cvw/tests/custom/zsbl/uart.c
2022-12-18 16:24:26 -06:00

92 lines
2.1 KiB
C

#include "uart.h"
void write_reg_u8(uintptr_t addr, uint8_t value)
{
volatile uint8_t *loc_addr = (volatile uint8_t *)addr;
*loc_addr = value;
}
uint8_t read_reg_u8(uintptr_t addr)
{
return *(volatile uint8_t *)addr;
}
int is_transmit_empty()
{
return read_reg_u8(UART_LINE_STATUS) & 0x20;
}
void write_serial(char a)
{
while (is_transmit_empty() == 0) {};
write_reg_u8(UART_THR, a);
}
void init_uart(uint32_t freq, uint32_t baud)
{
uint32_t divisor = freq / (baud << 4);
write_reg_u8(UART_INTERRUPT_ENABLE, 0x00); // Disable all interrupts
write_reg_u8(UART_LINE_CONTROL, 0x80); // Enable DLAB (set baud rate divisor)
write_reg_u8(UART_DLAB_LSB, divisor); // divisor (lo byte)
write_reg_u8(UART_DLAB_MSB, (divisor >> 8) & 0xFF); // divisor (hi byte)
write_reg_u8(UART_LINE_CONTROL, 0x03); // 8 bits, no parity, one stop bit
write_reg_u8(UART_FIFO_CONTROL, 0xC7); // Enable FIFO, clear them, with 14-byte threshold
write_reg_u8(UART_MODEM_CONTROL, 0x20); // Autoflow mode
}
void print_uart(const char *str)
{
const char *cur = &str[0];
while (*cur != '\0')
{
write_serial((uint8_t)*cur);
++cur;
}
}
uint8_t bin_to_hex_table[16] = {
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'};
void bin_to_hex(uint8_t inp, uint8_t res[2])
{
res[1] = bin_to_hex_table[inp & 0xf];
res[0] = bin_to_hex_table[(inp >> 4) & 0xf];
return;
}
void print_uart_int(uint32_t addr)
{
int i;
for (i = 3; i > -1; i--)
{
uint8_t cur = (addr >> (i * 8)) & 0xff;
uint8_t hex[2];
bin_to_hex(cur, hex);
write_serial(hex[0]);
write_serial(hex[1]);
}
}
void print_uart_addr(uint64_t addr)
{
int i;
for (i = 7; i > -1; i--)
{
uint8_t cur = (addr >> (i * 8)) & 0xff;
uint8_t hex[2];
bin_to_hex(cur, hex);
write_serial(hex[0]);
write_serial(hex[1]);
}
}
void print_uart_byte(uint8_t byte)
{
uint8_t hex[2];
bin_to_hex(byte, hex);
write_serial(hex[0]);
write_serial(hex[1]);
}