forked from Github_Repos/cvw
95 lines
2.7 KiB
Python
Executable File
95 lines
2.7 KiB
Python
Executable File
#!/usr/bin/python3
|
|
import subprocess
|
|
import csv
|
|
import re
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
|
|
def getData():
|
|
bashCommand = "grep 'Critical Path Length' runs/ppa_*/reports/*qor*"
|
|
outputCPL = subprocess.check_output(['bash','-c', bashCommand])
|
|
linesCPL = outputCPL.decode("utf-8").split('\n')[:-1]
|
|
|
|
bashCommand = "grep 'Design Area' runs/ppa_*/reports/*qor*"
|
|
outputDA = subprocess.check_output(['bash','-c', bashCommand])
|
|
linesDA = outputDA.decode("utf-8").split('\n')[:-1]
|
|
|
|
cpl = re.compile('\d{1}\.\d{6}')
|
|
f = re.compile('_\d*_MHz')
|
|
wm = re.compile('ppa_\w*_\d*_qor')
|
|
da = re.compile('\d*\.\d{6}')
|
|
|
|
allSynths = []
|
|
|
|
for i in range(len(linesCPL)):
|
|
line = linesCPL[i]
|
|
mwm = wm.findall(line)[0][4:-4].split('_')
|
|
oneSynth = [mwm[0], int(mwm[1])]
|
|
oneSynth += [int(f.findall(line)[0][1:-4])]
|
|
oneSynth += [float(cpl.findall(line)[0])]
|
|
oneSynth += [float(da.findall(linesDA[i])[0])]
|
|
allSynths += [oneSynth]
|
|
|
|
return allSynths
|
|
|
|
def writeCSV(allSynths):
|
|
file = open("ppaData.csv", "w")
|
|
writer = csv.writer(file)
|
|
writer.writerow(['Module', 'Width', 'Target Freq', 'Delay', 'Area'])
|
|
|
|
for one in allSynths:
|
|
writer.writerow(one)
|
|
|
|
file.close()
|
|
|
|
def plotPPA(module, freq, var):
|
|
'''
|
|
module: string module name
|
|
freq: int freq (GHz)
|
|
var: string 'delay' or 'area'
|
|
plots chosen variable vs width for all matching syntheses with regression
|
|
'''
|
|
global allSynths
|
|
ind = 3 if (var == 'delay') else 4
|
|
widths = []
|
|
ivar = []
|
|
for oneSynth in allSynths:
|
|
if (oneSynth[0] == module) & (oneSynth[2] == freq):
|
|
|
|
widths += [oneSynth[1]]
|
|
ivar += [oneSynth[ind]]
|
|
|
|
x = np.array(widths, dtype=np.int)
|
|
y = np.array(ivar, dtype=np.float)
|
|
|
|
A = np.vstack([x, np.ones(len(x))]).T
|
|
m, c = np.linalg.lstsq(A, y, rcond=None)[0]
|
|
|
|
z = np.polyfit(x, y, 2)
|
|
p = np.poly1d(z)
|
|
|
|
zlog = np.polyfit(np.log(x), y, 1)
|
|
plog = np.poly1d(zlog)
|
|
|
|
xp = np.linspace(0, 140, 200)
|
|
xplog = np.log(xp)
|
|
|
|
_ = plt.plot(x, y, 'o', label=module, markersize=10)
|
|
_ = plt.plot(x, m*x + c, 'r', label='Linear fit')
|
|
_ = plt.plot(xp, p(xp), label='Quadratic fit')
|
|
_ = plt.plot(xp, plog(xplog), label = 'Log fit')
|
|
_ = plt.legend()
|
|
_ = plt.xlabel("Width (bits)")
|
|
_ = plt.ylabel(str.title(var))
|
|
_ = plt.title("Target frequency " + str(freq))
|
|
plt.show()
|
|
#fix square microns, picosec, end plots at 8 to stop negs, add equation to plots and R2
|
|
# try linear term with delay as well (w and wo)
|
|
|
|
allSynths = getData()
|
|
|
|
writeCSV(allSynths)
|
|
|
|
plotPPA('mult', 5000, 'delay')
|
|
plotPPA('mult', 5000, 'area')
|
|
plotPPA('mult', 10, 'area') |