forked from Github_Repos/cvw
269 lines
9.6 KiB
Verilog
269 lines
9.6 KiB
Verilog
// fma16.sv
|
|
// David_Harris@hmc.edu 26 February 2022
|
|
// 16-bit floating-point multiply-accumulate
|
|
|
|
// Operation: general purpose multiply, add, fma, with optional negation
|
|
// If mul=1, p = x * y. Else p = x.
|
|
// If add=1, result = p + z. Else result = p.
|
|
// If negr or negz = 1, negate result or z to handle negations and subtractions
|
|
// fadd: mul = 0, add = 1, negr = negz = 0
|
|
// fsub: mul = 0, add = 1, negr = 0, negz = 1
|
|
// fmul: mul = 1, add = 0, negr = 0, negz = 0
|
|
// fmadd: mul = 1, add = 1, negr = 0, negz = 0
|
|
// fmsub: mul = 1, add = 1, negr = 0, negz = 1
|
|
// fnmadd: mul = 1, add = 1, negr = 1, negz = 0
|
|
// fnmsub: mul = 1, add = 1, negr = 1, negz = 1
|
|
|
|
`define FFLEN 16
|
|
`define Nf 10
|
|
`define Ne 5
|
|
`define BIAS 15
|
|
`define EMIN (-(2**(`Ne-1)-1))
|
|
`define EMAX (2**(`Ne-1)-1)
|
|
|
|
`define NaN 16'h7E00
|
|
`define INF 15'h7C00
|
|
|
|
// rounding modes *** update
|
|
`define RZ 3'b00
|
|
`define RNE 3'b01
|
|
`define RM 3'b10
|
|
`define RP 3'b11
|
|
|
|
module fma16(
|
|
input logic [`FFLEN-1:0] x, y, z,
|
|
input logic mul, add, negr, negz,
|
|
input logic [1:0] roundmode, // 00: rz, 01: rne, 10: rp, 11: rn
|
|
output logic [`FFLEN-1:0] result);
|
|
|
|
logic [`Nf:0] xm, ym, zm; // U1.Nf
|
|
logic [`Ne-1:0] xe, ye, ze; // B_Ne
|
|
logic xs, ys, zs;
|
|
logic zs1; // sign before optional negation
|
|
logic [2*`Nf+1:0] pm; // U2.2Nf
|
|
logic [`Ne:0] pe; // B_Ne+1
|
|
logic ps; // sign of product
|
|
logic [22:0] rm;
|
|
logic [`Ne+1:0] re;
|
|
logic rs;
|
|
logic xzero, yzero, zzero, xinf, yinf, zinf, xnan, ynan, znan;
|
|
logic [`Ne+1:0] re2;
|
|
|
|
unpack16 unpack(x, y, z, xm, ym, zm, xe, ye, ze, xs, ys, zs1, xzero, yzero, zzero, xinf, yinf, zinf, xnan, ynan, znan); // unpack inputs
|
|
//signadj16 signadj(negr, negz, xs, ys, zs1, ps, zs); // handle negations
|
|
mult16 mult16(mul, xm, ym, xe, ye, xs, ys, pm, pe, ps); // p = x * y
|
|
add16 add16(add, pm, zm, pe, ze, ps, zs, negz, rm, re, re2, rs); // r = z + p
|
|
postproc16 post(roundmode, xzero, yzero, zzero, xinf, yinf, zinf, xnan, ynan, znan, rm, zm, re, ze, rs, zs, ps, re2, result); // normalize, round, pack
|
|
endmodule
|
|
|
|
module mult16(
|
|
input logic mul,
|
|
input logic [`Nf:0] xm, ym,
|
|
input logic [`Ne-1:0] xe, ye,
|
|
input logic xs, ys,
|
|
output logic [2*`Nf+1:0] pm,
|
|
output logic [`Ne:0] pe,
|
|
output logic ps);
|
|
|
|
// only multiply if mul = 1
|
|
assign pm = mul ? xm * ym : {1'b0, xm, 10'b0}; // multiply mantiassas
|
|
assign pe = mul ? xe + ye - `BIAS : {1'b0, xe}; // add exponents, account for bias
|
|
assign ps = xs ^ ys; // negative if X xor Y are negative
|
|
endmodule
|
|
|
|
module add16(
|
|
input logic add,
|
|
input logic [2*`Nf+1:0] pm, // U2.2Nf
|
|
input logic [`Nf:0] zm, // U1.Nf
|
|
input logic [`Ne:0] pe, // B_Ne+1
|
|
input logic [`Ne-1:0] ze, // B_Ne
|
|
input logic ps, zs,
|
|
input logic negz,
|
|
output logic [22:0] rm,
|
|
output logic [`Ne+1:0] re, // B_Ne+2
|
|
output logic [`Ne+1:0] re2,
|
|
output logic rs);
|
|
|
|
logic [`Nf*3+7:0] paligned, zaligned, zalignedaddsub, r, r2, rnormed, rnormed2; // U(Nf+6).(2Nf+2) aligned significands
|
|
logic signed [`Ne:0] ExpDiff; // Q(Ne+2).0
|
|
logic [`Ne:0] AlignCnt; // U(Ne+3) bits to right shift Z for alignment *** check size.
|
|
logic [`Nf-1:0] prezsticky;
|
|
logic zsticky;
|
|
logic effectivesub;
|
|
logic rs0;
|
|
logic [`Ne:0] leadingzeros, NormCnt; // *** should paramterize size
|
|
logic [`Ne:0] re1;
|
|
|
|
// Alignment shift
|
|
assign paligned = {{(`Nf+4){1'b0}}, pm, 2'b00}; // constant shift to prepend leading and trailing 0s.
|
|
assign ExpDiff = pe - {1'b0, ze}; // Compute exponent difference as signed number
|
|
always_comb // AlignCount mux; see Muller page 254
|
|
if (ExpDiff <= (-2*`Nf - 1)) begin AlignCnt = 3*`Nf + 7; re = {1'b0, pe}; end
|
|
else if (ExpDiff <= 2) begin AlignCnt = `Nf + 4 - ExpDiff; re = {1'b0, pe}; end
|
|
else if (ExpDiff <= `Nf+3) begin AlignCnt = `Nf + 4 - ExpDiff; re = {2'b0, ze}; end
|
|
else begin AlignCnt = 0; re = {2'b0, ze}; end
|
|
// Shift Zm right by AlignCnt. Produce 3Nf+8 bits of Zaligned in U(Nf+6).(2Nf+2) and Nf bits becoming sticky
|
|
assign {zaligned, prezsticky} = {zm, {(3*`Nf+7){1'b0}}} >> AlignCnt; //Right shift
|
|
assign zsticky = |prezsticky; // Sticky bit if any of the discarded bits were 1
|
|
|
|
// Effective subtraction
|
|
assign effectivesub = ps ^ zs ^ negz; // subtract |z| from |p|
|
|
assign zalignedaddsub = effectivesub ? ~zaligned : zaligned; // invert zaligned for subtraction
|
|
|
|
// Adder
|
|
assign r = paligned + zalignedaddsub + {{`Nf*3+7{1'b0}}, effectivesub}; // add aligned significands
|
|
assign rs0 = r[`Nf*3+7]; // sign of the initial result
|
|
assign r2 = rs0 ? ~r+1 : r; // invert sum if negative; could optimize with end-around carry?
|
|
|
|
// Sign Logic
|
|
assign rs = ps ^ rs0; // flip the sign if necessary
|
|
|
|
// Leading zero counter
|
|
lzc lzc(r2, leadingzeros); // count number of leading zeros in 2Nf+5 lower digits of r2
|
|
assign re1 = pe +2 - leadingzeros; // *** declare, # of bits
|
|
|
|
// Normalization shift
|
|
always_comb // NormCount mux
|
|
if (ExpDiff < 3) begin
|
|
if (re1 >= `EMIN) begin NormCnt = `Nf + 3 + leadingzeros; re2 = {1'b0, re1}; end
|
|
else begin NormCnt = `Nf + 5 + pe - `EMIN; re2 = `EMIN; end
|
|
end else begin NormCnt = AlignCnt; re = {2'b00, ze}; end
|
|
assign rnormed = r2 << NormCnt; // *** update sticky
|
|
/* temporarily comment out to start synth
|
|
|
|
// One-bit secondary normalization
|
|
if (ExpDiff <= 2) begin rnormed2 = rnormed; re2 = re; end // no secondary normalization
|
|
else begin // *** handle sticky
|
|
if (rnormed[***]) begin rnormed2 = rnormed >> 1; re2 = re+1; end
|
|
else if (rnormed[***-1]) begin rnormed2 = rnormed; re2 = re; end
|
|
else begin rnormed2 = rnormed << 1; re2 = re-1; end
|
|
end
|
|
|
|
// round
|
|
assign l = rnormed2[***]; // least significant bit
|
|
assign r = rnormed2[***-1]; // rounding bit
|
|
assign s = ***; // sticky bit
|
|
always_comb
|
|
case (roundmode)
|
|
RZ: roundup = 0;
|
|
RP: roundup = ~rs & (r | s);
|
|
RM: roundup = rs & (r | s);
|
|
RNE: roundup = r & (s | l);
|
|
default: roundup = 0;
|
|
endcase
|
|
assign {re3, rrounded} = {re2, rnormed2[***]} + roundup; // increment if necessary
|
|
*/
|
|
|
|
// *** need to handle rounding to MAXNUM vs. INFINITY
|
|
|
|
// add or pass product through
|
|
/* assign rm = add ? arm : {1'b0, pm};
|
|
assign re = add ? are : {1'b0, pe};
|
|
assign rs = add ? ars : ps; */
|
|
endmodule
|
|
|
|
module lzc(
|
|
input logic [`Nf*3+7:0] r2,
|
|
output logic [`Ne:0] leadingzeros
|
|
);
|
|
|
|
endmodule
|
|
|
|
|
|
module postproc16(
|
|
input logic [1:0] roundmode,
|
|
input logic xzero, yzero, zzero, xinf, yinf, zinf, xnan, ynan, znan,
|
|
input logic [22:0] rm,
|
|
input logic [`Nf:0] zm, // U1.Nf
|
|
input logic [6:0] re,
|
|
input logic [`Ne-1:0] ze, // B_Ne
|
|
input logic rs, zs, ps,
|
|
input logic [`Ne+1:0] re2,
|
|
output logic [15:0] result);
|
|
|
|
logic [9:0] uf, uff;
|
|
logic [6:0] ue;
|
|
logic [6:0] ueb, uebiased;
|
|
logic invalid;
|
|
|
|
// Special cases
|
|
// *** not handling signaling NaN
|
|
// *** also add overflow/underflow/inexact
|
|
always_comb begin
|
|
if (xnan | ynan | znan) begin result = `NaN; invalid = 0; end // propagate NANs
|
|
else if ((xinf | yinf) & zinf & (ps ^ zs)) begin result = `NaN; invalid = 1; end // infinity - infinity
|
|
else if (xzero & yinf | xinf & yzero) begin result = `NaN; invalid = 1; end // zero times infinity
|
|
else if (xinf | yinf) begin result = {ps, `INF}; invalid = 0; end // X or Y
|
|
else if (zinf) begin result = {zs, `INF}; invalid = 0; end // infinite Z
|
|
else if (xzero | yzero) begin result = {zs, ze, zm[`Nf-1:0]}; invalid = 0; end
|
|
else if (re2 >= `EMAX) begin result = {rs, `INF}; invalid = 0; end
|
|
else begin result = {rs, re[`Ne-1:0], rm[`Nf-1:0]}; invalid = 0; end
|
|
end
|
|
|
|
always_comb
|
|
if (rm[21]) begin // normalization right shift by 1 and bump up exponent;
|
|
ue = re + 7'b1;
|
|
uf = rm[20:11];
|
|
end else begin // no normalization shift needed
|
|
ue = re;
|
|
uf = rm[19:10];
|
|
end
|
|
|
|
// overflow
|
|
always_comb begin
|
|
ueb = ue-7'd15;
|
|
if (ue >= 7'd46) begin // overflow
|
|
/* uebiased = 7'd30;
|
|
uff = 10'h3ff; */
|
|
end else begin
|
|
uebiased = ue-7'd15;
|
|
uff = uf;
|
|
end
|
|
end
|
|
|
|
assign result = {rs, uebiased[4:0], uff};
|
|
|
|
// add special case handling for zeros, NaN, Infinity
|
|
endmodule
|
|
|
|
module signadj16(
|
|
input logic negr, negz,
|
|
input logic xs, ys, zs1,
|
|
output logic ps, zs);
|
|
|
|
assign ps = xs ^ ys; // sign of product
|
|
assign zs = zs1 ^ negz; // sign of addend
|
|
endmodule
|
|
|
|
module unpack16(
|
|
input logic [15:0] x, y, z,
|
|
output logic [10:0] xm, ym, zm,
|
|
output logic [4:0] xe, ye, ze,
|
|
output logic xs, ys, zs,
|
|
output logic xzero, yzero, zzero, xinf, yinf, zinf, xnan, ynan, znan);
|
|
|
|
unpacknum16 upx(x, xm, xe, xs, xzero, xinf, xnan);
|
|
unpacknum16 upy(y, ym, ye, ys, yzero, yinf, ynan);
|
|
unpacknum16 upz(z, zm, ze, zs, zzero, zinf, znan);
|
|
endmodule
|
|
|
|
module unpacknum16(
|
|
input logic [15:0] num,
|
|
output logic [10:0] m,
|
|
output logic [4:0] e,
|
|
output logic s,
|
|
output logic zero, inf, nan);
|
|
|
|
logic [9:0] f; // fraction without leading 1
|
|
logic [4:0] eb; // biased exponent
|
|
|
|
assign {s, eb, f} = num; // pull bit fields out of floating-point number
|
|
assign m = {1'b1, f}; // prepend leading 1 to fraction
|
|
assign e = eb; // leave bias in exponent ***
|
|
assign zero = (e == 0 && f == 0);
|
|
assign inf = (e == 31 && f == 0);
|
|
assign nan = (e == 31 && f != 0);
|
|
endmodule
|
|
|
|
|