cvw/pipelined/src/fpu/fcvt.sv
2022-05-31 16:18:50 +00:00

803 lines
44 KiB
Systemverilog

`include "wally-config.vh"
// largest length in IEU/FPU
`define LGLEN ((`NF<`XLEN) ? `XLEN : `NF)
module fcvt (
input logic XSgnE, // input's sign
input logic [`NE-1:0] XExpE, // input's exponent
input logic [`NF:0] XManE, // input's fraction
input logic [`XLEN-1:0] ForwardedSrcAE, // integer input - from IEU
input logic [2:0] FOpCtrlE, // choose which opperation (look below for values)
input logic FWriteIntE, // is fp->int (since it's writting to the integer register)
input logic XZeroE, // is the input zero
input logic XDenormE, // is the input denormalized
input logic XInfE, // is the input infinity
input logic XNaNE, // is the input a NaN
input logic XSNaNE, // is the input a signaling NaN
input logic [2:0] FrmE, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
input logic [`FPSIZES/3:0] FmtE, // the input's precision (11=quad 01=double 00=single 10=half)
output logic [`FLEN-1:0] CvtResE, // the fp conversion result
output logic [`XLEN-1:0] CvtIntResE, // the int conversion result
output logic [4:0] CvtFlgE // the conversion's flags
);
// OpCtrls:
// fp->fp conversions: {0, output precision} - only one of the operations writes to the int register
// half - 10
// single - 00
// double - 01
// quad - 11
// int<->fp conversions: {is int->fp?, is the integer 64-bit?, is the integer signed?}
// bit 2 bit 1 bit 0
// for example: signed long -> single floating point has the OpCode 101
// (FF) fp -> fp coversion signals
// (IF) int -> fp coversion signals
// (FI) fp -> int coversion signals
logic [`FPSIZES/3:0] OutFmt; // format of the output
logic [`XLEN-1:0] PosInt; // the positive integer input
logic [`XLEN-1:0] TrimInt; // integer trimmed to the correct size
logic [`LGLEN-1:0] LzcIn; // input to the Leading Zero Counter (priority encoder)
logic [`NE:0] CalcExp; // the calculated expoent
logic [$clog2(`LGLEN+1)-1:0] ShiftAmt; // how much to shift by
logic [`LGLEN+`NF:0] ShiftIn; // number to be shifted
logic ResDenormUf;// does the result underflow or is denormalized
logic ResUf; // does the result underflow
logic [`LGLEN+`NF:0] Shifted; // the shifted result
logic [`NE-2:0] NewBias; // the bias of the final result
logic [$clog2(`NF):0] ResNegNF; // the result's fraction length negated (-NF)
logic [`NE-1:0] OldExp; // the old exponent
logic ResSgn; // the result's sign
logic Sticky; // sticky bit - for rounding
logic Round; // round bit - for rounding
logic LSBFrac; // the least significant bit of the fraction - for rounding
logic CalcPlus1; // the calculated plus 1
logic Plus1; // add one to the final result?
logic [`FLEN-1:0] ShiftedPlus1; // plus one shifted to the proper position
logic [`NE:0] FullResExp; // the full result exponent (with the overflow bit)
logic [`NE-1:0] ResExp; // the result's exponent (trimmed to the correct size)
logic [`NF-1:0] ResFrac; // the result's fraction
logic [`XLEN+1:0] NegRes; // the negation of the result
logic [`XLEN-1:0] OfIntRes; // the overflow result for integer output
logic Overflow, Underflow, Inexact, Invalid; // flags
logic IntInexact, FpInexact, IntInvalid, FpInvalid; // flags for FP and int outputs
logic [`NE-1:0] MaxExp; // the maximum exponent before overflow
logic [1:0] NegResMSBS; // the negitive integer result's most significant bits
logic [`FLEN-1:0] NaNRes, InfRes, Res, UfRes; //various special results
logic KillRes; // kill the result?
logic Signed; // is the opperation with a signed integer?
logic Int64; // is the integer 64 bits?
logic IntToFp; // is the opperation an int->fp conversion?
logic ToInt; // is the opperation an fp->int conversion?
logic [$clog2(`LGLEN+1)-1:0] ZeroCnt; // output from the LZC
// seperate OpCtrl for code readability
assign Signed = FOpCtrlE[0];
assign Int64 = FOpCtrlE[1];
assign IntToFp = FOpCtrlE[2];
assign ToInt = FWriteIntE;
// choose the ouptut format depending on the opperation
// - fp -> fp: OpCtrl contains the percision of the output
// - int -> fp: FmtE contains the percision of the output
if (`FPSIZES == 2)
assign OutFmt = IntToFp ? FmtE : (FOpCtrlE[1:0] == `FMT);
else if (`FPSIZES == 3 | `FPSIZES == 4)
assign OutFmt = IntToFp ? FmtE : FOpCtrlE[1:0];
///////////////////////////////////////////////////////////////////////////
// negation
///////////////////////////////////////////////////////////////////////////
// 1) negate the input if the input is a negitive singed integer
// 2) trim the input to the proper size (kill the 32 most significant zeroes if needed)
assign PosInt = ResSgn ? -ForwardedSrcAE : ForwardedSrcAE;
assign TrimInt = {{`XLEN-32{Int64}}, {32{1'b1}}} & PosInt;
///////////////////////////////////////////////////////////////////////////
// lzc
///////////////////////////////////////////////////////////////////////////
// choose the input to the leading zero counter i.e. priority encoder
// int -> fp : | positive integer | 00000... (if needed) |
// fp -> fp : | fraction | 00000... (if needed) |
assign LzcIn = IntToFp ? {TrimInt, {`LGLEN-`XLEN{1'b0}}} :
{XManE[`NF-1:0], {`LGLEN-`NF{1'b0}}};
lzc #(`LGLEN) lzc (.num(LzcIn), .ZeroCnt);
///////////////////////////////////////////////////////////////////////////
// shifter
///////////////////////////////////////////////////////////////////////////
// seclect the input to the shifter
// fp -> int:
// | `XLEN zeros | Mantissa | 0's if nessisary |
// Other problems:
// - if shifting to the right (neg CalcExp) then don't a 1 in the round bit (to prevent an incorrect plus 1 later durring rounding)
// - we do however want to keep the one in the sticky bit so set one of bits in the sticky bit area to 1
// - ex: for the case 0010000.... (double)
// ??? -> fp:
// - if result is denormalized or underflowed then we want to shift right i.e. shift right then shift left:
// | `NF-1 zeros | Mantissa | 0's if nessisary |
// - otherwise:
// | lzcIn | 0's if nessisary |
assign ShiftIn = ToInt ? {{`XLEN{1'b0}}, XManE[`NF]&~CalcExp[`NE], XManE[`NF-1]|(CalcExp[`NE]&XManE[`NF]), XManE[`NF-2:0], {`LGLEN-`XLEN{1'b0}}} :
ResDenormUf ? {{`NF-1{1'b0}}, XManE, {`LGLEN-`NF+1{1'b0}}} :
{LzcIn, {`NF+1{1'b0}}};
// kill the shift if it's negitive
// select the amount to shift by
// fp -> int:
// - shift left by CalcExp - essentially shifting until the unbiased exponent = 0
// - don't shift if supposed to shift right (underflowed or denorm input)
// denormalized/undeflowed result fp -> fp:
// - shift left by NF-1+CalcExp - to shift till the biased expoenent is 0
// ??? -> fp:
// - shift left by ZeroCnt+1 - to shift till the result is normalized
// - only shift fp -> fp if the intital value is denormalized
// - this is a problem because the input to the lzc was the fraction rather than the mantissa
// - rather have a few and-gates than an extra bit in the priority encoder??? *** is this true?
assign ShiftAmt = ToInt ? CalcExp[$clog2(`LGLEN+1)-1:0]&{$clog2(`LGLEN+1){~CalcExp[`NE]}} :
ResDenormUf&~IntToFp ? ($clog2(`LGLEN+1))'(`NF-1)+CalcExp[$clog2(`LGLEN+1)-1:0] :
(ZeroCnt+1)&{$clog2(`LGLEN+1){XDenormE|IntToFp}};
// shift
// fp -> int: | `XLEN zeros | Mantissa | 0's if nessisary | << CalcExp
// process:
// - start - CalcExp = 1 + XExp - Largest Bias
// | `XLEN zeros | Mantissa | 0's if nessisary |
//
// - shift left 1 (1)
// | `XLEN-1 zeros |bit| frac | 0's if nessisary |
// . <- binary point
//
// - shift left till unbiased exponent is 0 (XExp - Largest Bias)
// | 0's | Mantissa | 0's if nessisary |
// | keep |
//
// fp -> fp:
// - if result is denormalized or underflowed:
// | `NF-1 zeros | Mantissa | 0's if nessisary | << NF+CalcExp-1
// process:
// - start
// | mantissa | 0's |
//
// - shift right by NF-1 (NF-1)
// | `NF-1 zeros | mantissa | 0's |
//
// - shift left by CalcExp = XExp - Largest bias + new bias
// | 0's | mantissa | 0's |
// | keep |
//
// - if the input is denormalized:
// | lzcIn | 0's if nessisary | << ZeroCnt+1
// - plus 1 to shift out the first 1
//
// int -> fp: | lzcIn | 0's if nessisary | << ZeroCnt+1
// - plus 1 to shift out the first 1
assign Shifted = ShiftIn << ShiftAmt;
///////////////////////////////////////////////////////////////////////////
// exp calculations
///////////////////////////////////////////////////////////////////////////
// *** possible optimizaations:
// - if subtracting exp by bias only the msb needs a full adder, the rest can be HA - dunno how to implement this for synth
// - Smaller exp -> Larger Exp can be calculated with: *** can use in Other units??? FMA??? insert this thing in later
// Exp if in range: {~Exp[SNE-1], Exp[SNE-2:0]}
// Exp in range if: Exp[SNE-1] = 1 & Exp[LNE-2:SNE] = 1111... & Exp[LNE-1] = 0 | Exp[SNE-1] = 0 & Exp[LNE-2:SNE] = 000... & Exp[LNE-1] = 1
// i.e.: &Exp[LNE-2:SNE-1] xor Exp[LNE-1]
// Too big if: Exp[LNE-1] = 1
// Too small if: none of the above
// Select the bias of the output
// fp -> int : select 1
// ??? -> fp : pick the new bias depending on the output format
if (`FPSIZES == 1) begin
assign NewBias = ToInt ? (`NE-1)'(1) : (`NE-1)'(`BIAS);
end else if (`FPSIZES == 2) begin
assign NewBias = ToInt ? (`NE-1)'(1) : OutFmt ? (`NE-1)'(`BIAS) : (`NE-1)'(`BIAS1);
end else if (`FPSIZES == 3) begin
logic [`NE-2:0] NewBiasToFp;
always_comb
case (OutFmt)
`FMT: NewBiasToFp = (`NE-1)'(`BIAS);
`FMT1: NewBiasToFp = (`NE-1)'(`BIAS1);
`FMT2: NewBiasToFp = (`NE-1)'(`BIAS2);
default: NewBiasToFp = 1'bx;
endcase
assign NewBias = ToInt ? (`NE-1)'(1) : NewBiasToFp;
end else if (`FPSIZES == 4) begin
logic [`NE-2:0] NewBiasToFp;
always_comb
case (OutFmt)
2'h3: NewBiasToFp = (`NE-1)'(`Q_BIAS);
2'h1: NewBiasToFp = (`NE-1)'(`D_BIAS);
2'h0: NewBiasToFp = (`NE-1)'(`S_BIAS);
2'h2: NewBiasToFp = (`NE-1)'(`H_BIAS);
endcase
assign NewBias = ToInt ? (`NE-1)'(1) : NewBiasToFp;
end
// select the old exponent
// int -> fp : largest bias + XLEN
// fp -> ??? : XExp
assign OldExp = IntToFp ? (`NE)'(`BIAS)+(`NE)'(`XLEN) : XExpE;
// calculate CalcExp
// fp -> fp :
// - XExp - Largest bias + new bias - (ZeroCnt+1)
// only do ^ if the input was denormalized
// - convert the expoenent to the final preciaion (Exp - oldBias + newBias)
// - correct the expoent when there is a normalization shift ( + ZeroCnt+1)
// fp -> int : XExp - Largest Bias + 1 - (ZeroCnt+1)
// | `XLEN zeros | Mantissa | 0's if nessisary | << CalcExp
// process:
// - start
// | `XLEN zeros | Mantissa | 0's if nessisary |
//
// - shift left 1 (1)
// | `XLEN-1 zeros |bit| frac | 0's if nessisary |
// . <- binary point
//
// - shift left till unbiased exponent is 0 (XExp - Largest Bias)
// | 0's | Mantissa | 0's if nessisary |
// | keep |
//
// - if the input is denormalized then we dont shift... so the "- (ZeroCnt+1)" is just leftovers from other options
// int -> fp : largest bias + XLEN - Largest bias + new bias - 1 - ZeroCnt = XLEN + NewBias - 1 - ZeroCnt
// Process:
// - shifted right by XLEN (XLEN)
// - shift left to normilize (-1-ZeroCnt)
// - newBias to make the biased exponent
//
assign CalcExp = {1'b0, OldExp} - (`NE+1)'(`BIAS) + {2'b0, NewBias} - {{`NE{1'b0}}, XDenormE|IntToFp} - {{`NE-$clog2(`LGLEN+1)+1{1'b0}}, (ZeroCnt&{$clog2(`LGLEN+1){XDenormE|IntToFp}})};
// find if the result is dnormal or underflows
// - if Calculated expoenent is 0 or negitive (and the input/result is not exactaly 0)
// - can't underflow an integer to Fp conversion
assign ResDenormUf = (~|CalcExp | CalcExp[`NE])&~XZeroE&~IntToFp;
// choose the negative of the fraction size
if (`FPSIZES == 1) begin
assign ResNegNF = -`NF;
end else if (`FPSIZES == 2) begin
assign ResNegNF = OutFmt ? -`NF : -`NF1;
end else if (`FPSIZES == 3) begin
always_comb
case (OutFmt)
`FMT: ResNegNF = -`NF;
`FMT1: ResNegNF = -`NF1;
`FMT2: ResNegNF = -`NF2;
default: ResNegNF = 1'bx;
endcase
end else if (`FPSIZES == 4) begin
always_comb
case (OutFmt)
2'h3: ResNegNF = -`Q_NF;
2'h1: ResNegNF = -`D_NF;
2'h0: ResNegNF = -`S_NF;
2'h2: ResNegNF = -`H_NF;
endcase
end
// determine if the result underflows ??? -> fp
// - if the first 1 is shifted out of the result then the result underflows
// - can't underflow an integer to fp conversions
assign ResUf = ($signed(CalcExp) < $signed({{`NE-$clog2(`NF){1'b1}}, ResNegNF}))&~XZeroE&~IntToFp;
///////////////////////////////////////////////////////////////////////////
// sign
///////////////////////////////////////////////////////////////////////////
// determine the sign of the result
// - if int -> fp
// - if 64-bit : check the msb of the 64-bit integer input and if it's signed
// - if 32-bit : check the msb of the 32-bit integer input and if it's signed
// - otherwise: the floating point input's sign
assign ResSgn = IntToFp ? Int64 ? ForwardedSrcAE[`XLEN-1]&Signed : ForwardedSrcAE[31]&Signed : XSgnE;
///////////////////////////////////////////////////////////////////////////
// rounding
///////////////////////////////////////////////////////////////////////////
// round to nearest even
// {Round, Sticky}
// 0x - do nothing
// 10 - tie - Plus1 if result is odd (LSBNormSum = 1)
// 11 - Plus1
// round to zero - do nothing
// round to -infinity - Plus1 if negative
// round to infinity - Plus1 if positive
// round to nearest max magnitude
// {Guard, Round, Sticky}
// 0x - do nothing
// 1x - Plus1
// ResUf is used when a fp->fp result underflows but all the bits get shifted out, which leaves nothing for the sticky bit
if (`FPSIZES == 1) begin
assign Sticky = ToInt ? |Shifted[`LGLEN+`NF-`XLEN-1:0] : |Shifted[`LGLEN+`NF-`NF-1:0]|ResUf;
assign Round = ToInt ? Shifted[`LGLEN+`NF-`XLEN] : Shifted[`LGLEN+`NF-`NF];
assign LSBFrac = ToInt ? Shifted[`LGLEN+`NF-`XLEN+1] : Shifted[`LGLEN+`NF-`NF+1];
end else if (`FPSIZES == 2) begin
assign Sticky = ToInt ? |Shifted[`LGLEN+`NF-`XLEN-1:0] :
(OutFmt ? |Shifted[`LGLEN+`NF-`NF-1:0] : |Shifted[`LGLEN+`NF-`NF1-1:0])|ResUf;
assign Round = ToInt ? Shifted[`LGLEN+`NF-`XLEN] :
OutFmt ? Shifted[`LGLEN+`NF-`NF] : Shifted[`LGLEN+`NF-`NF1];
assign LSBFrac = ToInt ? Shifted[`LGLEN+`NF-`XLEN+1] :
OutFmt ? Shifted[`LGLEN+`NF-`NF+1] : Shifted[`LGLEN+`NF-`NF1+1];
end else if (`FPSIZES == 3) begin
logic ToFpSticky, ToFpRound, ToFpLSBFrac;
always_comb
case (OutFmt)
`FMT: begin
ToFpSticky = |Shifted[`LGLEN+`NF-`NF-1:0];
ToFpRound = Shifted[`LGLEN+`NF-`NF];
ToFpLSBFrac = Shifted[`LGLEN+`NF-`NF+1];
end
`FMT1: begin
ToFpSticky = |Shifted[`LGLEN+`NF-`NF1-1:0];
ToFpRound = Shifted[`LGLEN+`NF-`NF1];
ToFpLSBFrac = Shifted[`LGLEN+`NF-`NF1+1];
end
`FMT2: begin
ToFpSticky = |Shifted[`LGLEN+`NF-`NF2-1:0];
ToFpRound = Shifted[`LGLEN+`NF-`NF2];
ToFpLSBFrac = Shifted[`LGLEN+`NF-`NF2+1];
end
default: begin
ToFpSticky = 1'bx;
ToFpRound = 1'bx;
ToFpLSBFrac = 1'bx;
end
endcase
assign Sticky = ToInt ? |Shifted[`LGLEN+`NF-`XLEN-1:0] : ToFpSticky|ResUf;
assign Round = ToInt ? Shifted[`LGLEN+`NF-`XLEN] : ToFpRound;
assign LSBFrac = ToInt ? Shifted[`LGLEN+`NF-`XLEN+1] : ToFpLSBFrac;
end else if (`FPSIZES == 4) begin
logic ToFpSticky, ToFpRound, ToFpLSBFrac;
always_comb
case (OutFmt)
2'h3: begin
ToFpSticky = |Shifted[`LGLEN+`Q_NF-`Q_NF-1:0];
ToFpRound = Shifted[`LGLEN+`Q_NF-`Q_NF];
ToFpLSBFrac = Shifted[`LGLEN+`Q_NF-`Q_NF+1];
end
2'h1: begin
ToFpSticky = |Shifted[`LGLEN+`Q_NF-`D_NF-1:0];
ToFpRound = Shifted[`LGLEN+`Q_NF-`D_NF];
ToFpLSBFrac = Shifted[`LGLEN+`Q_NF-`D_NF+1];
end
2'h0: begin
ToFpSticky = |Shifted[`LGLEN+`Q_NF-`S_NF-1:0];
ToFpRound = Shifted[`LGLEN+`Q_NF-`S_NF];
ToFpLSBFrac = Shifted[`LGLEN+`Q_NF-`S_NF+1];
end
2'h2: begin
ToFpSticky = |Shifted[`LGLEN+`Q_NF-`H_NF-1:0];
ToFpRound = Shifted[`LGLEN+`Q_NF-`H_NF];
ToFpLSBFrac = Shifted[`LGLEN+`Q_NF-`H_NF+1];
end
endcase
assign Sticky = ToInt ? |Shifted[`LGLEN+`NF-`XLEN-1:0] : ToFpSticky|ResUf;
assign Round = ToInt ? Shifted[`LGLEN+`NF-`XLEN] : ToFpRound;
assign LSBFrac = ToInt ? Shifted[`LGLEN+`NF-`XLEN+1] : ToFpLSBFrac;
end
always_comb
// Determine if you add 1
case (FrmE)
3'b000: CalcPlus1 = Round & (Sticky | LSBFrac);//round to nearest even
3'b001: CalcPlus1 = 0;//round to zero
3'b010: CalcPlus1 = ResSgn;//round down
3'b011: CalcPlus1 = ~ResSgn;//round up
3'b100: CalcPlus1 = Round;//round to nearest max magnitude
default: CalcPlus1 = 1'bx;
endcase
// dont round if exact
assign Plus1 = CalcPlus1&(Round|Sticky);
// shift the 1 to the propper position for rounding
// - dont round it converting to integer
if (`FPSIZES == 1) begin
assign ShiftedPlus1 = {{`FLEN-1{1'b0}},Plus1&~ToInt};
end else if (`FPSIZES == 2) begin
assign ShiftedPlus1 = OutFmt ? {{`FLEN-1{1'b0}},Plus1&~ToInt} : {{`NE+`NF1{1'b0}}, Plus1&~ToInt, {`FLEN-`NE-`NF1-1{1'b0}}};
end else if (`FPSIZES == 3) begin
always_comb
case (OutFmt)
`FMT: ShiftedPlus1 = {{`FLEN-1{1'b0}},Plus1&~ToInt};
`FMT1: ShiftedPlus1 = {{`NE+`NF1{1'b0}}, Plus1&~ToInt, {`FLEN-`NE-`NF1-1{1'b0}}};
`FMT2: ShiftedPlus1 = {{`NE+`NF2{1'b0}}, Plus1&~ToInt, {`FLEN-`NE-`NF2-1{1'b0}}};
default: ShiftedPlus1 = 0;
endcase
end else if (`FPSIZES == 4) begin
always_comb
case (OutFmt)
2'h3: ShiftedPlus1 = {{`Q_LEN-1{1'b0}},Plus1&~ToInt};
2'h1: ShiftedPlus1 = {{`Q_NE+`D_NF{1'b0}}, Plus1&~ToInt, {`Q_LEN-`Q_NE-`D_NF-1{1'b0}}};
2'h0: ShiftedPlus1 = {{`Q_NE+`S_NF{1'b0}}, Plus1&~ToInt, {`Q_LEN-`Q_NE-`S_NF-1{1'b0}}};
2'h2: ShiftedPlus1 = {{`Q_NE+`H_NF{1'b0}}, Plus1&~ToInt, {`Q_LEN-`Q_NE-`H_NF-1{1'b0}}};
endcase
end
// kill calcExp if the result is denormalized
assign {FullResExp, ResFrac} = {CalcExp&{`NE+1{~ResDenormUf}}, Shifted[`LGLEN+`NF:`LGLEN+`NF+1-`NF]} + ShiftedPlus1;
// trim the result's expoent to size
assign ResExp = FullResExp[`NE-1:0];
///////////////////////////////////////////////////////////////////////////
// flags
///////////////////////////////////////////////////////////////////////////
// calculate the flags
// find the maximum exponent (the exponent and larger overflows)
if (`FPSIZES == 1) begin
assign MaxExp = ToInt ? Int64 ? 65 : 33 : {`NE{1'b1}};
end else if (`FPSIZES == 2) begin
assign MaxExp = ToInt ? Int64 ? 65 : 33 :
OutFmt ? {`NE{1'b1}} : {{`NE-`NE1{1'b0}}, {`NE1{1'b1}}};
end else if (`FPSIZES == 3) begin
logic [`NE-1:0] MaxExpFp;
always_comb
case (OutFmt)
`FMT: begin
MaxExpFp = {`NE{1'b1}};
end
`FMT1: begin
MaxExpFp = {{`NE-`NE1{1'b0}}, {`NE1{1'b1}}};
end
`FMT2: begin
MaxExpFp = {{`NE-`NE2{1'b0}}, {`NE2{1'b1}}};
end
default: begin
MaxExpFp = 1'bx;
end
endcase
assign MaxExp = ToInt ? Int64 ? 65 : 33 : MaxExpFp;
end else if (`FPSIZES == 4) begin
logic [`NE-1:0] MaxExpFp;
always_comb
case (OutFmt)
2'h3: begin
MaxExpFp = {`Q_NE{1'b1}};
end
2'h1: begin
MaxExpFp = {{`Q_NE-`D_NE{1'b0}}, {`D_NE{1'b1}}};
end
2'h0: begin
MaxExpFp = {{`Q_NE-`S_NE{1'b0}}, {`S_NE{1'b1}}};
end
2'h2: begin
MaxExpFp = {{`Q_NE-`H_NE{1'b0}}, {`H_NE{1'b1}}};
end
endcase
assign MaxExp = ToInt ? Int64 ? 65 : 33 : MaxExpFp;
end
// if the result exponent is larger then the maximum possible exponent
// | and the exponent is positive
// | | and the input is not NaN or Infinity
// | | |
assign Overflow = ((ResExp >= MaxExp)&~CalcExp[`NE]&(~(XNaNE|XInfE)|IntToFp));
// if the result is denormalized or underflowed
// | and the result did not round into normal values
// | | and the result is not exact
// | | | and the result isn't NaN
// | | | |
assign Underflow = ResDenormUf & ~(ResExp==1 & CalcExp == 0) & (Sticky|Round)&~(XNaNE);
// we are using the IEEE convertToIntegerExact opperations (rather then the exact ones) which do singal the inexact flag
// if there were bits thrown away
// | if overflowed or underflowed
// | | and if not a NaN
// | | |
assign FpInexact = (Sticky|Round|Underflow|Overflow)&(~XNaNE|IntToFp);
// if the result is too small to be represented and not 0
// | and if the result is not invalid (outside the integer bounds)
// | |
assign IntInexact = ((CalcExp[`NE]&~XZeroE)|Sticky|Round)&~Invalid;
// select the inexact flag to output
assign Inexact = ToInt ? IntInexact : FpInexact;
// if an input was a singaling NaN(and we're using a FP input)
// |
assign FpInvalid = (XSNaNE&~IntToFp);
assign NegResMSBS = Signed ? Int64 ? NegRes[`XLEN:`XLEN-1] : NegRes[32:31] :
Int64 ? NegRes[`XLEN+1:`XLEN] : NegRes[33:32];
// if the input is NaN or infinity
// | if the integer result overflows (out of range)
// | | if the input was negitive but ouputing to a unsigned number
// | | | the result doesn't round to zero
// | | | | or the result rounds up out of bounds
// | | | | and the result didn't underflow
// | | | | |
assign IntInvalid = XNaNE|XInfE|Overflow|((XSgnE&~Signed)&(~((CalcExp[`NE]|(~|CalcExp))&~Plus1)))|(NegResMSBS[1]^NegResMSBS[0]);
// |
// or when the positive result rounds up out of range
// select the inexact flag to output
assign Invalid = ToInt ? IntInvalid : FpInvalid;
// pack the flags together
// - fp -> int does not set the overflow or underflow flags
assign CvtFlgE = {Invalid, 1'b0, Overflow&~ToInt, Underflow&~ToInt, Inexact};
///////////////////////////////////////////////////////////////////////////
// result selection
///////////////////////////////////////////////////////////////////////////
// determine if you shoould kill the result
// - do so if the result underflows, is zero (the exp doesnt calculate correctly). or the integer input is 0
// - dont set to zero if fp input is zero but not using the fp input
// - dont set to zero if int input is zero but not using the int input
assign KillRes = (ResUf|(XZeroE&~IntToFp)|(~|TrimInt&IntToFp));
if (`FPSIZES == 1) begin
// IEEE sends a payload while Riscv says to send a canonical quiet NaN
if(`IEEE754) begin
assign NaNRes = {1'b0, {`NE+1{1'b1}}, XManE[`NF-2:0]};
end else begin
assign NaNRes = {1'b0, {`NE+1{1'b1}}, {`NF-1{1'b0}}};
end
// determine the infinity result
// - if the input was infinity or rounding mode RZ, RU, RD (and not rounding the value) then output the maximum normalized floating point number with the correct sign
// - otherwise: output infinity with the correct sign
// - kill the infinity singal if the input isn't fp
assign InfRes = (~XInfE|IntToFp)&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {ResSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} : {ResSgn, {`NE{1'b1}}, {`NF{1'b0}}};
// result for when the result is killed i.e. underflowes
// - output a rounded 0 with the correct sign
assign UfRes = {ResSgn, (`FLEN-2)'(0), Plus1&FrmE[1]};
// format the result - NaN box single precision (put 1's in the unused msbs)
assign Res = {ResSgn, ResExp, ResFrac};
end else if (`FPSIZES == 2) begin
// IEEE sends a payload while Riscv says to send a canonical quiet NaN
if(`IEEE754) begin
assign NaNRes = OutFmt ? {1'b0, {`NE+1{1'b1}}, XManE[`NF-2:0]} : {{`FLEN-`LEN1{1'b1}}, 1'b0, {`NE1+1{1'b1}}, XManE[`NF-2:`NF-`NF1]};
end else begin
assign NaNRes = OutFmt ? {1'b0, {`NE+1{1'b1}}, {`NF-1{1'b0}}} : {{`FLEN-`LEN1{1'b1}}, 1'b0, {`NE1+1{1'b1}}, {`NF1-1{1'b0}}};
end
// determine the infinity result
// - if the input was infinity or rounding mode RZ, RU, RD (and not rounding the value) then output the maximum normalized floating point number with the correct sign
// - otherwise: output infinity with the correct sign
// - kill the infinity singal if the input isn't fp
assign InfRes = OutFmt ? (~XInfE|IntToFp)&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {ResSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} :
{ResSgn, {`NE{1'b1}}, {`NF{1'b0}}} :
(~XInfE|IntToFp)&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {{`FLEN-`LEN1{1'b1}}, ResSgn, {`NE1-1{1'b1}}, 1'b0, {`NF1{1'b1}}} :
{{`FLEN-`LEN1{1'b1}}, ResSgn, {`NE1{1'b1}}, (`NF1)'(0)};
// result for when the result is killed i.e. underflowes
// - output a rounded 0 with the correct sign
assign UfRes = OutFmt ? {ResSgn, (`FLEN-2)'(0), Plus1&FrmE[1]} : {{`FLEN-`LEN1{1'b1}}, ResSgn, (`LEN1-2)'(0), Plus1&FrmE[1]};
// format the result - NaN box single precision (put 1's in the unused msbs)
assign Res = OutFmt ? {ResSgn, ResExp, ResFrac} : {{`FLEN-`LEN1{1'b1}}, ResSgn, ResExp[`NE1-1:0], ResFrac[`NF-1:`NF-`NF1]};
end else if (`FPSIZES == 3) begin
always_comb
case (OutFmt)
`FMT: begin
// IEEE sends a payload while Riscv says to send a canonical quiet NaN
if(`IEEE754) begin
NaNRes = {1'b0, {`NE+1{1'b1}}, XManE[`NF-2:0]};
end else begin
NaNRes = {1'b0, {`NE+1{1'b1}}, {`NF-1{1'b0}}};
end
// determine the infinity result
// - if the input was infinity or rounding mode RZ, RU, RD (and not rounding the value) then output the maximum normalized floating point number with the correct sign
// - otherwise: output infinity with the correct sign
// - kill the infinity singal if the input isn't fp
InfRes = (~XInfE|IntToFp)&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {ResSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} : {ResSgn, {`NE{1'b1}}, {`NF{1'b0}}};
// result for when the result is killed i.e. underflowes
// - output a rounded 0 with the correct sign
UfRes = {ResSgn, (`FLEN-2)'(0), Plus1&FrmE[1]};
// format the result - NaN box single precision (put 1's in the unused msbs)
Res = {ResSgn, ResExp, ResFrac};
end
`FMT1: begin
// IEEE sends a payload while Riscv says to send a canonical quiet NaN
if(`IEEE754) begin
NaNRes = {{`FLEN-`LEN1{1'b1}}, 1'b0, {`NE1+1{1'b1}}, XManE[`NF-2:`NF-`NF1]};
end else begin
NaNRes = {{`FLEN-`LEN1{1'b1}}, 1'b0, {`NE1+1{1'b1}}, {`NF1-1{1'b0}}};
end
// determine the infinity result
// - if the input was infinity or rounding mode RZ, RU, RD (and not rounding the value) then output the maximum normalized floating point number with the correct sign
// - otherwise: output infinity with the correct sign
// - kill the infinity singal if the input isn't fp
InfRes = (~XInfE|IntToFp)&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {{`FLEN-`LEN1{1'b1}}, ResSgn, {`NE1-1{1'b1}}, 1'b0, {`NF1{1'b1}}} : {{`FLEN-`LEN1{1'b1}}, ResSgn, {`NE1{1'b1}}, (`NF1)'(0)};
// result for when the result is killed i.e. underflowes
// - output a rounded 0 with the correct sign
UfRes = {{`FLEN-`LEN1{1'b1}}, ResSgn, (`LEN1-2)'(0), Plus1&FrmE[1]};
// format the result - NaN box single precision (put 1's in the unused msbs)
Res = {{`FLEN-`LEN1{1'b1}}, ResSgn, ResExp[`NE1-1:0], ResFrac[`NF-1:`NF-`NF1]};
end
`FMT2: begin
// IEEE sends a payload while Riscv says to send a canonical quiet NaN
if(`IEEE754) begin
NaNRes = {{`FLEN-`LEN2{1'b1}}, 1'b0, {`NE2+1{1'b1}}, XManE[`NF-2:`NF-`NF2]};
end else begin
NaNRes = {{`FLEN-`LEN2{1'b1}}, 1'b0, {`NE2+1{1'b1}}, {`NF2-1{1'b0}}};
end
// determine the infinity result
// - if the input was infinity or rounding mode RZ, RU, RD (and not rounding the value) then output the maximum normalized floating point number with the correct sign
// - otherwise: output infinity with the correct sign
// - kill the infinity singal if the input isn't fp
InfRes = (~XInfE|IntToFp)&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {{`FLEN-`LEN2{1'b1}}, ResSgn, {`NE2-1{1'b1}}, 1'b0, {`NF2{1'b1}}} : {{`FLEN-`LEN2{1'b1}}, ResSgn, {`NE2{1'b1}}, (`NF2)'(0)};
// result for when the result is killed i.e. underflowes
// - output a rounded 0 with the correct sign
UfRes = {{`FLEN-`LEN2{1'b1}}, ResSgn, (`LEN2-2)'(0), Plus1&FrmE[1]};
// format the result - NaN box single precision (put 1's in the unused msbs)
Res = {{`FLEN-`LEN2{1'b1}}, ResSgn, ResExp[`NE2-1:0], ResFrac[`NF-1:`NF-`NF2]};
end
default: begin
NaNRes = 1'bx;
InfRes = 1'bx;
UfRes = 1'bx;
Res = 1'bx;
end
endcase
end else if (`FPSIZES == 4) begin
always_comb
case (OutFmt)
2'h3: begin
// IEEE sends a payload while Riscv says to send a canonical quiet NaN
if(`IEEE754) begin
NaNRes = {1'b0, {`Q_NE+1{1'b1}}, XManE[`Q_NF-2:0]};
end else begin
NaNRes = {1'b0, {`Q_NE+1{1'b1}}, {`Q_NF-1{1'b0}}};
end
// determine the infinity result
// - if the input was infinity or rounding mode RZ, RU, RD (and not rounding the value) then output the maximum normalized floating point number with the correct sign
// - otherwise: output infinity with the correct sign
// - kill the infinity singal if the input isn't fp
InfRes = (~XInfE|IntToFp)&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {ResSgn, {`Q_NE-1{1'b1}}, 1'b0, {`Q_NF{1'b1}}} : {ResSgn, {`Q_NE{1'b1}}, {`Q_NF{1'b0}}};
// result for when the result is killed i.e. underflowes
// - output a rounded 0 with the correct sign
UfRes = {ResSgn, (`Q_LEN-2)'(0), Plus1&FrmE[1]};
// format the result - NaN box single precision (put 1's in the unused msbs)
Res = {ResSgn, ResExp, ResFrac};
end
2'h1: begin
// IEEE sends a payload while Riscv says to send a canonical quiet NaN
if(`IEEE754) begin
NaNRes = {{`Q_LEN-`D_LEN{1'b1}}, 1'b0, {`D_NE+1{1'b1}}, XManE[`Q_NF-2:`Q_NF-`D_NF]};
end else begin
NaNRes = {{`Q_LEN-`D_LEN{1'b1}}, 1'b0, {`D_NE+1{1'b1}}, {`D_NF-1{1'b0}}};
end
// determine the infinity result
// - if the input was infinity or rounding mode RZ, RU, RD (and not rounding the value) then output the maximum normalized floating point number with the correct sign
// - otherwise: output infinity with the correct sign
// - kill the infinity singal if the input isn't fp
InfRes = (~XInfE|IntToFp)&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {{`Q_LEN-`D_LEN{1'b1}}, ResSgn, {`D_NE-1{1'b1}}, 1'b0, {`D_NF{1'b1}}} : {{`Q_LEN-`D_LEN{1'b1}}, ResSgn, {`D_NE{1'b1}}, (`D_NF)'(0)};
// result for when the result is killed i.e. underflowes
// - output a rounded 0 with the correct sign
UfRes = {{`Q_LEN-`D_LEN{1'b1}}, ResSgn, (`D_LEN-2)'(0), Plus1&FrmE[1]};
// format the result - NaN box single precision (put 1's in the unused msbs)
Res = {{`Q_LEN-`D_LEN{1'b1}}, ResSgn, ResExp[`D_NE-1:0], ResFrac[`Q_NF-1:`Q_NF-`D_NF]};
end
2'h0: begin
// IEEE sends a payload while Riscv says to send a canonical quiet NaN
if(`IEEE754) begin
NaNRes = {{`Q_LEN-`S_LEN{1'b1}}, 1'b0, {`S_NE+1{1'b1}}, XManE[`Q_NF-2:`Q_NF-`S_NF]};
end else begin
NaNRes = {{`Q_LEN-`S_LEN{1'b1}}, 1'b0, {`S_NE+1{1'b1}}, {`S_NF-1{1'b0}}};
end
// determine the infinity result
// - if the input was infinity or rounding mode RZ, RU, RD (and not rounding the value) then output the maximum normalized floating point number with the correct sign
// - otherwise: output infinity with the correct sign
// - kill the infinity singal if the input isn't fp
InfRes = (~XInfE|IntToFp)&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {{`Q_LEN-`S_LEN{1'b1}}, ResSgn, {`S_NE-1{1'b1}}, 1'b0, {`S_NF{1'b1}}} : {{`Q_LEN-`S_LEN{1'b1}}, ResSgn, {`S_NE{1'b1}}, (`S_NF)'(0)};
// result for when the result is killed i.e. underflowes
// - output a rounded 0 with the correct sign
UfRes = {{`Q_LEN-`S_LEN{1'b1}}, ResSgn, (`S_LEN-2)'(0), Plus1&FrmE[1]};
// format the result - NaN box single precision (put 1's in the unused msbs)
Res = {{`Q_LEN-`S_LEN{1'b1}}, ResSgn, ResExp[`S_NE-1:0], ResFrac[`Q_NF-1:`Q_NF-`S_NF]};
end
2'h2: begin
// IEEE sends a payload while Riscv says to send a canonical quiet NaN
if(`IEEE754) begin
NaNRes = {{`Q_LEN-`H_LEN{1'b1}}, 1'b0, {`H_NE+1{1'b1}}, XManE[`Q_NF-2:`Q_NF-`H_NF]};
end else begin
NaNRes = {{`Q_LEN-`H_LEN{1'b1}}, 1'b0, {`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}};
end
// determine the infinity result
// - if the input overflows in rounding mode RZ, RU, RD (and not rounding the value) then output the maximum normalized floating point number with the correct sign
// - otherwise: output infinity with the correct sign
// - kill the infinity singal if the input isn't fp
InfRes = (~XInfE|IntToFp)&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {{`Q_LEN-`H_LEN{1'b1}}, ResSgn, {`H_NE-1{1'b1}}, 1'b0, {`H_NF{1'b1}}} : {{`Q_LEN-`H_LEN{1'b1}}, ResSgn, {`H_NE{1'b1}}, (`H_NF)'(0)};
// result for when the result is killed i.e. underflowes
// - output a rounded 0 with the correct sign
UfRes = {{`Q_LEN-`H_LEN{1'b1}}, ResSgn, (`H_LEN-2)'(0), Plus1&FrmE[1]};
// format the result - NaN box single precision (put 1's in the unused msbs)
Res = {{`Q_LEN-`H_LEN{1'b1}}, ResSgn, ResExp[`H_NE-1:0], ResFrac[`Q_NF-1:`Q_NF-`H_NF]};
end
endcase
end
// choose the floating point result
// - if the input is NaN (and using the NaN input) output the NaN result
// - if the input is infinity or the output overflows
// - kill the InfE signal if the input isn't a floating point value
// - if killing the result output the underflow result
// - otherwise output the normal result
assign CvtResE = XNaNE&~IntToFp ? NaNRes :
(XInfE&~IntToFp)|Overflow ? InfRes :
KillRes ? UfRes :
Res;
// *** probably can optimize the negation
// select the overflow integer result
// - negitive infinity and out of range negitive input
// | int | long |
// signed | -2^31 | -2^63 |
// unsigned | 0 | 0 |
//
// - positive infinity and out of range negitive input and NaNs
// | int | long |
// signed | 2^31-1 | 2^63-1 |
// unsigned | 2^32-1 | 2^64-1 |
//
// other: 32 bit unsinged result should be sign extended as if it were a signed number
assign OfIntRes = Signed ? XSgnE&~XNaNE ? Int64 ? {1'b1, {`XLEN-1{1'b0}}} : {{`XLEN-32{1'b1}}, 1'b1, {31{1'b0}}} : // signed negitive
Int64 ? {1'b0, {`XLEN-1{1'b1}}} : {{`XLEN-32{1'b0}}, 1'b0, {31{1'b1}}} : // signed positive
XSgnE&~XNaNE ? {`XLEN{1'b0}} : // unsigned negitive
{`XLEN{1'b1}};// unsigned positive
// round and negate the positive result if needed
assign NegRes = XSgnE ? -({2'b0, Shifted[`LGLEN+`NF:`LGLEN+`NF+1-`XLEN]}+{{`XLEN+1{1'b0}}, Plus1}) : {2'b0, Shifted[`LGLEN+`NF:`LGLEN+`NF+1-`XLEN]}+{{`XLEN+1{1'b0}}, Plus1};
// select the integer output
// - if the input is invalid (out of bounds NaN or Inf) then output overflow result
// - if the input underflows
// - if rounding and signed opperation and negitive input, output -1
// - otherwise output a rounded 0
// - otherwise output the normal result (trmined and sign extended if nessisary)
assign CvtIntResE = Invalid ? OfIntRes :
CalcExp[`NE] ? XSgnE&Signed&Plus1 ? {{`XLEN{1'b1}}} : {{`XLEN-1{1'b0}}, Plus1} : //CalcExp has to come after invalid ***swap to actual mux at some point??
Int64 ? NegRes[`XLEN-1:0] : {{`XLEN-32{NegRes[31]}}, NegRes[31:0]};
endmodule