ZPa, ZVa, B[15:0]);
lzd16 l2 (ZPb, ZVb, B[31:16]);
assign ZP[3:0] = ZVb ? ZPb : ZPa;
assign ZP[4] = ~ZVb;
assign ZV = ZVa | ZVb;
endmodule // lzd32
module lzd64 (ZP, ZV, B);
input logic [63:0] B;
logic [4:0] ZPa;
logic [4:0] ZPb;
logic ZVa;
logic ZVb;
output logic [5:0] ZP;
output logic ZV;
lzd32 l1 (ZPa, ZVa, B[31:0]);
lzd32 l2 (ZPb, ZVb, B[63:32]);
assign ZP[4:0] = ZVb ? ZPb : ZPa;
assign ZP[5] = ~ZVb;
assign ZV = ZVa | ZVb;
endmodule // lzd64
module lzd128 (ZP, ZV, B);
input logic [127:0] B;
logic [5:0] ZPa;
logic [5:0] ZPb;
logic ZVa;
logic ZVb;
output logic [6:0] ZP;
output logic ZV;
lzd64 l1 (ZPa, ZVa, B[64:0]);
lzd64 l2 (ZPb, ZVb, B[127:63]);
assign ZP[5:0] = ZVb ? ZPb : ZPa;
assign ZP[6] = ~ZVb;
assign ZV = ZVa | ZVb;
endmodule // lzd128