cvw/pipelined/srt/srt-radix4.sv
2022-06-23 22:36:19 +00:00

367 lines
12 KiB
Systemverilog

///////////////////////////////////////////
// srt.sv
//
// Written: David_Harris@hmc.edu 13 January 2022
// Modified:
//
// Purpose: Combined Divide and Square Root Floating Point and Integer Unit
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module srtradix4 (
input logic clk,
input logic DivStart,
input logic [`NE-1:0] XExpE, YExpE,
input logic [`NF:0] XManE, YManE,
input logic [`XLEN-1:0] SrcA, SrcB,
input logic XZeroE,
input logic W64, // 32-bit ints on XLEN=64
input logic Signed, // Interpret integers as signed 2's complement
input logic Int, // Choose integer inputs
input logic Sqrt, // perform square root, not divide
output logic DivDone,
output logic [`DIVLEN+2:0] Quot,
output logic [`XLEN-1:0] Rem, // *** later handle integers
output logic [`NE:0] DivCalcExpE
);
// logic qp, qz, qm; // quotient is +1, 0, or -1
logic [3:0] q;
logic [`NE:0] DivCalcExp;
logic [`DIVLEN:0] X;
logic [`DIVLEN-1:0] Dpreproc;
logic [`DIVLEN+3:0] WS, WSA, WSN;
logic [`DIVLEN+3:0] WC, WCA, WCN;
logic [`DIVLEN+3:0] D, DBar, D2, DBar2, Dsel;
logic [$clog2(`XLEN+1)-1:0] intExp;
logic intSign;
srtpreproc preproc(SrcA, SrcB, XManE, YManE, W64, Signed, Int, Sqrt, X, Dpreproc, intExp, intSign);
// Top Muxes and Registers
// When start is asserted, the inputs are loaded into the divider.
// Otherwise, the divisor is retained and the partial remainder
// is fed back for the next iteration.
// - assumed one is added here since all numbers are normlaized
// *** wait what about zero? is that specal case? can the divider handle it?
// - when the start signal is asserted X and 0 are loaded into WS and WC
// - otherwise load WSA into the flipflop
// *** what does N and A stand for?
// *** change shift amount for radix4
mux2 #(`DIVLEN+4) wsmux({WSA[`DIVLEN+1:0], 2'b0}, {3'b000, X}, DivStart, WSN);
flop #(`DIVLEN+4) wsflop(clk, WSN, WS);
mux2 #(`DIVLEN+4) wcmux({WCA[`DIVLEN+1:0], 2'b0}, {`DIVLEN+4{1'b0}}, DivStart, WCN);
flop #(`DIVLEN+4) wcflop(clk, WCN, WC);
flopen #(`DIVLEN+4) dflop(clk, DivStart, {4'b0001, Dpreproc}, D);
// Quotient Selection logic
// Given partial remainder, select quotient of +1, 0, or -1 (qp, qz, pm)
// *** change this for radix 4 - generate w/ stine code
// q encoding:
// 1000 = +2
// 0100 = +1
// 0000 = 0
// 0010 = -1
// 0001 = -2
qsel4 qsel4(.D, .WS, .WC, .q);
// Store the expoenent and sign until division is DivDone
flopen #(`NE+1) expflop(clk, DivStart, DivCalcExp, DivCalcExpE);
// Divisor Selection logic
// *** radix 4 change to choose -2 to 2
// - choose the negitive version of what's being selected
assign DBar = ~D;
assign DBar2 = {~D[`DIVLEN+2:0], 1'b1};
assign D2 = {D[`DIVLEN+2:0], 1'b0};
always_comb
case (q)
4'b1000: Dsel = DBar2;
4'b0100: Dsel = DBar;
4'b0000: Dsel = {(`DIVLEN+4){1'b0}};
4'b0010: Dsel = D;
4'b0001: Dsel = D2;
default: Dsel = {`DIVLEN+4{1'bx}};
endcase
// Partial Product Generation
// WSA, WCA = WS + WC - qD
csa #(`DIVLEN+4) csa(WS, WC, Dsel, |q[3:2], WSA, WCA);
//*** change for radix 4
otfc4 otfc4(.clk, .DivStart, .q, .Quot);
expcalc expcalc(.XExpE, .YExpE, .XZeroE, .DivCalcExp);
divcounter divcounter(clk, DivStart, DivDone);
endmodule
////////////////
// Submodules //
////////////////
/////////////
// counter //
/////////////
module divcounter(input logic clk,
input logic DivStart,
output logic DivDone);
logic [5:0] count;
// This block of control logic sequences the divider
// through its iterations. You may modify it if you
// build a divider which completes in fewer iterations.
// You are not responsible for the (trivial) circuit
// design of the block.
always @(posedge clk)
begin
DivDone = 0;
if (count == `DIVLEN/2+1) DivDone <= #1 1;
else if (DivDone | DivStart) DivDone <= #1 0;
if (DivStart) count <= #1 0;
else count <= #1 count+1;
end
endmodule
module qsel4 (
input logic [`DIVLEN+3:0] D,
input logic [`DIVLEN+3:0] WS, WC,
output logic [3:0] q
);
logic [6:0] Wmsbs;
logic [7:0] PreWmsbs;
logic [2:0] Dmsbs;
assign PreWmsbs = WC[`DIVLEN+3:`DIVLEN-4] + WS[`DIVLEN+3:`DIVLEN-4];
assign Wmsbs = PreWmsbs[7:1];
assign Dmsbs = D[`DIVLEN-1:`DIVLEN-3];
// D = 0001.xxx...
// Dmsbs = | |
// W = xxxx.xxx...
// Wmsbs = | |
logic [3:0] QSel4[1023:0];
initial begin
integer d, w, i, w2;
for(d=0; d<8; d++)
for(w=0; w<128; w++)begin
i = d*128+w;
w2 = w-128*(w>=64); // convert to two's complement
case(d)
0: if($signed(w2)>=$signed(12)) QSel4[i] = 4'b1000;
else if(w2>=4) QSel4[i] = 4'b0100;
else if(w2>=-4) QSel4[i] = 4'b0000;
else if(w2>=-13) QSel4[i] = 4'b0010;
else QSel4[i] = 4'b0001;
1: if(w2>=14) QSel4[i] = 4'b1000;
else if(w2>=4) QSel4[i] = 4'b0100;
else if(w2>=-6) QSel4[i] = 4'b0000;
else if(w2>=-15) QSel4[i] = 4'b0010;
else QSel4[i] = 4'b0001;
2: if(w2>=15) QSel4[i] = 4'b1000;
else if(w2>=4) QSel4[i] = 4'b0100;
else if(w2>=-6) QSel4[i] = 4'b0000;
else if(w2>=-16) QSel4[i] = 4'b0010;
else QSel4[i] = 4'b0001;
3: if(w2>=16) QSel4[i] = 4'b1000;
else if(w2>=4) QSel4[i] = 4'b0100;
else if(w2>=-6) QSel4[i] = 4'b0000;
else if(w2>=-18) QSel4[i] = 4'b0010;
else QSel4[i] = 4'b0001;
4: if(w2>=18) QSel4[i] = 4'b1000;
else if(w2>=6) QSel4[i] = 4'b0100;
else if(w2>=-8) QSel4[i] = 4'b0000;
else if(w2>=-20) QSel4[i] = 4'b0010;
else QSel4[i] = 4'b0001;
5: if(w2>=20) QSel4[i] = 4'b1000;
else if(w2>=6) QSel4[i] = 4'b0100;
else if(w2>=-8) QSel4[i] = 4'b0000;
else if(w2>=-20) QSel4[i] = 4'b0010;
else QSel4[i] = 4'b0001;
6: if(w2>=20) QSel4[i] = 4'b1000;
else if(w2>=8) QSel4[i] = 4'b0100;
else if(w2>=-8) QSel4[i] = 4'b0000;
else if(w2>=-22) QSel4[i] = 4'b0010;
else QSel4[i] = 4'b0001;
7: if(w2>=24) QSel4[i] = 4'b1000;
else if(w2>=8) QSel4[i] = 4'b0100;
else if(w2>=-8) QSel4[i] = 4'b0000;
else if(w2>=-24) QSel4[i] = 4'b0010;
else QSel4[i] = 4'b0001;
endcase
end
end
assign q = QSel4[{Dmsbs,Wmsbs}];
endmodule
///////////////////
// Preprocessing //
///////////////////
module srtpreproc (
input logic [`XLEN-1:0] SrcA, SrcB,
input logic [`NF:0] XManE, YManE,
input logic W64, // 32-bit ints on XLEN=64
input logic Signed, // Interpret integers as signed 2's complement
input logic Int, // Choose integer inputs
input logic Sqrt, // perform square root, not divide
output logic [`DIVLEN:0] X,
output logic [`DIVLEN-1:0] Dpreproc,
output logic [$clog2(`XLEN+1)-1:0] intExp, // Quotient integer exponent
output logic intSign // Quotient integer sign
);
// logic [$clog2(`XLEN+1)-1:0] zeroCntA, zeroCntB;
// logic [`XLEN-1:0] PosA, PosB;
// logic [`DIVLEN-1:0] ExtraA, ExtraB, PreprocA, PreprocB, PreprocX, PreprocY;
logic [`DIVLEN:0] PreprocA, PreprocX;
logic [`DIVLEN-1:0] PreprocB, PreprocY;
// assign PosA = (Signed & SrcA[`XLEN - 1]) ? -SrcA : SrcA;
// assign PosB = (Signed & SrcB[`XLEN - 1]) ? -SrcB : SrcB;
// lzc #(`XLEN) lzcA (PosA, zeroCntA);
// lzc #(`XLEN) lzcB (PosB, zeroCntB);
// assign ExtraA = {PosA, {`DIVLEN-`XLEN{1'b0}}};
// assign ExtraB = {PosB, {`DIVLEN-`XLEN{1'b0}}};
// assign PreprocA = ExtraA << zeroCntA;
// assign PreprocB = ExtraB << (zeroCntB + 1);
assign PreprocX = {XManE, {`DIVLEN-`NF{1'b0}}};
assign PreprocY = {YManE[`NF-1:0], {`DIVLEN-`NF{1'b0}}};
assign X = Int ? PreprocA : PreprocX;
assign Dpreproc = Int ? PreprocB : PreprocY;
// assign intExp = zeroCntB - zeroCntA + 1;
// assign intSign = Signed & (SrcA[`XLEN - 1] ^ SrcB[`XLEN - 1]);
endmodule
///////////////////////////////////
// On-The-Fly Converter, Radix 2 //
///////////////////////////////////
module otfc4 (
input logic clk,
input logic DivStart,
input logic [3:0] q,
output logic [`DIVLEN+2:0] Quot
);
// The on-the-fly converter transfers the quotient
// bits to the quotient as they come.
//
// This code follows the psuedocode presented in the
// floating point chapter of the book. Right now,
// it is written for Radix-4 division.
//
// QM is Q-1. It allows us to write negative bits
// without using a costly CPA.
logic [`DIVLEN+2:0] QM, QNext, QMNext, QMux, QMMux;
// QR and QMR are the shifted versions of Q and QM.
// They are treated as [N-1:r] size signals, and
// discard the r most significant bits of Q and QM.
logic [`DIVLEN:0] QR, QMR;
// if starting a new divison set Q to 0 and QM to -1
mux2 #(`DIVLEN+3) Qmux(QNext, {`DIVLEN+3{1'b0}}, DivStart, QMux);
mux2 #(`DIVLEN+3) QMmux(QMNext, {`DIVLEN+3{1'b1}}, DivStart, QMMux);
flop #(`DIVLEN+3) Qreg(clk, QMux, Quot);
flop #(`DIVLEN+3) QMreg(clk, QMMux, QM);
// shift Q (quotent) and QM (quotent-1)
// if q = 2 Q = {Q, 10} QM = {Q, 01}
// else if q = 1 Q = {Q, 01} QM = {Q, 00}
// else if q = 0 Q = {Q, 00} QM = {QM, 11}
// else if q = -1 Q = {QM, 11} QM = {QM, 10}
// else if q = -2 Q = {QM, 10} QM = {QM, 01}
// *** how does the 0 concatination numbers work?
always_comb begin
QR = Quot[`DIVLEN:0];
QMR = QM[`DIVLEN:0]; // Shift Q and QM
if (q[3]) begin // +2
QNext = {QR, 2'b10};
QMNext = {QR, 2'b01};
end else if (q[2]) begin // +1
QNext = {QR, 2'b01};
QMNext = {QR, 2'b00};
end else if (q[1]) begin // -1
QNext = {QMR, 2'b11};
QMNext = {QMR, 2'b10};
end else if (q[0]) begin // -2
QNext = {QMR, 2'b10};
QMNext = {QMR, 2'b01};
end else begin // 0
QNext = {QR, 2'b00};
QMNext = {QMR, 2'b11};
end
end
// Quot is in the range [.5, 2) so normalize the result if nesissary
// assign Quot = Q[`DIVLEN+2] ? Q[`DIVLEN+1:2] : Q[`DIVLEN:1];
endmodule
/////////
// csa //
/////////
module csa #(parameter N=69) (
input logic [N-1:0] in1, in2, in3,
input logic cin,
output logic [N-1:0] out1, out2
);
// This block adds in1, in2, in3, and cin to produce
// a result out1 / out2 in carry-save redundant form.
// cin is just added to the least significant bit and
// is Startuired to handle adding a negative divisor.
// Fortunately, the carry (out2) is shifted left by one
// bit, leaving room in the least significant bit to
// insert cin.
assign #1 out1 = in1 ^ in2 ^ in3;
assign #1 out2 = {in1[N-2:0] & (in2[N-2:0] | in3[N-2:0]) |
(in2[N-2:0] & in3[N-2:0]), cin};
endmodule
//////////////
// expcalc //
//////////////
module expcalc(
input logic [`NE-1:0] XExpE, YExpE,
input logic XZeroE,
output logic [`NE:0] DivCalcExp
);
assign DivCalcExp = (XExpE - YExpE + (`NE)'(`BIAS))&{`NE+1{~XZeroE}};
endmodule