cvw/pipelined/src/fpu/postprocess.sv

236 lines
12 KiB
Systemverilog

///////////////////////////////////////////
//
// Written: me@KatherineParry.com
// Modified: 7/5/2022
//
// Purpose: Post-Processing
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module postprocess (
// general signals
input logic Xs, Ys, // input signs
input logic [`NE-1:0] Ze, // input exponents
input logic [`NF:0] Xm, Ym, Zm, // input mantissas
input logic [2:0] Frm, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
input logic [`FMTBITS-1:0] Fmt, // precision 1 = double 0 = single
input logic [2:0] OpCtrl, // choose which opperation (look below for values)
input logic XZero, YZero, ZZero, // inputs are zero
input logic XInf, YInf, ZInf, // inputs are infinity
input logic XNaN, YNaN, ZNaN, // inputs are NaN
input logic XSNaN, YSNaN, ZSNaN, // inputs are signaling NaNs
input logic ZDenorm, // is the original precision denormalized
input logic [1:0] PostProcSel, // select result to be written to fp register
//fma signals
input logic FmaAs, // the modified Z sign - depends on instruction
input logic FmaPs, // the product's sign
input logic [`NE+1:0] FmaSe,
input logic [`NE+1:0] FmaPe, // Product exponent
input logic [3*`NF+5:0] FmaSm, // the positive sum
input logic FmaZmS, // sticky bit that is calculated during alignment
input logic FmaKillProd, // set the product to zero before addition if the product is too small to matter
input logic FmaNegSum, // was the sum negitive
input logic FmaInvA, // do you invert Z
input logic FmaSs,
input logic [$clog2(3*`NF+7)-1:0] FmaSCnt, // the normalization shift count
//divide signals
input logic [`DURLEN-1:0] DivEarlyTermShift,
input logic DivS,
input logic DivDone,
input logic [`NE+1:0] DivQe,
input logic [`DIVb-(`RADIX/4):0] DivQm,
// conversion signals
input logic CvtCs, // the result's sign
input logic [`NE:0] CvtCe, // the calculated expoent
input logic CvtResDenormUf,
input logic [`LOGCVTLEN-1:0] CvtShiftAmt, // how much to shift by
input logic ToInt, // is fp->int (since it's writting to the integer register)
input logic [`CVTLEN-1:0] CvtLzcIn, // input to the Leading Zero Counter (priority encoder)
input logic IntZero, // is the input zero
// final results
output logic [`FLEN-1:0] PostProcRes, // FMA final result
output logic [4:0] PostProcFlg,
output logic [`XLEN-1:0] FCvtIntRes // the int conversion result
);
// general signals
logic Ws;
logic [`NF-1:0] Rf; // Result fraction
logic [`NE-1:0] Re; // Result exponent
logic Ms;
logic [`NE+1:0] Me;
logic [`CORRSHIFTSZ-1:0] Mf; // corectly shifted fraction
logic [`NE+1:0] FullRe; // Re with bits to determine sign and overflow
logic UfPlus1; // do you add one (for determining underflow flag)
logic [$clog2(`NORMSHIFTSZ)-1:0] ShiftAmt; // normalization shift count
logic [`NORMSHIFTSZ-1:0] ShiftIn; // is the sum zero
logic [`NORMSHIFTSZ-1:0] Shifted; // the shifted result
logic Plus1; // add one to the final result?
logic IntInvalid, Overflow, Invalid; // flags
logic G, R, S; // bits needed to determine rounding
logic [`FMTBITS-1:0] OutFmt;
// fma signals
logic [`NE+1:0] FmaMe; // exponent of the normalized sum
logic FmaSZero; // is the sum zero
logic [3*`NF+7:0] FmaShiftIn; // shift input
logic [`NE+1:0] NormSumExp; // exponent of the normalized sum not taking into account denormal or zero results
logic FmaPreResultDenorm; // is the result denormalized - calculated before LZA corection
logic [$clog2(3*`NF+7)-1:0] FmaShiftAmt; // normalization shift count
// division singals
logic [$clog2(`NORMSHIFTSZ)-1:0] DivShiftAmt;
logic [`NORMSHIFTSZ-1:0] DivShiftIn;
logic [`NE+1:0] Qe;
logic DivByZero;
logic DivResDenorm;
logic [`NE+1:0] DivDenormShift;
// conversion signals
logic [`CVTLEN+`NF:0] CvtShiftIn; // number to be shifted
logic [1:0] CvtNegResMsbs;
logic [`XLEN+1:0] CvtNegRes;
logic CvtResUf;
// readability signals
logic Mult; // multiply opperation
logic Int64; // is the integer 64 bits?
logic Signed; // is the opperation with a signed integer?
logic IntToFp; // is the opperation an int->fp conversion?
logic CvtOp;
logic FmaOp;
logic DivOp;
logic InfIn;
logic NaNIn;
logic Sqrt;
// signals to help readability
assign Signed = OpCtrl[0];
assign Int64 = OpCtrl[1];
assign IntToFp = OpCtrl[2];
assign Mult = OpCtrl[2]&~OpCtrl[1]&~OpCtrl[0];
assign CvtOp = (PostProcSel == 2'b00);
assign FmaOp = (PostProcSel == 2'b10);
assign DivOp = (PostProcSel == 2'b01)&DivDone;
assign Sqrt = OpCtrl[0];
// is there an input of infinity or NaN being used
assign InfIn = XInf|YInf|ZInf;
assign NaNIn = XNaN|YNaN|ZNaN;
// choose the ouptut format depending on the opperation
// - fp -> fp: OpCtrl contains the percision of the output
// - otherwise: Fmt contains the percision of the output
if (`FPSIZES == 2)
assign OutFmt = IntToFp|~CvtOp ? Fmt : (OpCtrl[1:0] == `FMT);
else if (`FPSIZES == 3 | `FPSIZES == 4)
assign OutFmt = IntToFp|~CvtOp ? Fmt : OpCtrl[1:0];
///////////////////////////////////////////////////////////////////////////////
// Normalization
///////////////////////////////////////////////////////////////////////////////
cvtshiftcalc cvtshiftcalc(.ToInt, .CvtCe, .CvtResDenormUf, .Xm, .CvtLzcIn,
.XZero, .IntToFp, .OutFmt, .CvtResUf, .CvtShiftIn);
fmashiftcalc fmashiftcalc(.FmaSm, .Ze, .FmaPe, .FmaSCnt, .Fmt, .FmaKillProd, .NormSumExp, .FmaSe,
.FmaSZero, .FmaPreResultDenorm, .FmaShiftAmt, .FmaShiftIn);
divshiftcalc divshiftcalc(.Fmt, .Sqrt, .DivQe, .DivQm, .DivEarlyTermShift, .DivResDenorm, .DivDenormShift, .DivShiftAmt, .DivShiftIn);
always_comb
case(PostProcSel)
2'b10: begin // fma
ShiftAmt = {{$clog2(`NORMSHIFTSZ)-$clog2(3*`NF+7){1'b0}}, FmaShiftAmt};
ShiftIn = {FmaShiftIn, {`NORMSHIFTSZ-(3*`NF+8){1'b0}}};
end
2'b00: begin // cvt
ShiftAmt = {{$clog2(`NORMSHIFTSZ)-$clog2(`CVTLEN+1){1'b0}}, CvtShiftAmt};
ShiftIn = {CvtShiftIn, {`NORMSHIFTSZ-`CVTLEN-`NF-1{1'b0}}};
end
2'b01: begin //div
if(DivDone) begin
ShiftAmt = DivShiftAmt;
ShiftIn = DivShiftIn;
end else begin
ShiftAmt = '0;
ShiftIn = '0;
end
end
default: begin
ShiftAmt = {$clog2(`NORMSHIFTSZ){1'bx}};
ShiftIn = {`NORMSHIFTSZ{1'bx}};
end
endcase
normshift normshift (.ShiftIn, .ShiftAmt, .Shifted);
shiftcorrection shiftcorrection(.FmaOp, .FmaPreResultDenorm, .NormSumExp,
.DivResDenorm, .DivDenormShift, .DivOp, .DivQe,
.Qe, .FmaSZero, .Shifted, .FmaMe, .Mf);
///////////////////////////////////////////////////////////////////////////////
// Rounding
///////////////////////////////////////////////////////////////////////////////
// round to nearest even
// round to zero
// round to -infinity
// round to infinity
// round to nearest max magnitude
roundsign roundsign(.FmaPs, .FmaAs, .FmaInvA, .FmaOp, .DivOp, .CvtOp, .FmaNegSum,
.Sqrt, .FmaSs, .Xs, .Ys, .CvtCs, .Ms);
round round(.OutFmt, .Frm, .FmaZmS, .Plus1, .PostProcSel, .CvtCe, .Qe,
.Ms, .FmaMe, .FmaOp, .CvtOp, .CvtResDenormUf, .Mf, .ToInt, .CvtResUf,
.DivS, .DivDone,
.DivOp, .UfPlus1, .FullRe, .Rf, .Re, .S, .R, .G, .Me);
///////////////////////////////////////////////////////////////////////////////
// Sign calculation
///////////////////////////////////////////////////////////////////////////////
resultsign resultsign(.Frm, .FmaPs, .FmaAs, .FmaMe, .R, .S, .G,
.FmaOp, .ZInf, .InfIn, .FmaSZero, .Mult, .Ms, .Ws);
///////////////////////////////////////////////////////////////////////////////
// Flags
///////////////////////////////////////////////////////////////////////////////
flags flags(.XSNaN, .YSNaN, .ZSNaN, .XInf, .YInf, .ZInf, .InfIn, .XZero, .YZero,
.Xs, .Sqrt, .ToInt, .IntToFp, .Int64, .Signed, .OutFmt, .CvtCe,
.NaNIn, .FmaAs, .FmaPs, .R, .IntInvalid, .DivByZero,
.G, .S, .UfPlus1, .CvtOp, .DivOp, .FmaOp, .FullRe, .Plus1,
.Me, .CvtNegResMsbs, .Invalid, .Overflow, .PostProcFlg);
///////////////////////////////////////////////////////////////////////////////
// Select the result
///////////////////////////////////////////////////////////////////////////////
negateintres negateintres(.Xs, .Shifted, .Signed, .Int64, .Plus1, .CvtNegResMsbs, .CvtNegRes);
specialcase specialcase(.Xs, .Xm, .Ym, .Zm, .XZero, .IntInvalid,
.IntZero, .Frm, .OutFmt, .XNaN, .YNaN, .ZNaN, .CvtResUf,
.NaNIn, .IntToFp, .Int64, .Signed, .CvtOp, .FmaOp, .Plus1, .Invalid, .Overflow, .InfIn, .CvtNegRes,
.XInf, .YInf, .DivOp,
.DivByZero, .FullRe, .CvtCe, .Ws, .Re, .Rf, .PostProcRes, .FCvtIntRes);
endmodule