mmu cleanup

This commit is contained in:
David Harris 2023-01-14 18:14:38 -08:00
parent 7c5548a39c
commit ee1b4fe221
16 changed files with 194 additions and 166 deletions

View File

@ -6,6 +6,8 @@
//
// Purpose: Address decoder
//
// Documentation: RISC-V System on Chip Design Chapter 8
//
// A component of the CORE-V-WALLY configurable RISC-V project.
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University

View File

@ -6,6 +6,8 @@
//
// Purpose: All the address decoders for peripherals
//
// Documentation: RISC-V System on Chip Design Chapter 8
//
// A component of the CORE-V-WALLY configurable RISC-V project.
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
@ -31,7 +33,7 @@ module adrdecs (
input logic [`PA_BITS-1:0] PhysicalAddress,
input logic AccessRW, AccessRX, AccessRWX,
input logic [1:0] Size,
output logic [10:0] SelRegions
output logic [10:0] SelRegions
);
localparam logic [3:0] SUPPORTED_SIZE = (`LLEN == 32 ? 4'b0111 : 4'b1111);

View File

@ -8,8 +8,9 @@
// adding support for terapage encoding, and for setting the HPTWAdr using the new level,
// adding the internal SvMode signal
//
// Purpose: Page Table Walker
// Part of the Memory Management Unit (MMU)
// Purpose: Hardware Page Table Walker
//
// Documentation: RISC-V System on Chip Design Chapter 8
//
// A component of the CORE-V-WALLY configurable RISC-V project.
//
@ -31,39 +32,39 @@
`include "wally-config.vh"
module hptw (
input logic clk, reset,
input logic [`XLEN-1:0] SATP_REGW, // includes SATP.MODE to determine number of levels in page table
input logic [`XLEN-1:0] PCF, // addresses to translate
input logic [`XLEN+1:0] IEUAdrExtM, // addresses to translate
input logic [1:0] MemRWM, AtomicM,
// system status
input logic STATUS_MXR, STATUS_SUM, STATUS_MPRV,
input logic [1:0] STATUS_MPP,
input logic [1:0] PrivilegeModeW,
input logic [`XLEN-1:0] ReadDataM, // page table entry from LSU
input logic [`XLEN-1:0] WriteDataM,
input logic DCacheStallW, // stall from LSU
input logic [2:0] Funct3M,
input logic [6:0] Funct7M,
input logic ITLBMissF,
input logic DTLBMissM,
input logic FlushW,
input logic InstrDAPageFaultF,
input logic DataDAPageFaultM,
output logic [`XLEN-1:0] PTE, // page table entry to TLBs
output logic [1:0] PageType, // page type to TLBs
(* mark_debug = "true" *) output logic ITLBWriteF, DTLBWriteM, // write TLB with new entry
output logic [1:0] PreLSURWM,
output logic [`XLEN+1:0] IHAdrM,
output logic [`XLEN-1:0] IHWriteDataM,
output logic [1:0] LSUAtomicM,
output logic [2:0] LSUFunct3M,
output logic [6:0] LSUFunct7M,
output logic IgnoreRequestTLB,
output logic SelHPTW,
output logic HPTWStall,
input logic LSULoadAccessFaultM, LSUStoreAmoAccessFaultM,
output logic LoadAccessFaultM, StoreAmoAccessFaultM, HPTWInstrAccessFaultM
input logic clk, reset,
input logic [`XLEN-1:0] SATP_REGW, // includes SATP.MODE to determine number of levels in page table
input logic [`XLEN-1:0] PCF, // addresses to translate
input logic [`XLEN+1:0] IEUAdrExtM, // addresses to translate
input logic [1:0] MemRWM, AtomicM,
// system status
input logic STATUS_MXR, STATUS_SUM, STATUS_MPRV,
input logic [1:0] STATUS_MPP,
input logic [1:0] PrivilegeModeW,
input logic [`XLEN-1:0] ReadDataM, // page table entry from LSU
input logic [`XLEN-1:0] WriteDataM,
input logic DCacheStallW, // stall from LSU
input logic [2:0] Funct3M,
input logic [6:0] Funct7M,
input logic ITLBMissF,
input logic DTLBMissM,
input logic FlushW,
input logic InstrDAPageFaultF,
input logic DataDAPageFaultM,
output logic [`XLEN-1:0] PTE, // page table entry to TLBs
output logic [1:0] PageType, // page type to TLBs
(* mark_debug = "true" *) output logic ITLBWriteF, DTLBWriteM, // write TLB with new entry
output logic [1:0] PreLSURWM,
output logic [`XLEN+1:0] IHAdrM,
output logic [`XLEN-1:0] IHWriteDataM,
output logic [1:0] LSUAtomicM,
output logic [2:0] LSUFunct3M,
output logic [6:0] LSUFunct7M,
output logic IgnoreRequestTLB,
output logic SelHPTW,
output logic HPTWStall,
input logic LSULoadAccessFaultM, LSUStoreAmoAccessFaultM,
output logic LoadAccessFaultM, StoreAmoAccessFaultM, HPTWInstrAccessFaultM
);
typedef enum logic [3:0] {L0_ADR, L0_RD,
@ -72,37 +73,35 @@ module hptw (
L3_ADR, L3_RD,
LEAF, IDLE, UPDATE_PTE} statetype;
logic DTLBWalk; // register TLBs translation miss requests
logic [`PPN_BITS-1:0] BasePageTablePPN;
logic [`PPN_BITS-1:0] CurrentPPN;
logic Executable, Writable, Readable, Valid, PTE_U;
logic Misaligned, MegapageMisaligned;
logic ValidPTE, LeafPTE, ValidLeafPTE, ValidNonLeafPTE;
logic StartWalk;
logic TLBMiss;
logic PRegEn;
logic [1:0] NextPageType;
logic [`SVMODE_BITS-1:0] SvMode;
logic [`XLEN-1:0] TranslationVAdr;
logic [`XLEN-1:0] NextPTE;
logic UpdatePTE;
logic DAPageFault;
logic [`PA_BITS-1:0] HPTWReadAdr;
logic SelHPTWAdr;
logic DTLBWalk; // register TLBs translation miss requests
logic [`PPN_BITS-1:0] BasePageTablePPN;
logic [`PPN_BITS-1:0] CurrentPPN;
logic Executable, Writable, Readable, Valid, PTE_U;
logic Misaligned, MegapageMisaligned;
logic ValidPTE, LeafPTE, ValidLeafPTE, ValidNonLeafPTE;
logic StartWalk;
logic TLBMiss;
logic PRegEn;
logic [1:0] NextPageType;
logic [`SVMODE_BITS-1:0] SvMode;
logic [`XLEN-1:0] TranslationVAdr;
logic [`XLEN-1:0] NextPTE;
logic UpdatePTE;
logic DAPageFault;
logic [`PA_BITS-1:0] HPTWReadAdr;
logic SelHPTWAdr;
logic [`XLEN+1:0] HPTWAdrExt;
logic ITLBMissOrDAFaultF;
logic DTLBMissOrDAFaultM;
logic [`PA_BITS-1:0] HPTWAdr;
logic [1:0] HPTWRW;
logic [2:0] HPTWSize; // 32 or 64 bit access.
(* mark_debug = "true" *) statetype WalkerState, NextWalkerState, InitialWalkerState;
logic [2:0] HPTWSize; // 32 or 64 bit access
(* mark_debug = "true" *) statetype WalkerState, NextWalkerState, InitialWalkerState;
// map hptw access faults onto either the original LSU load/store fault or instruction access fault
assign LoadAccessFaultM = WalkerState == IDLE ? LSULoadAccessFaultM : (LSULoadAccessFaultM | LSUStoreAmoAccessFaultM) & DTLBWalk & MemRWM[1] & ~MemRWM[0];
assign StoreAmoAccessFaultM = WalkerState == IDLE ? LSUStoreAmoAccessFaultM : (LSULoadAccessFaultM | LSUStoreAmoAccessFaultM) & DTLBWalk & MemRWM[0];
assign LoadAccessFaultM = WalkerState == IDLE ? LSULoadAccessFaultM : (LSULoadAccessFaultM | LSUStoreAmoAccessFaultM) & DTLBWalk & MemRWM[1] & ~MemRWM[0];
assign StoreAmoAccessFaultM = WalkerState == IDLE ? LSUStoreAmoAccessFaultM : (LSULoadAccessFaultM | LSUStoreAmoAccessFaultM) & DTLBWalk & MemRWM[0];
assign HPTWInstrAccessFaultM = WalkerState == IDLE ? 1'b0: (LSUStoreAmoAccessFaultM | LSULoadAccessFaultM) & ~DTLBWalk;
// Extract bits from CSRs and inputs
@ -112,7 +111,6 @@ module hptw (
// Determine which address to translate
mux2 #(`XLEN) vadrmux(PCF, IEUAdrExtM[`XLEN-1:0], DTLBWalk, TranslationVAdr);
//assign TranslationVAdr = DTLBWalk ? IEUAdrExtM[`XLEN-1:0] : PCF;
assign CurrentPPN = PTE[`PPN_BITS+9:10];
// State flops
@ -120,7 +118,6 @@ module hptw (
assign PRegEn = HPTWRW[1] & ~DCacheStallW | UpdatePTE;
flopenr #(`XLEN) PTEReg(clk, reset, PRegEn, NextPTE, PTE); // Capture page table entry from data cache
// Assign PTE descriptors common across all XLEN values
// For non-leaf PTEs, D, A, U bits are reserved and ignored. They do not cause faults while walking the page table
assign {PTE_U, Executable, Writable, Readable, Valid} = PTE[4:0];
@ -130,7 +127,6 @@ module hptw (
assign ValidNonLeafPTE = ValidPTE & ~LeafPTE;
if(`HPTW_WRITES_SUPPORTED) begin : hptwwrites
logic ReadAccess, WriteAccess;
logic InvalidRead, InvalidWrite;
logic UpperBitsUnequalPageFault;
@ -141,10 +137,10 @@ module hptw (
logic [`PA_BITS-1:0] HPTWWriteAdr;
logic SetDirty;
logic Dirty, Accessed;
logic [`XLEN-1:0] AccessedPTE;
logic [`XLEN-1:0] AccessedPTE;
assign AccessedPTE = {PTE[`XLEN-1:8], (SetDirty | PTE[7]), 1'b1, PTE[5:0]}; // set accessed bit, conditionally set dirty bit
mux2 #(`XLEN) NextPTEMux(ReadDataM, AccessedPTE, UpdatePTE, NextPTE);
assign AccessedPTE = {PTE[`XLEN-1:8], (SetDirty | PTE[7]), 1'b1, PTE[5:0]}; // set accessed bit, conditionally set dirty bit
mux2 #(`XLEN) NextPTEMux(ReadDataM, AccessedPTE, UpdatePTE, NextPTE);
flopenr #(`PA_BITS) HPTWAdrWriteReg(clk, reset, SaveHPTWAdr, HPTWReadAdr, HPTWWriteAdr);
assign SaveHPTWAdr = WalkerState == L0_ADR;
@ -161,8 +157,8 @@ module hptw (
((EffectivePrivilegeMode == `S_MODE) & PTE_U & (~STATUS_SUM & DTLBWalk));
// Check for page faults
vm64check vm64check(.SATP_MODE(SATP_REGW[`XLEN-1:`XLEN-`SVMODE_BITS]), .VAdr(TranslationVAdr),
.SV39Mode(), .UpperBitsUnequalPageFault);
vm64check vm64check(.SATP_MODE(SATP_REGW[`XLEN-1:`XLEN-`SVMODE_BITS]), .VAdr(TranslationVAdr),
.SV39Mode(), .UpperBitsUnequalPageFault);
assign InvalidRead = ReadAccess & ~Readable & (~STATUS_MXR | ~Executable);
assign InvalidWrite = WriteAccess & ~Writable;
assign OtherPageFault = DTLBWalk? ImproperPrivilege | InvalidRead | InvalidWrite | UpperBitsUnequalPageFault | Misaligned | ~Valid :
@ -190,7 +186,6 @@ module hptw (
assign DTLBWriteM = (WalkerState == LEAF & ~DAPageFault) & DTLBWalk;
assign ITLBWriteF = (WalkerState == LEAF & ~DAPageFault) & ~DTLBWalk;
// FSM to track PageType based on the levels of the page table traversed
flopr #(2) PageTypeReg(clk, reset, NextPageType, PageType);
always_comb
@ -251,36 +246,35 @@ module hptw (
flopenl #(.TYPE(statetype)) WalkerStateReg(clk, reset | FlushW, 1'b1, NextWalkerState, IDLE, WalkerState);
always_comb
case (WalkerState)
IDLE: if (TLBMiss) NextWalkerState = InitialWalkerState;
else NextWalkerState = IDLE;
L3_ADR: NextWalkerState = L3_RD; // first access in SV48
L3_RD: if (DCacheStallW) NextWalkerState = L3_RD;
else NextWalkerState = L2_ADR;
IDLE: if (TLBMiss) NextWalkerState = InitialWalkerState;
else NextWalkerState = IDLE;
L3_ADR: NextWalkerState = L3_RD; // first access in SV48
L3_RD: if (DCacheStallW) NextWalkerState = L3_RD;
else NextWalkerState = L2_ADR;
L2_ADR: if (InitialWalkerState == L2_ADR | ValidNonLeafPTE) NextWalkerState = L2_RD; // first access in SV39
else NextWalkerState = LEAF;
L2_RD: if (DCacheStallW) NextWalkerState = L2_RD;
else NextWalkerState = L1_ADR;
else NextWalkerState = LEAF;
L2_RD: if (DCacheStallW) NextWalkerState = L2_RD;
else NextWalkerState = L1_ADR;
L1_ADR: if (InitialWalkerState == L1_ADR | ValidNonLeafPTE) NextWalkerState = L1_RD; // first access in SV32
else if (ValidNonLeafPTE) NextWalkerState = L1_RD;
else NextWalkerState = LEAF;
L1_RD: if (DCacheStallW) NextWalkerState = L1_RD;
else NextWalkerState = L0_ADR;
L0_ADR: if (ValidNonLeafPTE) NextWalkerState = L0_RD;
else NextWalkerState = LEAF;
L0_RD: if (DCacheStallW) NextWalkerState = L0_RD;
else NextWalkerState = LEAF;
else if (ValidNonLeafPTE) NextWalkerState = L1_RD;
else NextWalkerState = LEAF;
L1_RD: if (DCacheStallW) NextWalkerState = L1_RD;
else NextWalkerState = L0_ADR;
L0_ADR: if (ValidNonLeafPTE) NextWalkerState = L0_RD;
else NextWalkerState = LEAF;
L0_RD: if (DCacheStallW) NextWalkerState = L0_RD;
else NextWalkerState = LEAF;
LEAF: if (`HPTW_WRITES_SUPPORTED & DAPageFault) NextWalkerState = UPDATE_PTE;
else NextWalkerState = IDLE;
UPDATE_PTE: if(DCacheStallW) NextWalkerState = UPDATE_PTE;
else NextWalkerState = LEAF;
default: NextWalkerState = IDLE; // should never be reached
else NextWalkerState = IDLE;
UPDATE_PTE: if(DCacheStallW) NextWalkerState = UPDATE_PTE;
else NextWalkerState = LEAF;
default: NextWalkerState = IDLE; // should never be reached
endcase // case (WalkerState)
assign IgnoreRequestTLB = WalkerState == IDLE & TLBMiss;
assign SelHPTW = WalkerState != IDLE;
assign HPTWStall = (WalkerState != IDLE) | (WalkerState == IDLE & TLBMiss);
assign ITLBMissOrDAFaultF = ITLBMissF | (`HPTW_WRITES_SUPPORTED & InstrDAPageFaultF);
assign DTLBMissOrDAFaultM = DTLBMissM | (`HPTW_WRITES_SUPPORTED & DataDAPageFaultM);

View File

@ -6,6 +6,8 @@
//
// Purpose: Memory management unit, including TLB, PMA, PMP
//
// Documentation: RISC-V System on Chip Design Chapter 8
//
// A component of the CORE-V-WALLY configurable RISC-V project.
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
@ -27,18 +29,20 @@
`include "wally-config.vh"
module mmu #(parameter TLB_ENTRIES = 8, IMMU = 0) (
input logic clk, reset,
input logic [`XLEN-1:0] SATP_REGW, // Current value of satp CSR (from privileged unit)
input logic STATUS_MXR, STATUS_SUM, STATUS_MPRV, // Status bits affecting translation
input logic [1:0] STATUS_MPP, // previous machine privilege level
input logic [1:0] PrivilegeModeW, // Current privilege level of the processeor
input logic DisableTranslation, // virtual address translation disabled during D$ flush and HPTW walk that use physical addresses
input logic [`XLEN+1:0] VAdr, // virtual/physical address from IEU or physical address from HPTW
input logic [1:0] Size, // access size: 00 = 8 bits, 01 = 16 bits, 10 = 32 bits , 11 = 64 bits
input logic [`XLEN-1:0] PTE, // page table entry
input logic [1:0] PageTypeWriteVal, // page type
input logic TLBWrite, // write TLB entry
input logic TLBFlush, // Invalidate all TLB entries
input logic clk, reset,
input logic [`XLEN-1:0] SATP_REGW, // Current value of satp CSR (from privileged unit)
input logic STATUS_MXR, // Status CSR: make executable page readable
input logic STATUS_SUM, // Status CSR: Supervisor access to user memory
input logic STATUS_MPRV, // Status CSR: modify machine privilege
input logic [1:0] STATUS_MPP, // Status CSR: previous machine privilege level
input logic [1:0] PrivilegeModeW, // Current privilege level of the processeor
input logic DisableTranslation, // virtual address translation disabled during D$ flush and HPTW walk that use physical addresses
input logic [`XLEN+1:0] VAdr, // virtual/physical address from IEU or physical address from HPTW
input logic [1:0] Size, // access size: 00 = 8 bits, 01 = 16 bits, 10 = 32 bits , 11 = 64 bits
input logic [`XLEN-1:0] PTE, // page table entry
input logic [1:0] PageTypeWriteVal, // page type
input logic TLBWrite, // write TLB entry
input logic TLBFlush, // Invalidate all TLB entries
output logic [`PA_BITS-1:0] PhysicalAddress, // PAdr when no translation, or translated VAdr (TLBPAdr) when there is translation
output logic TLBMiss, // Miss TLB
output logic Cacheable, // PMA indicates memory address is cachable
@ -50,7 +54,7 @@ module mmu #(parameter TLB_ENTRIES = 8, IMMU = 0) (
output logic DAPageFault, // page fault due to setting dirty or access bit
output logic LoadMisalignedFaultM, StoreAmoMisalignedFaultM, // misaligned fault sources
// PMA checker signals
input logic AtomicAccessM, ExecuteAccessF, WriteAccessM, ReadAccessM, // access type
input logic AtomicAccessM, ExecuteAccessF, WriteAccessM, ReadAccessM, // access type
input var logic [7:0] PMPCFG_ARRAY_REGW[`PMP_ENTRIES-1:0], // PMP configuration
input var logic [`XLEN-1:0] PMPADDR_ARRAY_REGW[`PMP_ENTRIES-1:0] // PMP addresses
);
@ -103,10 +107,16 @@ module mmu #(parameter TLB_ENTRIES = 8, IMMU = 0) (
.Cacheable, .Idempotent, .SelTIM,
.PMAInstrAccessFaultF, .PMALoadAccessFaultM, .PMAStoreAmoAccessFaultM);
pmpchecker pmpchecker(.PhysicalAddress, .PrivilegeModeW,
.PMPCFG_ARRAY_REGW, .PMPADDR_ARRAY_REGW,
.ExecuteAccessF, .WriteAccessM, .ReadAccessM,
.PMPInstrAccessFaultF, .PMPLoadAccessFaultM, .PMPStoreAmoAccessFaultM);
if (`PMP_ENTRIES > 0) // instantiate PMP
pmpchecker pmpchecker(.PhysicalAddress, .PrivilegeModeW,
.PMPCFG_ARRAY_REGW, .PMPADDR_ARRAY_REGW,
.ExecuteAccessF, .WriteAccessM, .ReadAccessM,
.PMPInstrAccessFaultF, .PMPLoadAccessFaultM, .PMPStoreAmoAccessFaultM);
else begin
assign PMPInstrAccessFaultF = 0;
assign PMPLoadAccessFaultM = 0;
assign PMPStoreAmoAccessFaultM = 0;
end
// Access faults
// If TLB miss and translating we want to not have faults from the PMA and PMP checkers.

View File

@ -8,6 +8,8 @@
// the memory region accessed.
// Can report illegal accesses to the trap unit and cause a fault.
//
// Documentation: RISC-V System on Chip Design Chapter 8
//
// A component of the CORE-V-WALLY configurable RISC-V project.
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
@ -31,17 +33,20 @@
module pmachecker (
input logic [`PA_BITS-1:0] PhysicalAddress,
input logic [1:0] Size,
input logic AtomicAccessM, ExecuteAccessF, WriteAccessM, ReadAccessM, // *** atomicaccessM is unused but might want to stay in for future use.
output logic Cacheable, Idempotent, SelTIM,
output logic PMAInstrAccessFaultF,
output logic PMALoadAccessFaultM,
output logic PMAStoreAmoAccessFaultM
input logic AtomicAccessM, // Atomic access
input logic ExecuteAccessF, // Execute access
input logic WriteAccessM, // Write access
input logic ReadAccessM, // Read access
output logic Cacheable, Idempotent, SelTIM,
output logic PMAInstrAccessFaultF,
output logic PMALoadAccessFaultM,
output logic PMAStoreAmoAccessFaultM
);
logic PMAAccessFault;
logic AccessRW, AccessRWX, AccessRX;
logic [10:0] SelRegions;
logic AtomicAllowed;
logic PMAAccessFault;
logic AccessRW, AccessRWX, AccessRX;
logic [10:0] SelRegions;
logic AtomicAllowed;
// Determine what type of access is being made
assign AccessRW = ReadAccessM | WriteAccessM;

View File

@ -10,6 +10,8 @@
// naturally aligned power-of-two region/NAPOT), then selects the
// output based on which mode is input.
//
// Documentation: RISC-V System on Chip Design Chapter 8
//
// A component of the CORE-V-WALLY configurable RISC-V project.
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
@ -31,24 +33,24 @@
`include "wally-config.vh"
module pmpadrdec (
input logic [`PA_BITS-1:0] PhysicalAddress,
input logic [7:0] PMPCfg,
input logic [`XLEN-1:0] PMPAdr,
input logic PAgePMPAdrIn,
output logic PAgePMPAdrOut,
output logic Match, Active,
output logic L, X, W, R
input logic [`PA_BITS-1:0] PhysicalAddress,
input logic [7:0] PMPCfg,
input logic [`XLEN-1:0] PMPAdr,
input logic PAgePMPAdrIn,
output logic PAgePMPAdrOut,
output logic Match, Active,
output logic L, X, W, R
);
localparam TOR = 2'b01;
localparam NA4 = 2'b10;
localparam NAPOT = 2'b11;
logic TORMatch, NAMatch;
logic PAltPMPAdr;
logic [`PA_BITS-1:0] CurrentAdrFull;
logic [1:0] AdrMode;
// define PMP addressing mode codes
localparam TOR = 2'b01;
localparam NA4 = 2'b10;
localparam NAPOT = 2'b11;
logic TORMatch, NAMatch;
logic PAltPMPAdr;
logic [`PA_BITS-1:0] CurrentAdrFull;
logic [1:0] AdrMode;
assign AdrMode = PMPCfg[4:3];

View File

@ -9,6 +9,8 @@
// Can raise an access fault on illegal reads, writes, and instruction
// fetches.
//
// Documentation: RISC-V System on Chip Design Chapter 8
//
// A component of the CORE-V-WALLY configurable RISC-V project.
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
@ -32,50 +34,43 @@
module pmpchecker (
input logic [`PA_BITS-1:0] PhysicalAddress,
input logic [1:0] PrivilegeModeW,
// *** ModelSim has a switch -svinputport which controls whether input ports
// ModelSim has a switch -svinputport which controls whether input ports
// are nets (wires) or vars by default. The default setting of this switch is
// `relaxed`, which means that signals are nets if and only if they are
// scalars or one-dimensional vectors. Since this is a two-dimensional vector,
// this will be understood as a var. However, if we don't supply the `var`
// keyword, the compiler warns us that it's interpreting the signal as a var,
// which we might not intend.
input var logic [7:0] PMPCFG_ARRAY_REGW[`PMP_ENTRIES-1:0],
input var logic [`XLEN-1:0] PMPADDR_ARRAY_REGW [`PMP_ENTRIES-1:0],
input logic ExecuteAccessF, WriteAccessM, ReadAccessM,
output logic PMPInstrAccessFaultF,
output logic PMPLoadAccessFaultM,
output logic PMPStoreAmoAccessFaultM
input var logic [7:0] PMPCFG_ARRAY_REGW[`PMP_ENTRIES-1:0],
input var logic [`XLEN-1:0] PMPADDR_ARRAY_REGW [`PMP_ENTRIES-1:0],
input logic ExecuteAccessF, WriteAccessM, ReadAccessM,
output logic PMPInstrAccessFaultF,
output logic PMPLoadAccessFaultM,
output logic PMPStoreAmoAccessFaultM
);
if (`PMP_ENTRIES > 0) begin: pmpchecker
// Bit i is high when the address falls in PMP region i
logic EnforcePMP;
logic [`PMP_ENTRIES-1:0] Match; // physical address matches one of the pmp ranges
logic [`PMP_ENTRIES-1:0] FirstMatch; // onehot encoding for the first pmpaddr to match the current address.
logic [`PMP_ENTRIES-1:0] Active; // PMP register i is non-null
logic [`PMP_ENTRIES-1:0] L, X, W, R; // PMP matches and has flag set
logic [`PMP_ENTRIES-1:0] PAgePMPAdr; // for TOR PMP matching, PhysicalAddress > PMPAdr[i]
// Bit i is high when the address falls in PMP region i
logic EnforcePMP;
logic [`PMP_ENTRIES-1:0] Match; // physical address matches one of the pmp ranges
logic [`PMP_ENTRIES-1:0] FirstMatch; // onehot encoding for the first pmpaddr to match the current address.
logic [`PMP_ENTRIES-1:0] Active; // PMP register i is non-null
logic [`PMP_ENTRIES-1:0] L, X, W, R; // PMP matches and has flag set
logic [`PMP_ENTRIES-1:0] PAgePMPAdr; // for TOR PMP matching, PhysicalAddress > PMPAdr[i]
pmpadrdec pmpadrdecs[`PMP_ENTRIES-1:0](
.PhysicalAddress,
.PMPCfg(PMPCFG_ARRAY_REGW),
.PMPAdr(PMPADDR_ARRAY_REGW),
.PAgePMPAdrIn({PAgePMPAdr[`PMP_ENTRIES-2:0], 1'b1}),
.PAgePMPAdrOut(PAgePMPAdr),
.Match, .Active, .L, .X, .W, .R);
pmpadrdec pmpadrdecs[`PMP_ENTRIES-1:0](
.PhysicalAddress,
.PMPCfg(PMPCFG_ARRAY_REGW),
.PMPAdr(PMPADDR_ARRAY_REGW),
.PAgePMPAdrIn({PAgePMPAdr[`PMP_ENTRIES-2:0], 1'b1}),
.PAgePMPAdrOut(PAgePMPAdr),
.Match, .Active, .L, .X, .W, .R);
priorityonehot #(`PMP_ENTRIES) pmppriority(.a(Match), .y(FirstMatch)); // combine the match signal from all the adress decoders to find the first one that matches.
priorityonehot #(`PMP_ENTRIES) pmppriority(.a(Match), .y(FirstMatch)); // combine the match signal from all the adress decoders to find the first one that matches.
// Only enforce PMP checking for S and U modes when at least one PMP is active or in Machine mode when L bit is set in selected region
assign EnforcePMP = (PrivilegeModeW == `M_MODE) ? |(L & FirstMatch) : |Active;
// Only enforce PMP checking for S and U modes when at least one PMP is active or in Machine mode when L bit is set in selected region
assign EnforcePMP = (PrivilegeModeW == `M_MODE) ? |(L & FirstMatch) : |Active;
assign PMPInstrAccessFaultF = EnforcePMP & ExecuteAccessF & ~|(X & FirstMatch) ;
assign PMPStoreAmoAccessFaultM = EnforcePMP & WriteAccessM & ~|(W & FirstMatch) ;
assign PMPLoadAccessFaultM = EnforcePMP & ReadAccessM & ~|(R & FirstMatch) ;
end else begin: pmpchecker // no checker
assign PMPInstrAccessFaultF = 0;
assign PMPLoadAccessFaultM = 0;
assign PMPStoreAmoAccessFaultM = 0;
end
endmodule
assign PMPInstrAccessFaultF = EnforcePMP & ExecuteAccessF & ~|(X & FirstMatch) ;
assign PMPStoreAmoAccessFaultM = EnforcePMP & WriteAccessM & ~|(W & FirstMatch) ;
assign PMPLoadAccessFaultM = EnforcePMP & ReadAccessM & ~|(R & FirstMatch) ;
endmodule

View File

@ -9,6 +9,8 @@
// Purpose: Translation lookaside buffer
// Cache of virtural-to-physical address translations
//
// Documentation: RISC-V System on Chip Design Chapter 8
//
// A component of the CORE-V-WALLY configurable RISC-V project.
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University

View File

@ -9,6 +9,8 @@
// Purpose: Stores virtual page numbers with cached translations.
// Determines whether a given virtual page number is in the TLB.
//
// Documentation: RISC-V System on Chip Design Chapter 8
//
// A component of the CORE-V-WALLY configurable RISC-V project.
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University

View File

@ -9,6 +9,8 @@
// Purpose: CAM line for the translation lookaside buffer (TLB)
// Determines whether a virtual page number matches the stored key.
//
// Documentation: RISC-V System on Chip Design Chapter 8
//
// A component of the CORE-V-WALLY configurable RISC-V project.
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University

View File

@ -6,6 +6,8 @@
//
// Purpose: Control signals for TLB
//
// Documentation: RISC-V System on Chip Design Chapter 8
//
// A component of the CORE-V-WALLY configurable RISC-V project.
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University

View File

@ -7,6 +7,8 @@
// Purpose: Implementation of bit pseudo least-recently-used algorithm for
// cache evictions. Outputs the index of the next entry to be written.
//
// Documentation: RISC-V System on Chip Design Chapter 8
//
// A component of the CORE-V-WALLY configurable RISC-V project.
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University

View File

@ -9,6 +9,8 @@
// number with segments from the second, based on the page type.
// NOTE: this DOES NOT include the 12 bit offset, which is the same no matter the translation mode or page type.
//
// Documentation: RISC-V System on Chip Design Chapter 8
//
// A component of the CORE-V-WALLY configurable RISC-V project.
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University

View File

@ -8,6 +8,8 @@
// Outputs the physical page number and access bits of the current
// virtual address on a TLB hit.
//
// Documentation: RISC-V System on Chip Design Chapter 8
//
// A component of the CORE-V-WALLY configurable RISC-V project.
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University

View File

@ -6,6 +6,8 @@
//
// Purpose: One line of the RAM, with enabled flip-flop and logic for reading into distributed OR
//
// Documentation: RISC-V System on Chip Design Chapter 8
//
// A component of the CORE-V-WALLY configurable RISC-V project.
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University

View File

@ -6,6 +6,8 @@
//
// Purpose: Check for good upper address bits in RV64 mode
//
// Documentation: RISC-V System on Chip Design Chapter 8
//
// A component of the CORE-V-WALLY configurable RISC-V project.
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University