forked from Github_Repos/cvw
261 lines
7.1 KiB
Python
Executable File
261 lines
7.1 KiB
Python
Executable File
#!/usr/bin/python3
|
|
from distutils.log import error
|
|
from statistics import median
|
|
import subprocess
|
|
import statistics
|
|
import csv
|
|
import re
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.lines as lines
|
|
import numpy as np
|
|
|
|
|
|
def getData():
|
|
bashCommand = "grep 'Critical Path Length' runs/ppa_*/reports/*qor*"
|
|
outputCPL = subprocess.check_output(['bash','-c', bashCommand])
|
|
linesCPL = outputCPL.decode("utf-8").split('\n')[:-1]
|
|
|
|
bashCommand = "grep 'Design Area' runs/ppa_*/reports/*qor*"
|
|
outputDA = subprocess.check_output(['bash','-c', bashCommand])
|
|
linesDA = outputDA.decode("utf-8").split('\n')[:-1]
|
|
|
|
bashCommand = "grep '100' runs/ppa_*/reports/*power*"
|
|
outputP = subprocess.check_output(['bash','-c', bashCommand])
|
|
linesP = outputP.decode("utf-8").split('\n')[:-1]
|
|
|
|
cpl = re.compile('\d{1}\.\d{6}')
|
|
f = re.compile('_\d*_MHz')
|
|
wm = re.compile('ppa_\w*_\d*_qor')
|
|
da = re.compile('\d*\.\d{6}')
|
|
p = re.compile('\d+\.\d+[e-]*\d+')
|
|
|
|
allSynths = []
|
|
|
|
for i in range(len(linesCPL)):
|
|
line = linesCPL[i]
|
|
mwm = wm.findall(line)[0][4:-4].split('_')
|
|
freq = int(f.findall(line)[0][1:-4])
|
|
delay = float(cpl.findall(line)[0])
|
|
area = float(da.findall(linesDA[i])[0])
|
|
mod = mwm[0]
|
|
width = int(mwm[1])
|
|
|
|
power = p.findall(linesP[i])
|
|
lpower = float(power[2])
|
|
denergy = float(power[1])/freq
|
|
|
|
oneSynth = [mod, width, freq, delay, area, lpower, denergy]
|
|
allSynths += [oneSynth]
|
|
|
|
return allSynths
|
|
|
|
def getVals(module, freq, var):
|
|
global allSynths
|
|
if (var == 'delay'):
|
|
ind = 3
|
|
units = " (ns)"
|
|
elif (var == 'area'):
|
|
ind = 4
|
|
units = " (sq microns)"
|
|
elif (var == 'lpower'):
|
|
ind = 5
|
|
units = " (nW)"
|
|
elif (var == 'denergy'):
|
|
ind = 6
|
|
units = " (pJ)"
|
|
else:
|
|
error
|
|
|
|
widths = []
|
|
metric = []
|
|
for oneSynth in allSynths:
|
|
if (oneSynth[0] == module) & (oneSynth[2] == freq):
|
|
widths += [oneSynth[1]]
|
|
m = oneSynth[ind]
|
|
if (ind==6): m*=1000
|
|
metric += [m]
|
|
return widths, metric, units
|
|
|
|
def writeCSV(allSynths):
|
|
file = open("ppaData.csv", "w")
|
|
writer = csv.writer(file)
|
|
writer.writerow(['Module', 'Width', 'Target Freq', 'Delay', 'Area', 'L Power (nW)', 'D energy (mJ)'])
|
|
|
|
for one in allSynths:
|
|
writer.writerow(one)
|
|
|
|
file.close()
|
|
|
|
def genLegend(fits, coefs, module, r2):
|
|
|
|
coefsr = [str(round(c, 3)) for c in coefs]
|
|
|
|
eq = ''
|
|
ind = 0
|
|
if 'c' in fits:
|
|
eq += coefsr[ind]
|
|
ind += 1
|
|
if 'l' in fits:
|
|
eq += " + " + coefsr[ind] + "*N"
|
|
ind += 1
|
|
if 's' in fits:
|
|
eq += " + " + coefsr[ind] + "*N^2"
|
|
ind += 1
|
|
if 'g' in fits:
|
|
eq += " + " + coefsr[ind] + "*log2(N)"
|
|
ind += 1
|
|
if 'n' in fits:
|
|
eq += " + " + coefsr[ind] + "*Nlog2(N)"
|
|
ind += 1
|
|
|
|
legend_elements = [lines.Line2D([0], [0], color='orange', label=eq),
|
|
lines.Line2D([0], [0], color='steelblue', ls='', marker='o', label=' R^2='+ str(round(r2, 4)))]
|
|
return legend_elements
|
|
|
|
def plotPPA(module, freq, var, ax=None, fits='clsgn'):
|
|
'''
|
|
module: string module name
|
|
freq: int freq (MHz)
|
|
var: string delay, area, lpower, or denergy
|
|
fits: constant, linear, square, log2, Nlog2
|
|
plots chosen variable vs width for all matching syntheses with regression
|
|
'''
|
|
widths, metric, units = getVals(module, freq, var)
|
|
coefs, r2, funcArr = regress(widths, metric, fits)
|
|
|
|
xp = np.linspace(8, 140, 200)
|
|
pred = []
|
|
for x in xp:
|
|
y = [func(x) for func in funcArr]
|
|
pred += [sum(np.multiply(coefs, y))]
|
|
|
|
if ax is None:
|
|
singlePlot = True
|
|
ax = plt.gca()
|
|
else:
|
|
singlePlot = False
|
|
|
|
ax.scatter(widths, metric)
|
|
ax.plot(xp, pred, color='orange')
|
|
|
|
legend_elements = genLegend(fits, coefs, module, r2)
|
|
ax.legend(handles=legend_elements)
|
|
|
|
ax.set_xticks(widths)
|
|
ax.set_xlabel("Width (bits)")
|
|
ax.set_ylabel(str.title(var) + units)
|
|
|
|
if singlePlot:
|
|
ax.set_title(module + " (target " + str(freq) + "MHz)")
|
|
plt.show()
|
|
|
|
def makePlots(mod, freq):
|
|
fig, axs = plt.subplots(2, 2)
|
|
plotPPA(mod, freq, 'delay', ax=axs[0,0], fits='cg')
|
|
plotPPA(mod, freq, 'area', ax=axs[0,1], fits='s')
|
|
plotPPA(mod, freq, 'lpower', ax=axs[1,0], fits='c')
|
|
plotPPA(mod, freq, 'denergy', ax=axs[1,1], fits='s')
|
|
plt.suptitle(mod + " (target " + str(freq) + "MHz)")
|
|
plt.show()
|
|
|
|
def regress(widths, var, fits='clsgn'):
|
|
|
|
funcArr = genFuncs(fits)
|
|
|
|
mat = []
|
|
for w in widths:
|
|
row = []
|
|
for func in funcArr:
|
|
row += [func(w)]
|
|
mat += [row]
|
|
|
|
y = np.array(var, dtype=np.float)
|
|
coefsResid = np.linalg.lstsq(mat, y, rcond=None)
|
|
coefs = coefsResid[0]
|
|
try:
|
|
resid = coefsResid[1][0]
|
|
except:
|
|
resid = 0
|
|
r2 = 1 - resid / (y.size * y.var())
|
|
return coefs, r2, funcArr
|
|
|
|
def makeCoefTable():
|
|
file = open("ppaFitting.csv", "w")
|
|
writer = csv.writer(file)
|
|
writer.writerow(['Module', 'Metric', 'Freq', '1', 'N', 'N^2', 'log2(N)', 'Nlog2(N)', 'R^2'])
|
|
|
|
for mod in ['add', 'mult', 'comparator', 'shifter']:
|
|
for comb in [['delay', 5000], ['area', 5000], ['area', 10]]:
|
|
var = comb[0]
|
|
freq = comb[1]
|
|
widths, metric, units = getVals(mod, freq, var)
|
|
coefs, r2, funcArr = regress(widths, metric)
|
|
row = [mod] + comb + np.ndarray.tolist(coefs) + [r2]
|
|
writer.writerow(row)
|
|
|
|
file.close()
|
|
|
|
def genFuncs(fits='clsgn'):
|
|
funcArr = []
|
|
if 'c' in fits:
|
|
funcArr += [lambda x: 1]
|
|
if 'l' in fits:
|
|
funcArr += [lambda x: x]
|
|
if 's' in fits:
|
|
funcArr += [lambda x: x**2]
|
|
if 'g' in fits:
|
|
funcArr += [lambda x: np.log2(x)]
|
|
if 'n' in fits:
|
|
funcArr += [lambda x: x*np.log2(x)]
|
|
return funcArr
|
|
|
|
def noOutliers(freqs, delays, areas):
|
|
med = statistics.median(freqs)
|
|
f=[]
|
|
d=[]
|
|
a=[]
|
|
for i in range(len(freqs)):
|
|
norm = freqs[i]/med
|
|
if (norm > 0.25) & (norm<1.75):
|
|
f += [freqs[i]]
|
|
d += [delays[i]]
|
|
a += [areas[i]]
|
|
return f, d, a
|
|
|
|
def freqPlot(mod, width):
|
|
freqs = []
|
|
delays = []
|
|
areas = []
|
|
for oneSynth in allSynths:
|
|
if (mod == oneSynth[0]) & (width == oneSynth[1]):
|
|
freqs += [oneSynth[2]]
|
|
delays += [oneSynth[3]]
|
|
areas += [oneSynth[4]]
|
|
|
|
freqs, delays, areas = noOutliers(freqs, delays, areas)
|
|
|
|
adprod = np.multiply(areas, delays)
|
|
adsq = np.multiply(adprod, delays)
|
|
|
|
f, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, sharex=True)
|
|
ax1.scatter(freqs, delays)
|
|
ax2.scatter(freqs, areas)
|
|
ax3.scatter(freqs, adprod)
|
|
ax4.scatter(freqs, adsq)
|
|
ax4.set_xlabel("Freq (MHz)")
|
|
ax1.set_ylabel('Delay (ns)')
|
|
ax2.set_ylabel('Area (sq microns)')
|
|
ax3.set_ylabel('Area * Delay')
|
|
ax4.set_ylabel('Area * Delay^2')
|
|
ax1.set_title(mod + '_' + str(width))
|
|
plt.show()
|
|
|
|
allSynths = getData()
|
|
writeCSV(allSynths)
|
|
# makeCoefTable()
|
|
|
|
# freqPlot('add', 64)
|
|
|
|
makePlots('shifter', 5000)
|
|
|
|
# plotPPA('mult', 5000, 'delay', fits='cls') |