cvw/wally-pipelined/src/hazard/hazard.sv
Ross Thompson 66e84f3a2c Merge branch 'bp' into main
Concerns:
1. I don't think the correct data buses are going to the multiplier.
2. I'm not sure the FlushF signal is correct.
2021-03-04 13:35:46 -06:00

83 lines
4.1 KiB
Systemverilog

///////////////////////////////////////////
// hazard.sv
//
// Written: David_Harris@hmc.edu 9 January 2021
// Modified:
//
// Purpose: Determine forwarding, stalls and flushes
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-config.vh"
module hazard(
// Detect hazards
input logic BPPredWrongE, CSRWritePendingDEM, RetM, TrapM,
input logic LoadStallD, MulDivStallD, CSRRdStallD,
input logic InstrStall, DataStall,
// Stall & flush outputs
output logic StallF, StallD, StallE, StallM, StallW,
output logic FlushF, FlushD, FlushE, FlushM, FlushW
);
logic BranchFlushDE;
logic StallFCause, StallDCause, StallECause, StallMCause, StallWCause;
logic FirstUnstalledD, FirstUnstalledE, FirstUnstalledM, FirstUnstalledW;
// stalls and flushes
// loads: stall for one cycle if the subsequent instruction depends on the load
// branches and jumps: flush the next two instructions if the branch is taken in EXE
// CSR Writes: stall all instructions after the CSR until it completes, except that PC must change when branch is resolved
// this also applies to other privileged instructions such as M/S/URET, ECALL/EBREAK
// Exceptions: flush entire pipeline
// Ret instructions: occur in M stage. Might be possible to move earlier, but be careful about hazards
// General stall and flush rules:
// A stage must stall if the next stage is stalled
// If any stages are stalled, the first stage that isn't stalled must flush.
assign BranchFlushDE = BPPredWrongE | RetM | TrapM;
assign StallFCause = CSRWritePendingDEM & ~(BranchFlushDE);
assign StallDCause = (LoadStallD | MulDivStallD | CSRRdStallD) & ~(BranchFlushDE); // stall in decode if instruction is a load/mul/csr dependent on previous
// assign StallDCause = LoadStallD | MulDivStallD | CSRRdStallD; // stall in decode if instruction is a load/mul/csr dependent on previous
assign StallECause = 0;
assign StallMCause = 0;
assign StallWCause = DataStall | InstrStall;
// Each stage stalls if the next stage is stalled or there is a cause to stall this stage.
assign StallF = StallD | StallFCause;
assign StallD = StallE | StallDCause;
assign StallE = StallM | StallECause;
assign StallM = StallW | StallMCause;
assign StallW = StallWCause;
assign FirstUnstalledD = (~StallD & StallF);
assign FirstUnstalledE = (~StallE & StallD);
assign FirstUnstalledM = (~StallM & StallE);
assign FirstUnstalledW = (~StallW & StallM);;
// Each stage flushes if the previous stage is the last one stalled (for cause) or the system has reason to flush
assign FlushF = BPPredWrongE;
assign FlushD = FirstUnstalledD || BranchFlushDE; // PCSrcE |InstrStall | CSRWritePendingDEM | RetM | TrapM;
assign FlushE = FirstUnstalledE || BranchFlushDE; //LoadStallD | PCSrcE | RetM | TrapM;
assign FlushM = FirstUnstalledM || RetM || TrapM;
assign FlushW = FirstUnstalledW | TrapM;
endmodule