forked from Github_Repos/cvw
711 lines
26 KiB
Python
Executable File
711 lines
26 KiB
Python
Executable File
#!/usr/bin/python3
|
|
# Madeleine Masser-Frye mmasserfrye@hmc.edu 5/22
|
|
|
|
import scipy.optimize as opt
|
|
import subprocess
|
|
import csv
|
|
import re
|
|
from matplotlib.cbook import flatten
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.lines as lines
|
|
import numpy as np
|
|
from collections import namedtuple
|
|
import sklearn.metrics as skm
|
|
|
|
def synthsfromcsv(filename):
|
|
Synth = namedtuple("Synth", "module tech width freq delay area lpower denergy")
|
|
with open(filename, newline='') as csvfile:
|
|
csvreader = csv.reader(csvfile)
|
|
global allSynths
|
|
allSynths = list(csvreader)[1:]
|
|
for i in range(len(allSynths)):
|
|
for j in range(len(allSynths[0])):
|
|
try: allSynths[i][j] = int(allSynths[i][j])
|
|
except:
|
|
try: allSynths[i][j] = float(allSynths[i][j])
|
|
except: pass
|
|
allSynths[i] = Synth(*allSynths[i])
|
|
return allSynths
|
|
|
|
def synthsintocsv():
|
|
''' writes a CSV with one line for every available synthesis
|
|
each line contains the module, tech, width, target freq, and resulting metrics
|
|
'''
|
|
print("This takes a moment...")
|
|
bashCommand = "find . -path '*runs/ppa*rv32e*' -prune"
|
|
output = subprocess.check_output(['bash','-c', bashCommand])
|
|
allSynths = output.decode("utf-8").split('\n')[:-1]
|
|
|
|
specReg = re.compile('[a-zA-Z0-9]+')
|
|
metricReg = re.compile('-?\d+\.\d+[e]?[-+]?\d*')
|
|
|
|
file = open("ppaData.csv", "w")
|
|
writer = csv.writer(file)
|
|
writer.writerow(['Module', 'Tech', 'Width', 'Target Freq', 'Delay', 'Area', 'L Power (nW)', 'D energy (nJ)'])
|
|
|
|
for oneSynth in allSynths:
|
|
module, width, risc, tech, freq = specReg.findall(oneSynth)[2:7]
|
|
tech = tech[:-2]
|
|
metrics = []
|
|
for phrase in [['Path Slack', 'qor'], ['Design Area', 'qor'], ['100', 'power']]:
|
|
bashCommand = 'grep "{}" '+ oneSynth[2:]+'/reports/*{}*'
|
|
bashCommand = bashCommand.format(*phrase)
|
|
try: output = subprocess.check_output(['bash','-c', bashCommand])
|
|
except:
|
|
print(module + width + tech + freq + " doesn't have reports")
|
|
print("Consider running cleanup() first")
|
|
nums = metricReg.findall(str(output))
|
|
nums = [float(m) for m in nums]
|
|
metrics += nums
|
|
delay = 1000/int(freq) - metrics[0]
|
|
area = metrics[1]
|
|
lpower = metrics[4]
|
|
denergy = (metrics[2] + metrics[3])/int(freq)*1000 # (switching + internal powers)*delay, more practical units for regression coefs
|
|
|
|
if ('flop' in module): # since two flops in each module
|
|
[area, lpower, denergy] = [n/2 for n in [area, lpower, denergy]]
|
|
|
|
writer.writerow([module, tech, width, freq, delay, area, lpower, denergy])
|
|
file.close()
|
|
|
|
def cleanup():
|
|
''' removes runs that didn't work
|
|
'''
|
|
bashCommand = 'grep -r "Error" runs/ppa*/reports/*qor*'
|
|
try:
|
|
output = subprocess.check_output(['bash','-c', bashCommand])
|
|
allSynths = output.decode("utf-8").split('\n')[:-1]
|
|
for run in allSynths:
|
|
run = run.split('MHz')[0]
|
|
bc = 'rm -r '+ run + '*'
|
|
output = subprocess.check_output(['bash','-c', bc])
|
|
except: pass
|
|
|
|
bashCommand = "find . -path '*runs/ppa*rv32e*' -prune"
|
|
output = subprocess.check_output(['bash','-c', bashCommand])
|
|
allSynths = output.decode("utf-8").split('\n')[:-1]
|
|
for oneSynth in allSynths:
|
|
for phrase in [['Path Length', 'qor']]:
|
|
bashCommand = 'grep "{}" '+ oneSynth[2:]+'/reports/*{}*'
|
|
bashCommand = bashCommand.format(*phrase)
|
|
try: output = subprocess.check_output(['bash','-c', bashCommand])
|
|
except:
|
|
bc = 'rm -r '+ oneSynth[2:]
|
|
output = subprocess.check_output(['bash','-c', bc])
|
|
print("All cleaned up!")
|
|
|
|
def getVals(tech, module, var, freq=None, width=None):
|
|
''' for a specified tech, module, and variable/metric
|
|
returns a list of values for that metric in ascending width order
|
|
works at a specified target frequency or if none is given, uses the synthesis with the best achievable delay for each width
|
|
'''
|
|
|
|
if width != None:
|
|
widthsToGet = width
|
|
else:
|
|
widthsToGet = widths
|
|
|
|
metric = []
|
|
widthL = []
|
|
|
|
if (freq != None):
|
|
for oneSynth in allSynths:
|
|
if (oneSynth.freq == freq) & (oneSynth.tech == tech) & (oneSynth.module == module) & (oneSynth.width != 1):
|
|
widthL += [oneSynth.width]
|
|
osdict = oneSynth._asdict()
|
|
metric += [osdict[var]]
|
|
metric = [x for _, x in sorted(zip(widthL, metric))] # ordering
|
|
else:
|
|
for w in widthsToGet:
|
|
for oneSynth in bestSynths:
|
|
if (oneSynth.width == w) & (oneSynth.tech == tech) & (oneSynth.module == module):
|
|
osdict = oneSynth._asdict()
|
|
met = osdict[var]
|
|
metric += [met]
|
|
return metric
|
|
|
|
def csvOfBest(filename):
|
|
bestSynths = []
|
|
for tech in [x.tech for x in techSpecs]:
|
|
for mod in modules:
|
|
for w in widths:
|
|
m = np.Inf # large number to start
|
|
best = None
|
|
for oneSynth in allSynths: # best achievable, rightmost green
|
|
if (oneSynth.width == w) & (oneSynth.tech == tech) & (oneSynth.module == mod):
|
|
if (oneSynth.delay < m) & (1000/oneSynth.delay > oneSynth.freq):
|
|
m = oneSynth.delay
|
|
best = oneSynth
|
|
|
|
if (best != None) & (best not in bestSynths):
|
|
bestSynths += [best]
|
|
|
|
file = open(filename, "w")
|
|
writer = csv.writer(file)
|
|
writer.writerow(['Module', 'Tech', 'Width', 'Target Freq', 'Delay', 'Area', 'L Power (nW)', 'D energy (nJ)'])
|
|
for synth in bestSynths:
|
|
writer.writerow(list(synth))
|
|
file.close()
|
|
return bestSynths
|
|
|
|
def genLegend(fits, coefs, r2=None, spec=None, ale=False):
|
|
''' generates a list of two legend elements (or just an equation if no r2 or spec)
|
|
labels line with fit equation and dots with r squared of the fit
|
|
'''
|
|
|
|
coefsr = [str(sigfig(c, 2)) for c in coefs]
|
|
if ale:
|
|
if (normAddWidth == 32):
|
|
sub = 'S'
|
|
elif normAddWidth != 1:
|
|
print('Equations are wrong, check normAddWidth')
|
|
else:
|
|
sub = 'N'
|
|
|
|
eqDict = {'c': '', 'l': sub, 's': '$'+sub+'^2$', 'g': '$log_2$('+sub+')', 'n': ''+sub+'$log_2$('+sub+')'}
|
|
eq = ''
|
|
ind = 0
|
|
|
|
for k in eqDict.keys():
|
|
if k in fits:
|
|
if str(coefsr[ind]) != '0': eq += " + " + coefsr[ind] + eqDict[k]
|
|
ind += 1
|
|
|
|
eq = eq[3:] # chop off leading ' + '
|
|
|
|
if (r2==None) or (spec==None):
|
|
return eq
|
|
else:
|
|
legend_elements = [lines.Line2D([0], [0], color=spec.color, label=eq)]
|
|
legend_elements += [lines.Line2D([0], [0], color=spec.color, ls='', marker=spec.shape, label='$R^2$='+ str(round(r2, 4)))]
|
|
return legend_elements
|
|
|
|
def oneMetricPlot(module, var, freq=None, ax=None, fits='clsgn', norm=True, color=None):
|
|
''' module: string module name
|
|
freq: int freq (MHz)
|
|
var: string delay, area, lpower, or denergy
|
|
fits: constant, linear, square, log2, Nlog2
|
|
plots given variable vs width for all matching syntheses with regression
|
|
'''
|
|
singlePlot = True
|
|
if ax or (freq == 10):
|
|
singlePlot = False
|
|
if ax is None:
|
|
ax = plt.gca()
|
|
|
|
fullLeg = []
|
|
allWidths = []
|
|
allMetrics = []
|
|
|
|
ale = (var != 'delay') # if not delay, must be area, leakage, or energy
|
|
modFit = fitDict[module]
|
|
fits = modFit[ale]
|
|
|
|
if freq:
|
|
ls = '--'
|
|
else:
|
|
ls = '-'
|
|
|
|
for spec in techSpecs:
|
|
metric = getVals(spec.tech, module, var, freq=freq)
|
|
|
|
if norm:
|
|
techdict = spec._asdict()
|
|
norm = techdict[var]
|
|
metric = [m/norm for m in metric]
|
|
|
|
if len(metric) == 5: # don't include the spec if we don't have points for all widths
|
|
xp, pred, coefs, r2 = regress(widths, metric, fits, ale)
|
|
fullLeg += genLegend(fits, coefs, r2, spec, ale=ale)
|
|
c = color if color else spec.color
|
|
ax.scatter(widths, metric, color=c, marker=spec.shape)
|
|
ax.plot(xp, pred, color=c, linestyle=ls)
|
|
allWidths += widths
|
|
allMetrics += metric
|
|
|
|
xp, pred, coefs, r2 = regress(allWidths, allMetrics, fits)
|
|
ax.plot(xp, pred, color='red', linestyle=ls)
|
|
|
|
if norm:
|
|
ylabeldic = {"lpower": "Leakage Power (add32)", "denergy": "Energy/Op (add32)", "area": "Area (add32)", "delay": "Delay (FO4)"}
|
|
else:
|
|
ylabeldic = {"lpower": "Leakage Power (nW)", "denergy": "Dynamic Energy (nJ)", "area": "Area (sq microns)", "delay": "Delay (ns)"}
|
|
|
|
ax.set_ylabel(ylabeldic[var])
|
|
ax.set_xticks(widths)
|
|
|
|
if singlePlot or (var == 'lpower') or (var == 'denergy'):
|
|
ax.set_xlabel("Width (bits)")
|
|
if not singlePlot and ((var == 'delay') or (var == 'area')):
|
|
ax.tick_params(labelbottom=False)
|
|
|
|
if singlePlot:
|
|
fullLeg += genLegend(fits, coefs, r2, combined, ale=ale)
|
|
legLoc = 'upper left' if ale else 'center right'
|
|
ax.add_artist(ax.legend(handles=fullLeg, loc=legLoc))
|
|
titleStr = " (target " + str(freq)+ "MHz)" if freq != None else " (best achievable delay)"
|
|
ax.set_title(module + titleStr)
|
|
plt.savefig('.plots/'+ module + '_' + var + '.png')
|
|
# plt.show()
|
|
return r2
|
|
|
|
def regress(widths, var, fits='clsgn', ale=False):
|
|
''' fits a curve to the given points
|
|
returns lists of x and y values to plot that curve and coefs for the eq with r2
|
|
'''
|
|
|
|
funcArr = genFuncs(fits)
|
|
xp = np.linspace(min(widths)/2, max(widths)*1.1, 200)
|
|
xpToCalc = xp
|
|
|
|
if ale:
|
|
widths = [w/normAddWidth for w in widths]
|
|
xpToCalc = [x/normAddWidth for x in xp]
|
|
|
|
mat = []
|
|
for w in widths:
|
|
row = []
|
|
for func in funcArr:
|
|
row += [func(w)]
|
|
mat += [row]
|
|
|
|
y = np.array(var, dtype=np.float)
|
|
coefs = opt.nnls(mat, y)[0]
|
|
|
|
yp = []
|
|
for w in widths:
|
|
n = [func(w) for func in funcArr]
|
|
yp += [sum(np.multiply(coefs, n))]
|
|
r2 = skm.r2_score(y, yp)
|
|
|
|
pred = []
|
|
for x in xpToCalc:
|
|
n = [func(x) for func in funcArr]
|
|
pred += [sum(np.multiply(coefs, n))]
|
|
|
|
return xp, pred, coefs, r2
|
|
|
|
def makeCoefTable():
|
|
''' writes CSV with each line containing the coefficients for a regression fit
|
|
to a particular combination of module, metric (including both techs, normalized)
|
|
'''
|
|
file = open("ppaFitting.csv", "w")
|
|
writer = csv.writer(file)
|
|
writer.writerow(['Module', 'Metric', 'Target', '1', 'N', 'N^2', 'log2(N)', 'Nlog2(N)', 'R^2'])
|
|
|
|
for module in modules:
|
|
for freq in [10, None]:
|
|
target = 'easy' if freq else 'hard'
|
|
for var in ['delay', 'area', 'lpower', 'denergy']:
|
|
ale = (var != 'delay')
|
|
metL = []
|
|
modFit = fitDict[module]
|
|
fits = modFit[ale]
|
|
|
|
for spec in techSpecs:
|
|
metric = getVals(spec.tech, module, var, freq=freq)
|
|
techdict = spec._asdict()
|
|
norm = techdict[var]
|
|
metL += [m/norm for m in metric]
|
|
|
|
xp, pred, coefs, r2 = regress(widths*2, metL, fits, ale)
|
|
coefs = np.ndarray.tolist(coefs)
|
|
coefsToWrite = [None]*5
|
|
fitTerms = 'clsgn'
|
|
ind = 0
|
|
for i in range(len(fitTerms)):
|
|
if fitTerms[i] in fits:
|
|
coefsToWrite[i] = coefs[ind]
|
|
ind += 1
|
|
row = [module, var, target] + coefsToWrite + [r2]
|
|
writer.writerow(row)
|
|
|
|
file.close()
|
|
|
|
def sigfig(num, figs):
|
|
return '{:g}'.format(float('{:.{p}g}'.format(num, p=figs)))
|
|
|
|
def makeEqTable():
|
|
''' writes CSV with each line containing the equations for fits for each metric
|
|
to a particular module (including both techs, normalized)
|
|
'''
|
|
file = open("ppaEquations.csv", "w")
|
|
writer = csv.writer(file)
|
|
writer.writerow(['Element', 'Best delay', 'Fast area', 'Fast leakage', 'Fast energy', 'Small area', 'Small leakage', 'Small energy'])
|
|
|
|
for module in modules:
|
|
eqs = []
|
|
for freq in [None, 10]:
|
|
for var in ['delay', 'area', 'lpower', 'denergy']:
|
|
if (var == 'delay') and (freq == 10):
|
|
pass
|
|
else:
|
|
ale = (var != 'delay')
|
|
metL = []
|
|
modFit = fitDict[module]
|
|
fits = modFit[ale]
|
|
|
|
for spec in techSpecs:
|
|
metric = getVals(spec.tech, module, var, freq=freq)
|
|
techdict = spec._asdict()
|
|
norm = techdict[var]
|
|
metL += [m/norm for m in metric]
|
|
|
|
xp, pred, coefs, r2 = regress(widths*2, metL, fits, ale)
|
|
coefs = np.ndarray.tolist(coefs)
|
|
eqs += [genLegend(fits, coefs, ale=ale)]
|
|
row = [module] + eqs
|
|
writer.writerow(row)
|
|
|
|
file.close()
|
|
|
|
def genFuncs(fits='clsgn'):
|
|
''' helper function for regress()
|
|
returns array of functions with one for each term desired in the regression fit
|
|
'''
|
|
funcArr = []
|
|
if 'c' in fits:
|
|
funcArr += [lambda x: 1]
|
|
if 'l' in fits:
|
|
funcArr += [lambda x: x]
|
|
if 's' in fits:
|
|
funcArr += [lambda x: x**2]
|
|
if 'g' in fits:
|
|
funcArr += [lambda x: np.log2(x)]
|
|
if 'n' in fits:
|
|
funcArr += [lambda x: x*np.log2(x)]
|
|
return funcArr
|
|
|
|
def noOutliers(median, freqs, delays, areas):
|
|
''' returns a pared down list of freqs, delays, and areas
|
|
cuts out any syntheses in which target freq isn't within 75% of the min delay target to focus on interesting area
|
|
helper function to freqPlot()
|
|
'''
|
|
f=[]
|
|
d=[]
|
|
a=[]
|
|
for i in range(len(freqs)):
|
|
norm = freqs[i]/median
|
|
if (norm > 0.4) & (norm<1.4):
|
|
f += [freqs[i]]
|
|
d += [delays[i]]
|
|
a += [areas[i]]
|
|
|
|
return f, d, a
|
|
|
|
def freqPlot(tech, mod, width):
|
|
''' plots delay, area, area*delay, and area*delay^2 for syntheses with specified tech, module, width
|
|
'''
|
|
|
|
freqsL, delaysL, areasL = ([[], []] for i in range(3))
|
|
for oneSynth in allSynths:
|
|
if (mod == oneSynth.module) & (width == oneSynth.width) & (tech == oneSynth.tech):
|
|
ind = (1000/oneSynth.delay < oneSynth.freq) # when delay is within target clock period
|
|
freqsL[ind] += [oneSynth.freq]
|
|
delaysL[ind] += [oneSynth.delay]
|
|
areasL[ind] += [oneSynth.area]
|
|
|
|
median = np.median(list(flatten(freqsL)))
|
|
|
|
f, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
|
|
for ax in (ax1, ax2):
|
|
ax.ticklabel_format(useOffset=False, style='plain')
|
|
|
|
for ind in [0,1]:
|
|
areas = areasL[ind]
|
|
delays = delaysL[ind]
|
|
freqs = freqsL[ind]
|
|
|
|
freqs, delays, areas = noOutliers(median, freqs, delays, areas) # comment out to see all syntheses
|
|
|
|
c = 'blue' if ind else 'green'
|
|
ax1.scatter(freqs, delays, color=c)
|
|
ax2.scatter(freqs, areas, color=c)
|
|
|
|
legend_elements = [lines.Line2D([0], [0], color='green', ls='', marker='o', label='timing achieved'),
|
|
lines.Line2D([0], [0], color='blue', ls='', marker='o', label='slack violated')]
|
|
|
|
ax1.legend(handles=legend_elements)
|
|
width = str(width)
|
|
|
|
ax2.set_xlabel("Target Freq (MHz)")
|
|
ax1.set_ylabel('Delay (ns)')
|
|
ax2.set_ylabel('Area (sq microns)')
|
|
ax1.set_title(mod + '_' + width)
|
|
if ('mux' in mod) & ('d' in mod):
|
|
width = mod
|
|
mod = 'muxd'
|
|
plt.savefig('./plots/freqBuckshot/' + tech + '/' + mod + '/' + width + '.png')
|
|
# plt.show()
|
|
|
|
def squareAreaDelay(tech, mod, width):
|
|
''' plots delay, area, area*delay, and area*delay^2 for syntheses with specified tech, module, width
|
|
'''
|
|
global allSynths
|
|
freqsL, delaysL, areasL = ([[], []] for i in range(3))
|
|
for oneSynth in allSynths:
|
|
if (mod == oneSynth.module) & (width == oneSynth.width) & (tech == oneSynth.tech):
|
|
ind = (1000/oneSynth.delay < oneSynth.freq) # when delay is within target clock period
|
|
freqsL[ind] += [oneSynth.freq]
|
|
delaysL[ind] += [oneSynth.delay]
|
|
areasL[ind] += [oneSynth.area]
|
|
|
|
f, (ax1) = plt.subplots(1, 1)
|
|
ax2 = ax1.twinx()
|
|
|
|
for ind in [0,1]:
|
|
areas = areasL[ind]
|
|
delays = delaysL[ind]
|
|
targets = freqsL[ind]
|
|
targets = [1000/f for f in targets]
|
|
|
|
targets, delays, areas = noOutliers(targets, delays, areas) # comment out to see all
|
|
|
|
if not ind:
|
|
achievedDelays = delays
|
|
|
|
c = 'blue' if ind else 'green'
|
|
ax1.scatter(targets, delays, marker='^', color=c)
|
|
ax2.scatter(targets, areas, marker='s', color=c)
|
|
|
|
bestAchieved = min(achievedDelays)
|
|
|
|
legend_elements = [lines.Line2D([0], [0], color='green', ls='', marker='^', label='delay (timing achieved)'),
|
|
lines.Line2D([0], [0], color='green', ls='', marker='s', label='area (timing achieved)'),
|
|
lines.Line2D([0], [0], color='blue', ls='', marker='^', label='delay (timing violated)'),
|
|
lines.Line2D([0], [0], color='blue', ls='', marker='s', label='area (timing violated)')]
|
|
|
|
ax2.legend(handles=legend_elements, loc='upper left')
|
|
|
|
ax1.set_xlabel("Delay Targeted (ns)")
|
|
ax1.set_ylabel("Delay Achieved (ns)")
|
|
ax2.set_ylabel('Area (sq microns)')
|
|
ax1.set_title(mod + '_' + str(width))
|
|
|
|
squarify(f)
|
|
|
|
xvals = np.array(ax1.get_xlim())
|
|
frac = (min(flatten(delaysL))-xvals[0])/(xvals[1]-xvals[0])
|
|
areaLowerLim = min(flatten(areasL))-100
|
|
areaUpperLim = max(flatten(areasL))/frac + areaLowerLim
|
|
ax2.set_ylim([areaLowerLim, areaUpperLim])
|
|
ax1.plot(xvals, xvals, ls="--", c=".3")
|
|
ax1.hlines(y=bestAchieved, xmin=xvals[0], xmax=xvals[1], color="black", ls='--')
|
|
|
|
plt.savefig('./plots/squareareadelay_' + mod + '_' + str(width) + '.png')
|
|
# plt.show()
|
|
|
|
def squarify(fig):
|
|
''' helper function for squareAreaDelay()
|
|
forces matplotlib figure to be a square
|
|
'''
|
|
w, h = fig.get_size_inches()
|
|
if w > h:
|
|
t = fig.subplotpars.top
|
|
b = fig.subplotpars.bottom
|
|
axs = h*(t-b)
|
|
l = (1.-axs/w)/2
|
|
fig.subplots_adjust(left=l, right=1-l)
|
|
else:
|
|
t = fig.subplotpars.right
|
|
b = fig.subplotpars.left
|
|
axs = w*(t-b)
|
|
l = (1.-axs/h)/2
|
|
fig.subplots_adjust(bottom=l, top=1-l)
|
|
|
|
def plotPPA(mod, freq=None, norm=True, aleOpt=False):
|
|
''' for the module specified, plots width vs delay, area, leakage power, and dynamic energy with fits
|
|
if no freq specified, uses the synthesis with best achievable delay for each width
|
|
overlays data from both techs
|
|
'''
|
|
plt.rcParams["figure.figsize"] = (7,3.46)
|
|
fig, axs = plt.subplots(2, 2)
|
|
|
|
arr = [['delay', 'area'], ['lpower', 'denergy']]
|
|
|
|
freqs = [freq]
|
|
if aleOpt: freqs += [10]
|
|
|
|
for i in [0, 1]:
|
|
for j in [0, 1]:
|
|
leg = []
|
|
for f in freqs:
|
|
if (arr[i][j]=='delay') and (f==10):
|
|
pass
|
|
else:
|
|
r2 = oneMetricPlot(mod, arr[i][j], ax=axs[i, j], freq=f, norm=norm)
|
|
ls = '--' if f else '-'
|
|
leg += [lines.Line2D([0], [0], color='red', label='$R^2$='+str(round(r2, 4)), linestyle=ls)]
|
|
|
|
if (mod in ['flop', 'csa']) & (arr[i][j] == 'delay'):
|
|
axs[i, j].set_ylim(ymin=0)
|
|
ytop = axs[i, j].get_ylim()[1]
|
|
axs[i, j].set_ylim(ymax=1.1*ytop)
|
|
else:
|
|
axs[i, j].legend(handles=leg, handlelength=1.5)
|
|
|
|
titleStr = " (target " + str(freq)+ "MHz)" if freq != None else ""
|
|
plt.suptitle(mod + titleStr)
|
|
plt.tight_layout(pad=0.05, w_pad=1, h_pad=0.5, rect=(0,0,1,0.97))
|
|
|
|
if freq != 10:
|
|
n = 'normalized' if norm else 'unnormalized'
|
|
saveStr = './plots/'+ n + '/' + mod + '.png'
|
|
plt.savefig(saveStr)
|
|
# plt.show()
|
|
|
|
def makeLineLegend():
|
|
plt.rcParams["figure.figsize"] = (5.5,0.3)
|
|
fig = plt.figure()
|
|
fullLeg = [lines.Line2D([0], [0], color='black', label='fastest', linestyle='-')]
|
|
fullLeg += [lines.Line2D([0], [0], color='black', label='smallest', linestyle='--')]
|
|
fullLeg += [lines.Line2D([0], [0], color='blue', label='tsmc28', marker='^')]
|
|
fullLeg += [lines.Line2D([0], [0], color='green', label='sky90', marker='o')]
|
|
fullLeg += [lines.Line2D([0], [0], color='red', label='combined', marker='_')]
|
|
fig.legend(handles=fullLeg, ncol=5, handlelength=1.4, loc='center')
|
|
saveStr = './plots/legend.png'
|
|
plt.savefig(saveStr)
|
|
|
|
def muxPlot(fits='clsgn', norm=True):
|
|
''' module: string module name
|
|
freq: int freq (MHz)
|
|
var: string delay, area, lpower, or denergy
|
|
fits: constant, linear, square, log2, Nlog2
|
|
plots given variable vs width for all matching syntheses with regression
|
|
'''
|
|
ax = plt.gca()
|
|
|
|
inputs = [2, 4, 8]
|
|
allInputs = inputs*2
|
|
fullLeg = []
|
|
|
|
for crit in ['data', 'control']:
|
|
allMetrics = []
|
|
muxes = ['mux2', 'mux4', 'mux8']
|
|
|
|
if crit == 'data':
|
|
ls = '--'
|
|
muxes = [m + 'd' for m in muxes]
|
|
elif crit == 'control':
|
|
ls = '-'
|
|
|
|
for spec in techSpecs:
|
|
metric = []
|
|
for module in muxes:
|
|
metric += getVals(spec.tech, module, 'delay', width=[1])
|
|
|
|
if norm:
|
|
techdict = spec._asdict()
|
|
norm = techdict['delay']
|
|
metric = [m/norm for m in metric]
|
|
# print(spec.tech, ' ', metric)
|
|
|
|
if len(metric) == 3: # don't include the spec if we don't have points for all
|
|
xp, pred, coefs, r2 = regress(inputs, metric, fits, ale=False)
|
|
ax.scatter(inputs, metric, color=spec.color, marker=spec.shape)
|
|
ax.plot(xp, pred, color=spec.color, linestyle=ls)
|
|
allMetrics += metric
|
|
|
|
xp, pred, coefs, r2 = regress(allInputs, allMetrics, fits)
|
|
ax.plot(xp, pred, color='red', linestyle=ls)
|
|
fullLeg += [lines.Line2D([0], [0], color='red', label=crit, linestyle=ls)]
|
|
|
|
ax.set_ylabel('Delay (FO4)')
|
|
ax.set_xticks(inputs)
|
|
ax.set_xlabel("Number of inputs")
|
|
ax.set_title('mux timing')
|
|
|
|
ax.legend(handles = fullLeg)
|
|
plt.savefig('./plots/mux.png')
|
|
|
|
def stdDevError():
|
|
for var in ['delay', 'area', 'lpower', 'denergy']:
|
|
errlist = []
|
|
for module in modules:
|
|
ale = (var != 'delay')
|
|
metL = []
|
|
modFit = fitDict[module]
|
|
fits = modFit[ale]
|
|
funcArr = genFuncs(fits)
|
|
|
|
for spec in techSpecs:
|
|
metric = getVals(spec.tech, module, var)
|
|
techdict = spec._asdict()
|
|
norm = techdict[var]
|
|
metL += [m/norm for m in metric]
|
|
|
|
if ale:
|
|
ws = [w/normAddWidth for w in widths]
|
|
else:
|
|
ws = widths
|
|
ws = ws*2
|
|
mat = []
|
|
for w in ws:
|
|
row = []
|
|
for func in funcArr:
|
|
row += [func(w)]
|
|
mat += [row]
|
|
|
|
y = np.array(metL, dtype=np.float)
|
|
coefs = opt.nnls(mat, y)[0]
|
|
|
|
yp = []
|
|
for w in ws:
|
|
n = [func(w) for func in funcArr]
|
|
yp += [sum(np.multiply(coefs, n))]
|
|
|
|
if (var == 'delay') & (module == 'flop'):
|
|
pass
|
|
elif (module == 'mult') & ale:
|
|
pass
|
|
else:
|
|
for i in range(len(y)):
|
|
errlist += [abs(y[i]/yp[i]-1)]
|
|
# print(module, ' ', var, ' ', np.mean(errlist[-10:]))
|
|
|
|
avgErr = np.mean(errlist)
|
|
stdv = np.std(errlist)
|
|
|
|
print(var, ' ', avgErr, ' ', stdv)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
##############################
|
|
# set up stuff, global variables
|
|
widths = [8, 16, 32, 64, 128]
|
|
modules = ['priorityencoder', 'add', 'csa', 'shiftleft', 'comparator', 'flop', 'mux2', 'mux4', 'mux8', 'mult'] #, 'mux2d', 'mux4d', 'mux8d']
|
|
normAddWidth = 32 # divisor to use with N since normalizing to add_32
|
|
|
|
fitDict = {'add': ['cg', 'l', 'l'], 'mult': ['cg', 's', 's'], 'comparator': ['cg', 'l', 'l'], 'csa': ['c', 'l', 'l'], 'shiftleft': ['cg', 'l', 'ln'], 'flop': ['c', 'l', 'l'], 'priorityencoder': ['cg', 'l', 'l']}
|
|
fitDict.update(dict.fromkeys(['mux2', 'mux4', 'mux8'], ['cg', 'l', 'l']))
|
|
|
|
TechSpec = namedtuple("TechSpec", "tech color shape delay area lpower denergy")
|
|
techSpecs = [['sky90', 'green', 'o', 43.2e-3, 1440.600027, 714.057, 0.658022690438], ['tsmc28', 'blue', '^', 12.2e-3, 209.286002, 1060.0, .08153281695882594]]
|
|
techSpecs = [TechSpec(*t) for t in techSpecs]
|
|
combined = TechSpec('combined fit', 'red', '_', 0, 0, 0, 0)
|
|
##############################
|
|
|
|
# cleanup() # run to remove garbage synth runs
|
|
# synthsintocsv() # slow, run only when new synth runs to add to csv
|
|
|
|
allSynths = synthsfromcsv('ppaData.csv') # your csv here!
|
|
bestSynths = csvOfBest('bestSynths.csv')
|
|
|
|
# ### function examples
|
|
# squareAreaDelay('sky90', 'add', 32)
|
|
# oneMetricPlot('mult', 'lpower')
|
|
# freqPlot('sky90', 'mux4', 16)
|
|
# plotBestAreas('add')
|
|
# makeCoefTable()
|
|
# makeEqTable()
|
|
# makeLineLegend()
|
|
# muxPlot()
|
|
# stdDevError()
|
|
|
|
for mod in modules:
|
|
plotPPA(mod, norm=False)
|
|
plotPPA(mod, aleOpt=True)
|
|
for w in widths:
|
|
freqPlot('sky90', mod, w)
|
|
freqPlot('tsmc28', mod, w)
|
|
plt.close('all') |