cvw/pipelined/src/uncore/gpio.sv
2022-01-07 12:58:40 +00:00

161 lines
6.0 KiB
Systemverilog

///////////////////////////////////////////
// gpio.sv
//
// Written: David_Harris@hmc.edu 14 January 2021
// Modified: bbracker@hmc.edu 15 Apr. 2021
//
// Purpose: General Purpose I/O peripheral
// See FE310-G002-Manual-v19p05 for specifications
// No interrupts, drive strength, or pull-ups supported
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module gpio (
input logic HCLK, HRESETn,
input logic HSELGPIO,
input logic [7:0] HADDR,
input logic [`XLEN-1:0] HWDATA,
input logic HWRITE,
input logic HREADY,
input logic [1:0] HTRANS,
output logic [`XLEN-1:0] HREADGPIO,
output logic HRESPGPIO, HREADYGPIO,
input logic [31:0] GPIOPinsIn,
output logic [31:0] GPIOPinsOut, GPIOPinsEn,
output logic GPIOIntr);
logic [31:0] input0d, input1d, input2d, input3d;
logic [31:0] input_val, input_en, output_en, output_val;
logic [31:0] rise_ie, rise_ip, fall_ie, fall_ip, high_ie, high_ip, low_ie, low_ip;
logic initTrans, memwrite;
logic [7:0] entry, entryd;
logic [31:0] Din, Dout;
// AHB I/O
assign entry = {HADDR[7:2],2'b0};
assign initTrans = HREADY & HSELGPIO & (HTRANS != 2'b00);
// entryd and memwrite are delayed by a cycle because AHB controller waits a cycle before outputting write data
flopr #(1) memwriteflop(HCLK, ~HRESETn, initTrans & HWRITE, memwrite);
flopr #(8) entrydflop(HCLK, ~HRESETn, entry, entryd);
assign HRESPGPIO = 0; // OK
assign HREADYGPIO = 1'b1; // GPIO never takes >1 cycle to respond
// account for subword read/write circuitry
// -- Note GPIO registers are 32 bits no matter what; access them with LW SW.
// (At least that's what I think when FE310 spec says "only naturally aligned 32-bit accesses are supported")
if (`XLEN == 64) begin
assign Din = entryd[2] ? HWDATA[63:32] : HWDATA[31:0];
assign HREADGPIO = entryd[2] ? {Dout,32'b0} : {32'b0,Dout};
end else begin // 32-bit
assign Din = HWDATA[31:0];
assign HREADGPIO = Dout;
end
// register access
always_ff @(posedge HCLK, negedge HRESETn) begin
// writes
if (~HRESETn) begin
// asynch reset
input_en <= 0;
output_en <= 0;
// *** synch reset not yet implemented
output_val <= #1 0;
rise_ie <= #1 0;
rise_ip <= #1 0;
fall_ie <= #1 0;
fall_ip <= #1 0;
high_ie <= #1 0;
high_ip <= #1 0;
low_ie <= #1 0;
low_ip <= #1 0;
end else begin
// writes
if (memwrite)
// According to FE310 spec: Once the interrupt is pending, it will remain set until a 1 is written to the *_ip register at that bit.
/* verilator lint_off CASEINCOMPLETE */
case(entryd)
8'h04: input_en <= #1 Din;
8'h08: output_en <= #1 Din;
8'h0C: output_val <= #1 Din;
8'h18: rise_ie <= #1 Din;
8'h20: fall_ie <= #1 Din;
8'h28: high_ie <= #1 Din;
8'h30: low_ie <= #1 Din;
8'h40: output_val <= #1 output_val ^ Din; // OUT_XOR
endcase
/* verilator lint_on CASEINCOMPLETE */
// reads
case(entry)
8'h00: Dout <= #1 input_val;
8'h04: Dout <= #1 input_en;
8'h08: Dout <= #1 output_en;
8'h0C: Dout <= #1 output_val;
8'h18: Dout <= #1 rise_ie;
8'h1C: Dout <= #1 rise_ip;
8'h20: Dout <= #1 fall_ie;
8'h24: Dout <= #1 fall_ip;
8'h28: Dout <= #1 high_ie;
8'h2C: Dout <= #1 high_ip;
8'h30: Dout <= #1 low_ie;
8'h34: Dout <= #1 low_ip;
8'h40: Dout <= #1 0; // OUT_XOR reads as 0
default: Dout <= #1 0;
endcase
// interrupts
if (memwrite & (entryd == 8'h1C))
rise_ip <= rise_ip & ~Din;
else
rise_ip <= rise_ip | (input2d & ~input3d);
if (memwrite & (entryd == 8'h24))
fall_ip <= fall_ip & ~Din;
else
fall_ip <= fall_ip | (~input2d & input3d);
if (memwrite & (entryd == 8'h2C))
high_ip <= high_ip & ~Din;
else
high_ip <= high_ip | input3d;
if (memwrite & (entryd == 8'h34))
low_ip <= low_ip & ~Din;
else
low_ip <= low_ip | ~input3d;
end
end
// chip i/o
// connect OUT to IN for loopback testing
if (`GPIO_LOOPBACK_TEST) assign input0d = GPIOPinsOut & input_en & output_en;
else assign input0d = GPIOPinsIn & input_en;
flop #(32) sync1(HCLK,input0d,input1d);
flop #(32) sync2(HCLK,input1d,input2d);
flop #(32) sync3(HCLK,input2d,input3d);
assign input_val = input3d;
assign GPIOPinsOut = output_val;
assign GPIOPinsEn = output_en;
assign GPIOIntr = |{(rise_ip & rise_ie),(fall_ip & fall_ie),(high_ip & high_ie),(low_ip & low_ie)};
endmodule