cvw/testbench/testbench-linux.sv
2023-02-04 08:19:20 -08:00

872 lines
36 KiB
Systemverilog

///////////////////////////////////////////
// testbench-linux.sv
//
// Written: nboorstin@g.hmc.edu 2021
// Modified:
//
// Purpose: Testbench for Buildroot Linux
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
//
// Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
// may obtain a copy of the License at
//
// https://solderpad.org/licenses/SHL-2.1/
//
// Unless required by applicable law or agreed to in writing, any work distributed under the
// License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
`define DEBUG_TRACE 0
// Debug Levels
// 0: don't check against QEMU
// 1: print disagreements with QEMU, but only halt on PCW disagreements
// 2: halt on any disagreement with QEMU except CSRs
// 3: halt on all disagreements with QEMU
// 4: print memory accesses whenever they happen
// 5: print everything
module testbench;
///////////////////////////////////////////////////////////////////////////////
/////////////////////////////////// CONFIG ////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Recommend setting all of these in 'do' script using -G option
parameter INSTR_LIMIT = 0; // # of instructions at which to stop
parameter INSTR_WAVEON = 0; // # of instructions at which to turn on waves in graphical sim
parameter CHECKPOINT = 0;
parameter RISCV_DIR = "/opt/riscv";
parameter NO_SPOOFING = 0;
////////////////////////////////////////////////////////////////////////////////////
//////////////////////// SIGNAL / VAR / MACRO DECLARATIONS /////////////////////////
////////////////////////////////////////////////////////////////////////////////////
// ========== Testbench Core ==========
integer warningCount = 0;
integer errorCount = 0;
integer fault;
string ProgramAddrMapFile, ProgramLabelMapFile;
// ========== Initialization ==========
string testvectorDir;
string linuxImageDir;
integer memFile;
integer readResult;
// ========== Checkpointing ==========
string checkpointDir;
logic [1:0] initPriv;
// ========== Trace parsing & checking ==========
integer garbageInt;
string garbageString;
`define DECLARE_TRACE_SCANNER_SIGNALS(STAGE) \
integer traceFile``STAGE; \
integer matchCount``STAGE; \
string line``STAGE; \
string token``STAGE; \
string ExpectedTokens``STAGE [31:0]; \
integer index``STAGE; \
integer StartIndex``STAGE, EndIndex``STAGE; \
integer TokenIndex``STAGE; \
integer MarkerIndex``STAGE; \
integer NumCSR``STAGE; \
logic [`XLEN-1:0] ExpectedPC``STAGE; \
logic [31:0] ExpectedInstr``STAGE; \
string text``STAGE; \
string MemOp``STAGE; \
string RegWrite``STAGE; \
integer ExpectedRegAdr``STAGE; \
logic [`XLEN-1:0] ExpectedRegValue``STAGE; \
logic [`XLEN-1:0] ExpectedIEUAdr``STAGE, ExpectedMemReadData``STAGE, ExpectedMemWriteData``STAGE; \
string ExpectedCSRArray``STAGE[10:0]; \
logic [`XLEN-1:0] ExpectedCSRArrayValue``STAGE[10:0]; // *** might be redundant?
`DECLARE_TRACE_SCANNER_SIGNALS(E)
`DECLARE_TRACE_SCANNER_SIGNALS(M)
// M-stage expected values
logic checkInstrM;
integer MIPexpected, SIPexpected;
string name;
logic [`AHBW-1:0] readDataExpected;
// W-stage expected values
logic checkInstrW;
logic [`XLEN-1:0] ExpectedPCW;
logic [31:0] ExpectedInstrW;
string textW;
string RegWriteW;
integer ExpectedRegAdrW;
logic [`XLEN-1:0] ExpectedRegValueW;
string MemOpW;
logic [`XLEN-1:0] ExpectedIEUAdrW, ExpectedMemReadDataW, ExpectedMemWriteDataW;
integer NumCSRW;
string ExpectedCSRArrayW[10:0];
logic [`XLEN-1:0] ExpectedCSRArrayValueW[10:0];
logic [`XLEN-1:0] ExpectedIntType;
integer NumCSRWIndex;
integer NumCSRPostWIndex;
logic [`XLEN-1:0] InstrCountW;
// ========== Interrupt parsing & spoofing ==========
string interrupt;
string interruptLine;
integer interruptFile;
integer interruptInstrCount;
integer interruptHartVal;
integer interruptAsyncVal;
longint interruptCauseVal;
longint interruptEpcVal;
longint interruptTVal;
string interruptDesc;
integer NextMIPexpected, NextSIPexpected;
integer NextMepcExpected;
logic [`XLEN-1:0] AttemptedInstructionCount;
// ========== Misc Aliases ==========
`define RF dut.core.ieu.dp.regf.rf
`define PC dut.core.ifu.pcreg.q
`define PRIV_BASE dut.core.priv.priv
`define PRIV `PRIV_BASE.privmode.privmode.privmodereg.q
`define CSR_BASE `PRIV_BASE.csr
`define MEIP `PRIV_BASE.MExtInt
`define SEIP `PRIV_BASE.SExtInt
`define MTIP `PRIV_BASE.MTimerInt
`define HPMCOUNTER `CSR_BASE.counters.counters.HPMCOUNTER_REGW
`define MEDELEG `CSR_BASE.csrm.deleg.MEDELEGreg.q
`define MIDELEG `CSR_BASE.csrm.deleg.MIDELEGreg.q
`define MIE `CSR_BASE.csri.MIE_REGW
`define MIP `CSR_BASE.csri.MIP_REGW_writeable
`define MCAUSE `CSR_BASE.csrm.MCAUSEreg.q
`define SCAUSE `CSR_BASE.csrs.csrs.SCAUSEreg.q
`define MEPC `CSR_BASE.csrm.MEPCreg.q
`define SEPC `CSR_BASE.csrs.csrs.SEPCreg.q
`define MCOUNTEREN `CSR_BASE.csrm.mcounteren.MCOUNTERENreg.q
`define SCOUNTEREN `CSR_BASE.csrs.csrs.SCOUNTERENreg.q
`define MSCRATCH `CSR_BASE.csrm.MSCRATCHreg.q
`define SSCRATCH `CSR_BASE.csrs.csrs.SSCRATCHreg.q
`define MTVEC `CSR_BASE.csrm.MTVECreg.q
`define STVEC `CSR_BASE.csrs.csrs.STVECreg.q
`define SATP `CSR_BASE.csrs.csrs.genblk1.SATPreg.q
`define INSTRET `CSR_BASE.counters.counters.HPMCOUNTER_REGW[2]
`define MSTATUS `CSR_BASE.csrsr.MSTATUS_REGW
`define SSTATUS `CSR_BASE.csrsr.SSTATUS_REGW
`define STATUS_TSR `CSR_BASE.csrsr.STATUS_TSR_INT
`define STATUS_TW `CSR_BASE.csrsr.STATUS_TW_INT
`define STATUS_TVM `CSR_BASE.csrsr.STATUS_TVM_INT
`define STATUS_MXR `CSR_BASE.csrsr.STATUS_MXR_INT
`define STATUS_SUM `CSR_BASE.csrsr.STATUS_SUM_INT
`define STATUS_MPRV `CSR_BASE.csrsr.STATUS_MPRV_INT
`define STATUS_FS `CSR_BASE.csrsr.STATUS_FS_INT
`define STATUS_MPP `CSR_BASE.csrsr.STATUS_MPP
`define STATUS_SPP `CSR_BASE.csrsr.STATUS_SPP
`define STATUS_MPIE `CSR_BASE.csrsr.STATUS_MPIE
`define STATUS_SPIE `CSR_BASE.csrsr.STATUS_SPIE
`define STATUS_MIE `CSR_BASE.csrsr.STATUS_MIE
`define STATUS_SIE `CSR_BASE.csrsr.STATUS_SIE
`define UART dut.uncore.uncore.uart.uart.u
`define UART_IER `UART.IER
`define UART_LCR `UART.LCR
`define UART_MCR `UART.MCR
`define UART_SCR `UART.SCR
`define UART_IP `UART.INTR
`define PLIC dut.uncore.uncore.plic.plic
`define PLIC_INT_PRIORITY `PLIC.intPriority
`define PLIC_INT_ENABLE `PLIC.intEn
`define PLIC_THRESHOLD `PLIC.intThreshold
`define PCM dut.core.ifu.PCM
// ========== COMMON MACROS ==========
// Needed for initialization and core
`define SCAN_NEW_INTERRUPT \
begin \
$fgets(interruptLine, interruptFile); \
//$display("Time %t, interruptLine %x", $time, interruptLine); \
$fgets(interruptLine, interruptFile); \
$sscanf(interruptLine, "%d", interruptInstrCount); \
$fgets(interruptLine, interruptFile); \
$sscanf(interruptLine, "%d", interruptHartVal); \
$fgets(interruptLine, interruptFile); \
$sscanf(interruptLine, "%d", interruptAsyncVal); \
$fgets(interruptLine, interruptFile); \
$sscanf(interruptLine, "%x", interruptCauseVal); \
$fgets(interruptLine, interruptFile); \
$sscanf(interruptLine, "%x", interruptEpcVal); \
$fgets(interruptLine, interruptFile); \
$sscanf(interruptLine, "%x", interruptTVal); \
$fgets(interruptLine, interruptFile); \
$sscanf(interruptLine, "%s", interruptDesc); \
end
///////////////////////////////////////////////////////////////////////////////
/////////////////////////////// Cache Issue ///////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
logic probe;
if (NO_SPOOFING)
assign probe = testbench.dut.core.PCM == 64'hffffffff80200c8c
& testbench.dut.core.InstrM != 32'h14021273
& testbench.dut.core.InstrValidM;
///////////////////////////////////////////////////////////////////////////////
////////////////////////////////// HARDWARE ///////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Clock and Reset
logic clk, reset_ext;
logic reset;
initial begin reset_ext <= 1; # 22; reset_ext <= 0; end
always begin clk <= 1; # 5; clk <= 0; # 5; end
// Wally Interface
logic [`AHBW-1:0] HRDATAEXT;
logic HREADYEXT, HRESPEXT;
logic HCLK, HRESETn;
logic HREADY;
logic HSELEXT;
logic [`PA_BITS-1:0] HADDR;
logic [`AHBW-1:0] HWDATA;
logic [`XLEN/8-1:0] HWSTRB;
logic HWRITE;
logic [2:0] HSIZE;
logic [2:0] HBURST;
logic [3:0] HPROT;
logic [1:0] HTRANS;
logic HMASTLOCK;
logic [31:0] GPIOPinsIn;
logic [31:0] GPIOPinsOut, GPIOPinsEn;
logic UARTSin, UARTSout;
// FPGA-specific Stuff
logic SDCCLK;
logic SDCCmdIn;
logic SDCCmdOut;
logic SDCCmdOE;
logic [3:0] SDCDatIn;
// Hardwire UART, GPIO pins
assign GPIOPinsIn = 0;
assign UARTSin = 1;
// Wally
wallypipelinedsoc dut(.clk, .reset, .reset_ext,
.HRDATAEXT, .HREADYEXT, .HREADY, .HSELEXT, .HRESPEXT, .HCLK,
.HRESETn, .HADDR, .HWDATA, .HWRITE, .HWSTRB, .HSIZE, .HBURST, .HPROT,
.HTRANS, .HMASTLOCK,
.TIMECLK('0), .GPIOPinsIn, .GPIOPinsOut, .GPIOPinsEn,
.UARTSin, .UARTSout,
.SDCCLK, .SDCCmdIn, .SDCCmdOut, .SDCCmdOE, .SDCDatIn);
// W-stage hardware not needed by Wally itself
parameter nop = 'h13;
logic [`XLEN-1:0] PCW;
logic [31:0] InstrW;
logic InstrValidW;
logic [`XLEN-1:0] IEUAdrW, WriteDataW;
logic TrapW;
`define FLUSHW dut.core.FlushW
`define STALLW dut.core.StallW
flopenrc #(`XLEN) PCWReg(clk, reset, `FLUSHW, ~`STALLW, `PCM, PCW);
flopenr #(32) InstrWReg(clk, reset, ~`STALLW, `FLUSHW ? nop : dut.core.ifu.InstrM, InstrW);
flopenrc #(1) controlregW(clk, reset, `FLUSHW, ~`STALLW, dut.core.ieu.c.InstrValidM, InstrValidW);
flopenrc #(`XLEN) IEUAdrWReg(clk, reset, `FLUSHW, ~`STALLW, dut.core.IEUAdrM, IEUAdrW);
flopenrc #(`XLEN) WriteDataWReg(clk, reset, `FLUSHW, ~`STALLW, dut.core.lsu.WriteDataM, WriteDataW);
flopenr #(1) TrapWReg(clk, reset, ~`STALLW, dut.core.hzu.TrapM, TrapW);
///////////////////////////////////////////////////////////////////////////////
/////////////////////////////// INITIALIZATION ////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// ========== CHECKPOINTING ==========
`define MAKE_CHECKPOINT_INIT_SIGNAL(SIGNAL,DIM,ARRAY_MAX,ARRAY_MIN) \
logic DIM init``SIGNAL[ARRAY_MAX:ARRAY_MIN]; \
initial begin \
#1; \
if (CHECKPOINT!=0) $readmemh({checkpointDir,"checkpoint-",`"SIGNAL`"}, init``SIGNAL); \
end
`define INIT_CHECKPOINT_SIMPLE_ARRAY(SIGNAL,DIM,ARRAY_MAX,ARRAY_MIN) \
`MAKE_CHECKPOINT_INIT_SIGNAL(SIGNAL,DIM,ARRAY_MAX,ARRAY_MIN) \
initial begin \
if (CHECKPOINT!=0) begin \
force `SIGNAL = init``SIGNAL[ARRAY_MAX:ARRAY_MIN]; \
while (reset!==1) #1; \
while (reset!==0) #1; \
#1; \
release `SIGNAL; \
end \
end
`define INIT_CHECKPOINT_PACKED_ARRAY(SIGNAL,DIM,ARRAY_MAX,ARRAY_MIN) \
`MAKE_CHECKPOINT_INIT_SIGNAL(SIGNAL,DIM,ARRAY_MAX,ARRAY_MIN) \
for (i=ARRAY_MIN; i<ARRAY_MAX+1; i=i+1) begin \
initial begin \
if (CHECKPOINT!=0) begin \
force `SIGNAL[i] = init``SIGNAL[i]; \
while (reset!==1) #1; \
while (reset!==0) #1; \
#1; \
release `SIGNAL[i]; \
end \
end \
end
// Note that dimension usage is very intentional here.
// We are dancing around (un)packed type requirements.
`define INIT_CHECKPOINT_VAL(SIGNAL,DIM) \
`MAKE_CHECKPOINT_INIT_SIGNAL(SIGNAL,DIM,0,0) \
initial begin \
if (CHECKPOINT!=0) begin \
force `SIGNAL = init``SIGNAL[0]; \
while (reset!==1) #1; \
while (reset!==0) #1; \
#1; \
release `SIGNAL; \
end \
end
// Initializing all zeroes into the branch predictor memory.
genvar adrindex;
for(adrindex = 0; adrindex < 1024; adrindex++) begin
initial begin
force dut.core.ifu.bpred.bpred.Predictor.DirPredictor.PHT.mem[adrindex] = 0;
force dut.core.ifu.bpred.bpred.TargetPredictor.memory.mem[adrindex] = 0;
#1;
release dut.core.ifu.bpred.bpred.Predictor.DirPredictor.PHT.mem[adrindex];
release dut.core.ifu.bpred.bpred.TargetPredictor.memory.mem[adrindex];
end
end
genvar i;
`INIT_CHECKPOINT_SIMPLE_ARRAY(RF, [`XLEN-1:0],31,1);
`INIT_CHECKPOINT_SIMPLE_ARRAY(HPMCOUNTER, [`XLEN-1:0],`COUNTERS-1,0);
`INIT_CHECKPOINT_VAL(PC, [`XLEN-1:0]);
`INIT_CHECKPOINT_VAL(MEDELEG, [`XLEN-1:0]);
`INIT_CHECKPOINT_VAL(MIDELEG, [`XLEN-1:0]);
if(!NO_SPOOFING) begin
`INIT_CHECKPOINT_VAL(MIE, [11:0]);
`INIT_CHECKPOINT_VAL(MIP, [11:0]);
end
`INIT_CHECKPOINT_VAL(MCAUSE, [`XLEN-1:0]);
`INIT_CHECKPOINT_VAL(SCAUSE, [`XLEN-1:0]);
`INIT_CHECKPOINT_VAL(MEPC, [`XLEN-1:0]);
`INIT_CHECKPOINT_VAL(SEPC, [`XLEN-1:0]);
`INIT_CHECKPOINT_VAL(MCOUNTEREN, [31:0]);
`INIT_CHECKPOINT_VAL(SCOUNTEREN, [31:0]);
`INIT_CHECKPOINT_VAL(MSCRATCH, [`XLEN-1:0]);
`INIT_CHECKPOINT_VAL(SSCRATCH, [`XLEN-1:0]);
`INIT_CHECKPOINT_VAL(MTVEC, [`XLEN-1:0]);
`INIT_CHECKPOINT_VAL(STVEC, [`XLEN-1:0]);
`INIT_CHECKPOINT_VAL(SATP, [`XLEN-1:0]);
`INIT_CHECKPOINT_VAL(PRIV, [1:0]);
`INIT_CHECKPOINT_PACKED_ARRAY(PLIC_INT_PRIORITY, [2:0],`PLIC_NUM_SRC,1);
`MAKE_CHECKPOINT_INIT_SIGNAL(PLIC_INT_ENABLE, [`PLIC_NUM_SRC:0],1,0);
`INIT_CHECKPOINT_PACKED_ARRAY(PLIC_THRESHOLD, [2:0],1,0);
// UART checkpointing does not cover entire UART state
// Many UART registers are difficult to initialize because under the hood
// they are not simple registers. Instead some are generated by interesting
// combinational blocks such that they depend upon a variety of different
// underlying flops. See for example how RBR might be the actual RXBR
// register, but it could also just as well be 0 or the tail of the fifo
// array.
`INIT_CHECKPOINT_VAL(UART_IER, [7:0]);
`INIT_CHECKPOINT_VAL(UART_LCR, [7:0]);
`INIT_CHECKPOINT_VAL(UART_MCR, [4:0]);
`INIT_CHECKPOINT_VAL(UART_SCR, [7:0]);
// xSTATUS need to be handled manually because the most upstream signals
// are made of individual bits, not registers
`MAKE_CHECKPOINT_INIT_SIGNAL(MSTATUS, [`XLEN-1:0],0,0);
`MAKE_CHECKPOINT_INIT_SIGNAL(SSTATUS, [`XLEN-1:0],0,0);
// ========== INITIALIZATION ==========
initial begin
if(!NO_SPOOFING) begin
force `MEIP = 0;
force `SEIP = 0;
force `UART_IP = 0;
force `MTIP = 0;
end
$sformat(testvectorDir,"%s/linux-testvectors/",RISCV_DIR);
$sformat(linuxImageDir,"%s/buildroot/output/images/",RISCV_DIR);
if (CHECKPOINT!=0)
$sformat(checkpointDir,"%s/linux-testvectors/checkpoint%0d/",RISCV_DIR,CHECKPOINT);
ProgramAddrMapFile = {linuxImageDir,"disassembly/vmlinux.objdump.addr"};
ProgramLabelMapFile = {linuxImageDir,"disassembly/vmlinux.objdump.lab"};
// initialize bootrom
memFile = $fopen({testvectorDir,"bootmem.bin"}, "rb");
readResult = $fread(dut.uncore.uncore.bootrom.bootrom.memory.ROM,memFile);
$fclose(memFile);
// initialize RAM and ROM
if (CHECKPOINT==0)
memFile = $fopen({testvectorDir,"ram.bin"}, "rb");
else
memFile = $fopen({checkpointDir,"ram.bin"}, "rb");
readResult = $fread(dut.uncore.uncore.ram.ram.memory.RAM,memFile);
$fclose(memFile);
// ---------- Ground-Zero -----------
if (CHECKPOINT==0) begin
traceFileM = $fopen({testvectorDir,"all.txt"}, "r");
traceFileE = $fopen({testvectorDir,"all.txt"}, "r");
interruptFile = $fopen({testvectorDir,"interrupts.txt"}, "r");
`SCAN_NEW_INTERRUPT
InstrCountW = '0;
AttemptedInstructionCount = 1; // offset needed here when running from ground zero
// ---------- Checkpoint ----------
end else begin
//$readmemh({checkpointDir,"ram.txt"}, dut.uncore.uncore.ram.ram.memory.RAM);
traceFileE = $fopen({checkpointDir,"all.txt"}, "r");
traceFileM = $fopen({checkpointDir,"all.txt"}, "r");
interruptFile = $fopen({testvectorDir,"interrupts.txt"}, "r");
`SCAN_NEW_INTERRUPT
while(interruptInstrCount < CHECKPOINT) begin
`SCAN_NEW_INTERRUPT
end
InstrCountW = CHECKPOINT;
AttemptedInstructionCount = CHECKPOINT;
// manual checkpoint initializations
force {`STATUS_TSR,`STATUS_TW,`STATUS_TVM,`STATUS_MXR,`STATUS_SUM,`STATUS_MPRV} = initMSTATUS[0][22:17];
force {`STATUS_FS,`STATUS_MPP} = initMSTATUS[0][14:11];
force {`STATUS_SPP,`STATUS_MPIE} = initMSTATUS[0][8:7];
// force {`STATUS_SPIE,`STATUS_UPIE,`STATUS_MIE} = initMSTATUS[0][5:3]; // dh removed UPIE and UIE 4/25/22 from depricated n-mode
force {`STATUS_SPIE} = initMSTATUS[0][5];
force {`STATUS_MIE} = initMSTATUS[0][3];
force {`STATUS_SIE} = initMSTATUS[0][1];
force `PLIC_INT_ENABLE = {initPLIC_INT_ENABLE[1][`PLIC_NUM_SRC:1],initPLIC_INT_ENABLE[0][`PLIC_NUM_SRC:1]}; // would need to expand into a generate loop to cover an arbitrary number of contexts
force `INSTRET = CHECKPOINT;
while (reset!==1) #1;
while (reset!==0) #1;
#1;
release {`STATUS_TSR,`STATUS_TW,`STATUS_TVM,`STATUS_MXR,`STATUS_SUM,`STATUS_MPRV};
release {`STATUS_FS,`STATUS_MPP};
release {`STATUS_SPP,`STATUS_MPIE};
release {`STATUS_SPIE,`STATUS_MIE};
release {`STATUS_SIE};
release `PLIC_INT_ENABLE;
release `INSTRET;
end
// Get the E-stage trace reader ahead of the M-stage trace reader
matchCountE = $fgets(lineE,traceFileE); // *** look at removing?
end
///////////////////////////////////////////////////////////////////////////////
//////////////////////////////////// CORE /////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// =========== TRACE PARSING MACRO ==========
// Because qemu does not match exactly to wally it is necessary to read the the
// trace in the memory stage and detect if anything in wally must be overwritten.
// This includes mtimer, interrupts, and various bits in mstatus and xtval.
// then on the next posedge the expected state is registered.
// on the next falling edge the expected state is compared to the wally state.
// step 0: read the expected state
`define SCAN_NEW_INSTR_FROM_TRACE(STAGE) \
// always check PC, instruction bits \
if (checkInstrM) begin \
// read 1 line of the trace file \
matchCount``STAGE = $fgets(line``STAGE, traceFile``STAGE); \
if(`DEBUG_TRACE >= 5) $display("Time %t, line %x", $time, line``STAGE); \
// extract PC, Instr \
matchCount``STAGE = $sscanf(line``STAGE, "%x %x %s", ExpectedPC``STAGE, ExpectedInstr``STAGE, text``STAGE); \
if (`"STAGE`"=="M") begin \
AttemptedInstructionCount += 1; \
end \
\
// for the life of me I cannot get any build in C or C++ string parsing functions/methods to work. \
// strtok was the best idea but it cannot be used correctly as system verilog does not have null \
// terminated strings. \
\
// Just going to do this char by char. \
StartIndex``STAGE = 0; \
TokenIndex``STAGE = 0; \
//$display("len = %d", line``STAGE.len()); \
for(index``STAGE = 0; index``STAGE < line``STAGE.len(); index``STAGE++) begin \
//$display("char = %s", line``STAGE[index]); \
if (line``STAGE[index``STAGE] == " " | line``STAGE[index``STAGE] == "\n") begin \
EndIndex``STAGE = index``STAGE; \
ExpectedTokens``STAGE[TokenIndex``STAGE] = line``STAGE.substr(StartIndex``STAGE, EndIndex``STAGE-1); \
//$display("In Tokenizer %s", line``STAGE.substr(StartIndex, EndIndex-1)); \
StartIndex``STAGE = EndIndex``STAGE + 1; \
TokenIndex``STAGE++; \
end \
end \
\
MarkerIndex``STAGE = 3; \
NumCSR``STAGE = 0; \
MemOp``STAGE = ""; \
RegWrite``STAGE = ""; \
\
#2; \
\
while(TokenIndex``STAGE > MarkerIndex``STAGE) begin \
// parse the GPR \
if (ExpectedTokens``STAGE[MarkerIndex``STAGE] == "GPR") begin \
RegWrite``STAGE = ExpectedTokens``STAGE[MarkerIndex``STAGE]; \
matchCount``STAGE = $sscanf(ExpectedTokens``STAGE[MarkerIndex``STAGE+1], "%d", ExpectedRegAdr``STAGE); \
matchCount``STAGE = $sscanf(ExpectedTokens``STAGE[MarkerIndex``STAGE+2], "%x", ExpectedRegValue``STAGE); \
MarkerIndex``STAGE += 3; \
// parse memory address, read data, and/or write data \
end else if(ExpectedTokens``STAGE[MarkerIndex``STAGE].substr(0, 2) == "Mem") begin \
MemOp``STAGE = ExpectedTokens``STAGE[MarkerIndex``STAGE]; \
matchCount``STAGE = $sscanf(ExpectedTokens``STAGE[MarkerIndex``STAGE+1], "%x", ExpectedIEUAdr``STAGE); \
matchCount``STAGE = $sscanf(ExpectedTokens``STAGE[MarkerIndex``STAGE+2], "%x", ExpectedMemWriteData``STAGE); \
matchCount``STAGE = $sscanf(ExpectedTokens``STAGE[MarkerIndex``STAGE+3], "%x", ExpectedMemReadData``STAGE); \
MarkerIndex``STAGE += 4; \
// parse CSRs, because there are 1 or more CSRs after the CSR token \
// we check if the CSR token or the number of CSRs is greater than 0. \
// if so then we want to parse for a CSR. \
end else if(ExpectedTokens``STAGE[MarkerIndex``STAGE] == "CSR" | NumCSR``STAGE > 0) begin \
if(ExpectedTokens``STAGE[MarkerIndex``STAGE] == "CSR") begin \
// all additional CSR's won't have this token. \
MarkerIndex``STAGE++; \
end \
matchCount``STAGE = $sscanf(ExpectedTokens``STAGE[MarkerIndex``STAGE], "%s", ExpectedCSRArray``STAGE[NumCSR``STAGE]); \
matchCount``STAGE = $sscanf(ExpectedTokens``STAGE[MarkerIndex``STAGE+1], "%x", ExpectedCSRArrayValue``STAGE[NumCSR``STAGE]); \
MarkerIndex``STAGE += 2; \
\
NumCSR``STAGE++; \
end \
end \
if(`"STAGE`"=="M") begin \
// override on special conditions \
if ((dut.core.lsu.PAdrM == 'h10000002) | (dut.core.lsu.PAdrM == 'h10000005) | (dut.core.lsu.PAdrM == 'h10000006)) begin \
if(!NO_SPOOFING) begin \
$display("%tns, %d instrs: Overwrite UART's Register in memory stage.", $time, AttemptedInstructionCount); \
force dut.core.lsu.ReadDataM = ExpectedMemReadDataM; \
end \
end else \
if(!NO_SPOOFING) \
release dut.core.lsu.ReadDataM; \
if(textM.substr(0,5) == "rdtime") begin \
//$display("%tns, %d instrs: Overwrite MTIME_CLINT on read of MTIME in memory stage.", $time, InstrCountW-1); \
if(!NO_SPOOFING) \
force dut.uncore.uncore.clint.clint.MTIME = ExpectedRegValueM; \
end \
end \
end \
// ========== VALUE-CHECKING MACROS ==========
`define checkEQ(NAME, VAL, EXPECTED) \
if(VAL != EXPECTED) begin \
$display("%tns, %d instrs: %s %x differs from expected %x", $time, AttemptedInstructionCount, NAME, VAL, EXPECTED); \
if ((NAME == "PCW") | (`DEBUG_TRACE >= 2)) fault = 1; \
end
`define checkCSR(CSR) \
begin \
if (CSR != ExpectedCSRArrayValueW[NumCSRPostWIndex]) begin \
$display("%tns, %d instrs: CSR %s = %016x, does not equal expected value %016x", $time, AttemptedInstructionCount, ExpectedCSRArrayW[NumCSRPostWIndex], CSR, ExpectedCSRArrayValueW[NumCSRPostWIndex]); \
if(`DEBUG_TRACE >= 3) fault = 1; \
end \
end
// =========== CORE ===========
assign checkInstrM = dut.core.ieu.InstrValidM & ~dut.core.priv.priv.trap.InstrPageFaultM & ~dut.core.priv.priv.trap.InterruptM & ~dut.core.StallM;
always @(negedge clk) begin
`SCAN_NEW_INSTR_FROM_TRACE(E)
`SCAN_NEW_INSTR_FROM_TRACE(M)
end
// step 1: register expected state into the write back stage.
always @(posedge clk) begin
if (reset) begin
ExpectedPCW <= '0;
ExpectedInstrW <= '0;
textW <= "";
RegWriteW <= "";
ExpectedRegAdrW <= '0;
ExpectedRegValueW <= '0;
ExpectedIEUAdrW <= '0;
MemOpW <= "";
ExpectedMemWriteDataW <= '0;
ExpectedMemReadDataW <= '0;
NumCSRW <= '0;
end else if(~dut.core.StallW) begin
if(dut.core.FlushW) begin
ExpectedPCW <= '0;
ExpectedInstrW <= '0;
textW <= "";
RegWriteW <= "";
ExpectedRegAdrW <= '0;
ExpectedRegValueW <= '0;
ExpectedIEUAdrW <= '0;
MemOpW <= "";
ExpectedMemWriteDataW <= '0;
ExpectedMemReadDataW <= '0;
NumCSRW <= '0;
end else if (dut.core.ieu.c.InstrValidM) begin
ExpectedPCW <= ExpectedPCM;
ExpectedInstrW <= ExpectedInstrM;
textW <= textM;
RegWriteW <= RegWriteM;
ExpectedRegAdrW <= ExpectedRegAdrM;
ExpectedRegValueW <= ExpectedRegValueM;
ExpectedIEUAdrW <= ExpectedIEUAdrM;
MemOpW <= MemOpM;
ExpectedMemWriteDataW <= ExpectedMemWriteDataM;
ExpectedMemReadDataW <= ExpectedMemReadDataM;
NumCSRW <= NumCSRM;
for(NumCSRWIndex = 0; NumCSRWIndex < NumCSRM; NumCSRWIndex++) begin
ExpectedCSRArrayW[NumCSRWIndex] = ExpectedCSRArrayM[NumCSRWIndex];
ExpectedCSRArrayValueW[NumCSRWIndex] = ExpectedCSRArrayValueM[NumCSRWIndex];
end
end
#1;
// override on special conditions
if(~dut.core.StallW) begin
if(textW.substr(0,5) == "rdtime") begin
//$display("%tns, %d instrs: Releasing force of MTIME_CLINT.", $time, AttemptedInstructionCount);
if(!NO_SPOOFING)
release dut.uncore.uncore.clint.clint.MTIME;
end
//if (ExpectedIEUAdrM == 'h10000005) begin
//$display("%tns, %d instrs: releasing force of ReadDataM.", $time, AttemptedInstructionCount);
//release dut.core.ieu.dp.ReadDataM;
//end
end
end
end
// step2: make all checks in the write back stage.
assign checkInstrW = InstrValidW & ~dut.core.StallW; // trapW will already be invalid in there was an InstrPageFault in the previous instruction.
always @(negedge clk) begin
#1; // small delay allows interrupt spoofing to happen first
// always check PC, instruction bits
if (checkInstrW) begin
InstrCountW += 1;
// print progress message
if (AttemptedInstructionCount % 'd100000 == 0) $display("Reached %d instructions", AttemptedInstructionCount);
// turn on waves
if (AttemptedInstructionCount == INSTR_WAVEON) $stop;
// end sim
if ((AttemptedInstructionCount == INSTR_LIMIT) & (INSTR_LIMIT!=0)) begin $stop; $stop; end
fault = 0;
if (`DEBUG_TRACE >= 1) begin
`checkEQ("PCW",PCW,ExpectedPCW)
//`checkEQ("InstrW",InstrW,ExpectedInstrW) <-- not viable because of
// compressed to uncompressed conversion
`checkEQ("Instr Count",dut.core.priv.priv.csr.counters.counters.HPMCOUNTER_REGW[2],InstrCountW)
#2; // delay 2 ns.
if(`DEBUG_TRACE >= 5) begin
$display("%tns, %d instrs: Reg Write Address %02d ? expected value: %02d", $time, AttemptedInstructionCount, dut.core.ieu.dp.regf.a3, ExpectedRegAdrW);
$display("%tns, %d instrs: RF[%02d] %016x ? expected value: %016x", $time, AttemptedInstructionCount, ExpectedRegAdrW, dut.core.ieu.dp.regf.rf[ExpectedRegAdrW], ExpectedRegValueW);
end
if (RegWriteW == "GPR") begin
`checkEQ("Reg Write Address",dut.core.ieu.dp.regf.a3,ExpectedRegAdrW)
$sformat(name,"RF[%02d]",ExpectedRegAdrW);
`checkEQ(name, dut.core.ieu.dp.regf.rf[ExpectedRegAdrW], ExpectedRegValueW)
end
if (MemOpW.substr(0,2) == "Mem") begin
if(`DEBUG_TRACE >= 4) $display("\tIEUAdrW: %016x ? expected: %016x", IEUAdrW, ExpectedIEUAdrW);
`checkEQ("IEUAdrW",IEUAdrW,ExpectedIEUAdrW)
if(MemOpW == "MemR" | MemOpW == "MemRW") begin
if(`DEBUG_TRACE >= 4) $display("\tReadDataW: %016x ? expected: %016x", dut.core.ieu.dp.ReadDataW, ExpectedMemReadDataW);
`checkEQ("ReadDataW",dut.core.ieu.dp.ReadDataW,ExpectedMemReadDataW)
end else if(MemOpW == "MemW" | MemOpW == "MemRW") begin
if(`DEBUG_TRACE >= 4) $display("\tWriteDataW: %016x ? expected: %016x", WriteDataW, ExpectedMemWriteDataW);
`checkEQ("WriteDataW",ExpectedMemWriteDataW,ExpectedMemWriteDataW)
end
end
// check csr
for(NumCSRPostWIndex = 0; NumCSRPostWIndex < NumCSRW; NumCSRPostWIndex++) begin
case(ExpectedCSRArrayW[NumCSRPostWIndex])
"mhartid": `checkCSR(`CSR_BASE.csrm.MHARTID_REGW)
"mstatus": `checkCSR(`CSR_BASE.csrm.MSTATUS_REGW)
"sstatus": `checkCSR(`CSR_BASE.csrs.csrs.SSTATUS_REGW)
"mtvec": `checkCSR(`CSR_BASE.csrm.MTVEC_REGW)
"mie": `checkCSR(`CSR_BASE.csrm.MIE_REGW)
"mideleg": `checkCSR(`CSR_BASE.csrm.MIDELEG_REGW)
"medeleg": `checkCSR(`CSR_BASE.csrm.MEDELEG_REGW)
"mepc": `checkCSR(`CSR_BASE.csrm.MEPC_REGW)
"mtval": `checkCSR(`CSR_BASE.csrm.MTVAL_REGW)
"sepc": `checkCSR(`CSR_BASE.csrs.csrs.SEPC_REGW)
"scause": `checkCSR(`CSR_BASE.csrs.csrs.SCAUSE_REGW)
"stvec": `checkCSR(`CSR_BASE.csrs.csrs.STVEC_REGW)
"stval": `checkCSR(`CSR_BASE.csrs.csrs.STVAL_REGW)
"mip": begin
`checkCSR(`CSR_BASE.csrm.MIP_REGW)
if(!NO_SPOOFING) begin
if ((ExpectedCSRArrayValueW[NumCSRPostWIndex] & 1<<11) == 0)
force `MEIP = 0;
if ((ExpectedCSRArrayValueW[NumCSRPostWIndex] & 1<<09) == 0)
force `SEIP = 0;
if ((ExpectedCSRArrayValueW[NumCSRPostWIndex] & ((1<<11) | (1<<09))) == 0)
force `UART_IP = 0;
if ((ExpectedCSRArrayValueW[NumCSRPostWIndex] & 1<<07) == 0)
force `MTIP = 0;
end
end
endcase
end
if (fault == 1) begin
errorCount +=1;
$display("processed %0d instructions with %0d warnings", AttemptedInstructionCount, warningCount);
$stop; $stop;
end
end // if (`DEBUG_TRACE >= 1)
end // if (checkInstrW)
end // always @ (negedge clk)
// New IP spoofing
logic globalIntsBecomeEnabled;
assign globalIntsBecomeEnabled = (`CSR_BASE.csrm.WriteMSTATUSM || `CSR_BASE.csrs.csrs.WriteSSTATUSM) && (|(`CSR_BASE.CSRWriteValM & (~`CSR_BASE.csrm.MSTATUS_REGW) & 32'h22));
logic checkInterruptM;
assign checkInterruptM = dut.core.ieu.InstrValidM & ~dut.core.priv.priv.trap.InstrPageFaultM & ~dut.core.priv.priv.trap.InterruptM;
always @(negedge clk) begin
if(checkInterruptM) begin
if((interruptInstrCount+1) == AttemptedInstructionCount) begin
if(!NO_SPOOFING) begin
case (interruptCauseVal)
11: begin
force `MEIP = 1;
force `UART_IP = 1;
end
09: begin
force `SEIP = 1;
force `UART_IP = 1;
end
07: force `MTIP = 1;
default: $display("Unsupported interrupt in interrupts.txt. cause = %0d",interruptCauseVal);
endcase
$display("Forcing interrupt.");
end
`SCAN_NEW_INTERRUPT
if (globalIntsBecomeEnabled) begin
$display("Enabled global interrupts");
// The idea here is if a CSR instruction causes an interrupt by
// enabling interrupts, that CSR instruction will commit.
end else begin
// Other instructions, however, will get interrupted and not
// commit, so we don't want our W-stage checker to look for them
// and get confused when it doesn't find them.
garbageInt = $fgets(garbageString,traceFileE);
garbageInt = $fgets(garbageString,traceFileM);
AttemptedInstructionCount += 1;
end
end
end
end
///////////////////////////////////////////////////////////////////////////////
//////////////////////////////// Extra Features ///////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Function Tracking
FunctionName FunctionName(.reset(reset),
.clk(clk),
.ProgramAddrMapFile(ProgramAddrMapFile),
.ProgramLabelMapFile(ProgramLabelMapFile));
// Instr Opcode Tracking
// For waveview convenience
string InstrFName, InstrDName, InstrEName, InstrMName, InstrWName;
instrTrackerTB it(clk, reset, dut.core.ieu.dp.FlushE,
dut.core.ifu.InstrRawF[31:0],
dut.core.ifu.InstrD, dut.core.ifu.InstrE,
dut.core.ifu.InstrM, InstrW,
InstrFName, InstrDName, InstrEName, InstrMName, InstrWName);
// ------------------
// Address Translator
// ------------------
/**
* Walk the page table stored in ram according to sv39 logic and translate a
* virtual address to a physical address.
*
* See section 4.3.2 of the RISC-V Privileged specification for a full
* explanation of the below algorithm.
*/
logic SvMode, PTE_R, PTE_X;
logic [`XLEN-1:0] SATP, PTE;
logic [55:0] BaseAdr, PAdr;
logic [8:0] VPN [2:0];
logic [11:0] Offset;
function logic [`XLEN-1:0] adrTranslator(
input logic [`XLEN-1:0] adrIn);
begin
int i;
// Grab the SATP register from privileged unit
SATP = dut.core.priv.priv.csr.SATP_REGW;
// Split the virtual address into page number segments and offset
VPN[2] = adrIn[38:30];
VPN[1] = adrIn[29:21];
VPN[0] = adrIn[20:12];
Offset = adrIn[11:0];
// We do not support sv48; only sv39
SvMode = SATP[63];
// Only perform translation if translation is on and the processor is not
// in machine mode
if (SvMode & (dut.core.priv.priv.PrivilegeModeW != `M_MODE)) begin
BaseAdr = SATP[43:0] << 12;
for (i = 2; i >= 0; i--) begin
PAdr = BaseAdr + (VPN[i] << 3);
// ram.memory.RAM is 64-bit addressed. PAdr specifies a byte. We right shift
// by 3 (the PTE size) to get the requested 64-bit PTE.
PTE = dut.uncore.uncore.ram.ram.memory.RAM[PAdr >> 3];
PTE_R = PTE[1];
PTE_X = PTE[3];
if (PTE_R | PTE_X) begin
// Leaf page found
break;
end else begin
// Go to next level of table
BaseAdr = PTE[53:10] << 12;
end
end
// Determine which parts of the PTE page number to use based on the
// level of the page table we reached.
if (i == 2) begin
// Gigapage
assign adrTranslator = {8'b0, PTE[53:28], VPN[1], VPN[0], Offset};
end else if (i == 1) begin
// Megapage
assign adrTranslator = {8'b0, PTE[53:19], VPN[0], Offset};
end else begin
// Kilopage
assign adrTranslator = {8'b0, PTE[53:10], Offset};
end
end else begin
// Direct translation if address translation is not on
assign adrTranslator = adrIn;
end
end
endfunction
endmodule