forked from Github_Repos/cvw
fixed some small errors in FMA
This commit is contained in:
parent
27ec8ff893
commit
e3f2a252cd
@ -28,6 +28,7 @@
|
||||
// `define NE 11//(`Q_SUPPORTED ? 15 : `D_SUPPORTED ? 11 : 8)
|
||||
// `define NF 52//(`Q_SUPPORTED ? 112 : `D_SUPPORTED ? 52 : 23)
|
||||
// `define XLEN 64
|
||||
`define NANPAYLOAD 1
|
||||
module fma(
|
||||
input logic clk,
|
||||
input logic reset,
|
||||
@ -117,9 +118,8 @@ module fma1(
|
||||
logic [3*`NF+6:0] AlignedAddendInv; // aligned addend possibly inverted
|
||||
logic [2*`NF+1:0] ProdManKilled; // the product's mantissa possibly killed
|
||||
logic [3*`NF+4:0] NegProdManKilled; // a negated ProdManKilled
|
||||
logic [8:0] PNormCnt, NNormCnt; // the positive and nagitive LOA results
|
||||
logic [3*`NF+6:0] PreSum, NegPreSum; // positive and negitve versions of the sum
|
||||
|
||||
logic [`NE-1:0] XExpVal, YExpVal; // exponent value after taking into accound denormals
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Calculate the product
|
||||
// - When multipliying two fp numbers, add the exponents
|
||||
@ -130,7 +130,7 @@ module fma1(
|
||||
|
||||
|
||||
// calculate the product's exponent
|
||||
expadd expadd(.FmtE, .XExpE, .YExpE, .XZeroE, .YZeroE, .XDenormE, .YDenormE,
|
||||
expadd expadd(.FmtE, .XExpE, .YExpE, .XZeroE, .YZeroE, .XDenormE, .YDenormE, .XExpVal, .YExpVal,
|
||||
.Denorm, .ProdExpE);
|
||||
|
||||
// multiplication of the mantissa's
|
||||
@ -140,7 +140,7 @@ module fma1(
|
||||
// Alignment shifter
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
align align(.ZExpE, .ZManE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE, .ProdExpE, .Denorm,
|
||||
align align(.ZExpE, .ZManE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE, .ProdExpE, .Denorm, .XExpVal, .YExpVal,
|
||||
.AlignedAddendE, .AddendStickyE, .KillProdE);
|
||||
|
||||
// calculate the signs and take the opperation into account
|
||||
@ -150,9 +150,9 @@ module fma1(
|
||||
// // Addition/LZA
|
||||
// ///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
add add(.AlignedAddendE, .ProdManE, .PSgnE, .ZSgnEffE, .KillProdE, .AlignedAddendInv, .ProdManKilled, .NegProdManKilled, .NegSumE, .PreSum, .NegPreSum, .InvZE, .XZeroE, .YZeroE);
|
||||
add add(.AlignedAddendE, .ProdManE, .PSgnE, .ZSgnEffE, .KillProdE, .AlignedAddendInv, .ProdManKilled, .NegSumE, .PreSum, .NegPreSum, .InvZE, .XZeroE, .YZeroE);
|
||||
|
||||
loa loa(.A(AlignedAddendInv+{162'b0,InvZE}), .P(ProdManKilled), .NegSumE, .NormCntE);
|
||||
loa loa(.A(AlignedAddendInv+{162'b0,InvZE}), .P(ProdManKilled), .NormCntE);
|
||||
|
||||
// Choose the positive sum and accompanying LZA result.
|
||||
assign SumE = NegSumE ? NegPreSum[3*`NF+5:0] : PreSum[3*`NF+5:0];
|
||||
@ -167,11 +167,11 @@ module expadd(
|
||||
input logic [`NE-1:0] XExpE, YExpE, // input exponents
|
||||
input logic XDenormE, YDenormE, // are the inputs denormalized
|
||||
input logic XZeroE, YZeroE, // are the inputs zero
|
||||
output logic [`NE-1:0] XExpVal, YExpVal, // Exponent value after taking into account denormals
|
||||
output logic [`NE-1:0] Denorm, // value of denormalized exponent
|
||||
output logic [`NE+1:0] ProdExpE // product's exponent B^(1023)NE+2
|
||||
);
|
||||
|
||||
logic [`NE-1:0] XExpVal, YExpVal; // Exponent value after taking into account denormals
|
||||
|
||||
// denormalized numbers have diffrent values depending on which precison it is.
|
||||
// double - 1
|
||||
@ -233,6 +233,7 @@ module align(
|
||||
input logic [`NF:0] ZManE, // fractions in U(0.NF) format]
|
||||
input logic ZDenormE, // is the input denormal
|
||||
input logic XZeroE, YZeroE, ZZeroE, // is the input zero
|
||||
input logic [`NE-1:0] XExpVal, YExpVal, // Exponent value after taking into account denormals
|
||||
input logic [`NE+1:0] ProdExpE, // the product's exponent
|
||||
input logic [`NE-1:0] Denorm, // the biased value of a denormalized number
|
||||
output logic [3*`NF+5:0] AlignedAddendE, // Z aligned for addition in U(NF+5.2NF+1)
|
||||
@ -254,7 +255,8 @@ module align(
|
||||
// - positive means the product is larger, so shift Z right
|
||||
// - Denormal numbers have a diffrent exponent value depending on the precision
|
||||
assign ZExpVal = ZDenormE ? Denorm : ZExpE;
|
||||
assign AlignCnt = ProdExpE - {2'b0, ZExpVal} + (`NF+3);
|
||||
// assign AlignCnt = ProdExpE - {2'b0, ZExpVal} + (`NF+3);
|
||||
assign AlignCnt = XZeroE|YZeroE ? -1 : {2'b0, XExpVal} + {2'b0, YExpVal} - 1020+`NF - {2'b0, ZExpVal};
|
||||
|
||||
// Defualt Addition without shifting
|
||||
// | 54'b0 | 106'b(product) | 2'b0 |
|
||||
@ -312,14 +314,14 @@ module add(
|
||||
input logic PSgnE, ZSgnEffE,// the product and modified Z signs
|
||||
input logic KillProdE, // should the product be set to 0
|
||||
input logic XZeroE, YZeroE, // is the input zero
|
||||
output logic [3*`NF+6:0] AlignedAddendInv, // aligned addend possibly inverted
|
||||
output logic [2*`NF+1:0] ProdManKilled, // the product's mantissa possibly killed
|
||||
output logic [3*`NF+4:0] NegProdManKilled, // a negated ProdManKilled
|
||||
output logic [3*`NF+6:0] AlignedAddendInv, // aligned addend possibly inverted
|
||||
output logic [2*`NF+1:0] ProdManKilled, // the product's mantissa possibly killed
|
||||
output logic NegSumE, // was the sum negitive
|
||||
output logic InvZE, // do you invert Z
|
||||
output logic [3*`NF+6:0] PreSum, NegPreSum// possibly negitive sum
|
||||
output logic [3*`NF+6:0] PreSum, NegPreSum// possibly negitive sum
|
||||
);
|
||||
|
||||
logic [3*`NF+4:0] NegProdManKilled; // a negated ProdManKilled
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Addition
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
@ -334,17 +336,17 @@ module add(
|
||||
// Kill the product if the product is too small to effect the addition (determined in fma1.sv)
|
||||
assign ProdManKilled = ProdManE&{2*`NF+2{~KillProdE}};
|
||||
// Negate ProdMan for LZA and the negitive sum calculation
|
||||
assign NegProdManKilled = {{`NF+3{~(XZeroE|YZeroE|KillProdE)}}, ~ProdManKilled&{2*`NF+2{~(XZeroE|YZeroE)}}};
|
||||
assign NegProdManKilled = {{`NF+3{~(XZeroE|YZeroE|KillProdE)}}, ~ProdManKilled&{2*`NF+2{~(XZeroE|YZeroE|KillProdE)}}};
|
||||
|
||||
|
||||
// Is the sum negitive
|
||||
assign NegSumE = (AlignedAddendE > {54'b0, ProdManKilled, 2'b0})&InvZE; //***use this to avoid addition and final muxing???
|
||||
|
||||
// Do the addition
|
||||
// - calculate a positive and negitive sum in parallel
|
||||
assign PreSum = AlignedAddendInv + {55'b0, ProdManKilled, 2'b0} + {{3*`NF+6{1'b0}}, InvZE};
|
||||
assign NegPreSum = AlignedAddendE + {NegProdManKilled, 2'b0} + {{(3*`NF+3){1'b0}},~(XZeroE|YZeroE),2'b0};
|
||||
assign NegPreSum = AlignedAddendE + {NegProdManKilled, 2'b0} + {{(3*`NF+3){1'b0}},~(XZeroE|YZeroE|KillProdE),2'b0};
|
||||
|
||||
// Is the sum negitive
|
||||
assign NegSumE = PreSum[3*`NF+6];
|
||||
|
||||
endmodule
|
||||
|
||||
@ -352,28 +354,32 @@ endmodule
|
||||
module loa( //https://ieeexplore.ieee.org/abstract/document/930098
|
||||
input logic [3*`NF+6:0] A, // addend
|
||||
input logic [2*`NF+1:0] P, // product
|
||||
input logic NegSumE, // is the sum negitive
|
||||
output logic [8:0] NormCntE // normalization shift count for the positive result
|
||||
);
|
||||
|
||||
|
||||
logic [3*`NF+6:0] T;
|
||||
logic [3*`NF+5:0] G;
|
||||
logic [3*`NF+5:0] Z;
|
||||
logic [3*`NF+6:0] G;
|
||||
logic [3*`NF+6:0] Z;
|
||||
assign T[3*`NF+6:2*`NF+4] = A[3*`NF+6:2*`NF+4];
|
||||
assign G[3*`NF+5:2*`NF+4] = 0;
|
||||
assign Z[3*`NF+5:2*`NF+4] = ~A[3*`NF+5:2*`NF+4];
|
||||
assign G[3*`NF+6:2*`NF+4] = 0;
|
||||
assign Z[3*`NF+6:2*`NF+4] = ~A[3*`NF+6:2*`NF+4];
|
||||
assign T[2*`NF+3:2] = A[2*`NF+3:2]^P;
|
||||
assign G[2*`NF+3:2] = A[2*`NF+3:2]&P;
|
||||
assign Z[2*`NF+3:2] = ~A[2*`NF+3:2]&~P;
|
||||
assign T[1:0] = A[1:0];
|
||||
assign G[1:0] = 0;
|
||||
assign Z[1:0] = ~A[1:0];
|
||||
|
||||
|
||||
|
||||
// Apply function to determine Leading pattern
|
||||
// - note: the paper linked above uses the numbering system where 0 is the most significant bit
|
||||
//f[n] = ~T[n]&T[n-1] note: n is the MSB
|
||||
//f[i] = (T[i+1]&(G[i]&~Z[i-1] | Z[i]&~G[i-1])) | (~T[i+1]&(Z[i]&~Z[i-1] | G[i]&~G[i-1]))
|
||||
logic [3*`NF+6:0] f;
|
||||
assign f = NegSumE ? T^{~G[3*`NF+5:0],1'b1} : T^{~Z[3*`NF+5:0], 1'b1};
|
||||
assign f[3*`NF+6] = ~T[3*`NF+6]&T[3*`NF+5];
|
||||
assign f[3*`NF+5:0] = (T[3*`NF+6:1]&(G[3*`NF+5:0]&{~Z[3*`NF+4:0], 1'b0} | Z[3*`NF+5:0]&{~G[3*`NF+4:0], 1'b1})) | (~T[3*`NF+6:1]&(Z[3*`NF+5:0]&{~Z[3*`NF+4:0], 1'b0} | G[3*`NF+5:0]&{~G[3*`NF+4:0], 1'b1}));
|
||||
|
||||
|
||||
|
||||
lzc lzc(.f, .NormCntE);
|
||||
|
||||
@ -426,7 +432,7 @@ module fma2(
|
||||
|
||||
logic [`NF-1:0] ResultFrac; // Result fraction
|
||||
logic [`NE-1:0] ResultExp; // Result exponent
|
||||
logic ResultSgn; // Result sign
|
||||
logic ResultSgn, ResultSgnTmp; // Result sign
|
||||
logic [`NE+1:0] SumExp; // exponent of the normalized sum
|
||||
logic [`NE+1:0] FullResultExp; // ResultExp with bits to determine sign and overflow
|
||||
logic [`NF+2:0] NormSum; // normalized sum
|
||||
@ -464,7 +470,7 @@ module fma2(
|
||||
// round to infinity
|
||||
// round to nearest max magnitude
|
||||
|
||||
fmaround fmaround(.FmtM, .FrmM, .Sticky, .UfSticky, .NormSum, .AddendStickyM, .NormSumSticky, .ZZeroM, .InvZM, .ResultSgn, .SumExp,
|
||||
fmaround fmaround(.FmtM, .FrmM, .Sticky, .UfSticky, .NormSum, .AddendStickyM, .NormSumSticky, .ZZeroM, .InvZM, .ResultSgnTmp, .SumExp,
|
||||
.CalcPlus1, .Plus1, .UfPlus1, .Minus1, .FullResultExp, .ResultFrac, .ResultExp, .Round, .Guard, .UfLSBNormSum);
|
||||
|
||||
|
||||
@ -476,7 +482,7 @@ module fma2(
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
resultsign resultsign(.FrmM, .PSgnM, .ZSgnEffM, .Underflow, .InvZM, .NegSumM, .SumZero, .ResultSgn);
|
||||
resultsign resultsign(.FrmM, .PSgnM, .ZSgnEffM, .Underflow, .InvZM, .NegSumM, .SumZero, .ResultSgnTmp, .ResultSgn);
|
||||
|
||||
|
||||
|
||||
@ -512,11 +518,12 @@ module resultsign(
|
||||
input logic InvZM,
|
||||
input logic NegSumM,
|
||||
input logic SumZero,
|
||||
output logic ResultSgnTmp,
|
||||
output logic ResultSgn
|
||||
);
|
||||
|
||||
logic ZeroSgn;
|
||||
logic ResultSgnTmp;
|
||||
// logic ResultSgnTmp;
|
||||
|
||||
// Determine the sign if the sum is zero
|
||||
// if cancelation then 0 unless round to -infinity
|
||||
@ -554,15 +561,24 @@ module resultselect(
|
||||
);
|
||||
logic [`FLEN-1:0] XNaNResult, YNaNResult, ZNaNResult, InvalidResult, OverflowResult, KillProdResult, UnderflowResult; // possible results
|
||||
|
||||
assign XNaNResult = FmtM ? {XSgnM, XExpM, 1'b1, XManM[`NF-2:0]} : {{32{1'b1}}, XSgnM, XExpM[7:0], 1'b1, XManM[50:29]};
|
||||
assign YNaNResult = FmtM ? {YSgnM, YExpM, 1'b1, YManM[`NF-2:0]} : {{32{1'b1}}, YSgnM, YExpM[7:0], 1'b1, YManM[50:29]};
|
||||
assign ZNaNResult = FmtM ? {ZSgnEffM, ZExpM, 1'b1, ZManM[`NF-2:0]} : {{32{1'b1}}, ZSgnEffM, ZExpM[7:0], 1'b1, ZManM[50:29]};
|
||||
generate if(`NANPAYLOAD) begin
|
||||
assign XNaNResult = FmtM ? {XSgnM, XExpM, 1'b1, XManM[`NF-2:0]} : {{32{1'b1}}, XSgnM, XExpM[7:0], 1'b1, XManM[50:29]};
|
||||
assign YNaNResult = FmtM ? {YSgnM, YExpM, 1'b1, YManM[`NF-2:0]} : {{32{1'b1}}, YSgnM, YExpM[7:0], 1'b1, YManM[50:29]};
|
||||
assign ZNaNResult = FmtM ? {ZSgnEffM, ZExpM, 1'b1, ZManM[`NF-2:0]} : {{32{1'b1}}, ZSgnEffM, ZExpM[7:0], 1'b1, ZManM[50:29]};
|
||||
end else begin
|
||||
assign XNaNResult = FmtM ? {XSgnM, XExpM, 1'b1, 51'b0} : {{32{1'b1}}, XSgnM, XExpM[7:0], 1'b1, 22'b0};
|
||||
assign YNaNResult = FmtM ? {YSgnM, YExpM, 1'b1, 51'b0} : {{32{1'b1}}, YSgnM, YExpM[7:0], 1'b1, 22'b0};
|
||||
assign ZNaNResult = FmtM ? {ZSgnEffM, ZExpM, 1'b1, 51'b0} : {{32{1'b1}}, ZSgnEffM, ZExpM[7:0], 1'b1, 22'b0};
|
||||
end
|
||||
endgenerate
|
||||
|
||||
|
||||
assign OverflowResult = FmtM ? ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} :
|
||||
{ResultSgn, {`NE{1'b1}}, {`NF{1'b0}}} :
|
||||
((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{32{1'b1}}, ResultSgn, 8'hfe, {23{1'b1}}} :
|
||||
{{32{1'b1}}, ResultSgn, 8'hff, 23'b0};
|
||||
assign InvalidResult = FmtM ? {ResultSgn, {`NE{1'b1}}, 1'b1, {`NF-1{1'b0}}} : {{32{1'b1}}, ResultSgn, 8'hff, 1'b1, 22'b0};
|
||||
assign KillProdResult = FmtM ? {ResultSgn, {ZExpM, ZManM[`NF-1:0]} - {62'b0, (Minus1&AddendStickyM) + (Plus1&AddendStickyM)}} : {{32{1'b1}}, ResultSgn, {ZExpM[`NE-1],ZExpM[6:0], ZManM[51:29]} - {30'b0, (Minus1&AddendStickyM)} + {30'b0, (Plus1&AddendStickyM)}};
|
||||
assign KillProdResult = FmtM ? {ResultSgn, {ZExpM, ZManM[`NF-1:0]} - {62'b0, (Minus1&AddendStickyM)} + {62'b0, (Plus1&AddendStickyM)}} : {{32{1'b1}}, ResultSgn, {ZExpM[`NE-1],ZExpM[6:0], ZManM[51:29]} - {30'b0, (Minus1&AddendStickyM)} + {30'b0, (Plus1&AddendStickyM)}};
|
||||
assign UnderflowResult = FmtM ? {ResultSgn, {`FLEN-1{1'b0}}} + {63'b0,(CalcPlus1&(AddendStickyM|FrmM[1]))} : {{32{1'b1}}, {ResultSgn, 31'b0} + {31'b0, (CalcPlus1&(AddendStickyM|FrmM[1]))}};
|
||||
assign FMAResM = XNaNM ? XNaNResult :
|
||||
YNaNM ? YNaNResult :
|
||||
@ -579,81 +595,6 @@ module resultselect(
|
||||
|
||||
endmodule
|
||||
|
||||
|
||||
// module normalize(
|
||||
// input logic [3*`NF+5:0] SumM, // the positive sum
|
||||
// input logic [`NE-1:0] ZExpM, // exponent of Z
|
||||
// input logic [`NE+1:0] ProdExpM, // X exponent + Y exponent - bias
|
||||
// input logic [8:0] NormCntM, // normalization shift count
|
||||
// input logic FmtM, // precision 1 = double 0 = single
|
||||
// input logic KillProdM, // is the product set to zero
|
||||
// input logic AddendStickyM, // the sticky bit caclulated from the aligned addend
|
||||
// input logic NegSumM, // was the sum negitive
|
||||
// output logic [`NF+2:0] NormSum, // normalized sum
|
||||
// output logic SumZero, // is the sum zero
|
||||
// output logic NormSumSticky, UfSticky, // sticky bits
|
||||
// output logic [`NE+1:0] SumExp, // exponent of the normalized sum
|
||||
// output logic ResultDenorm // is the result denormalized
|
||||
// );
|
||||
// logic [`NE+1:0] FracLen; // length of the fraction
|
||||
// logic [`NE+1:0] SumExpTmp; // exponent of the normalized sum not taking into account denormal or zero results
|
||||
// logic [8:0] DenormShift; // right shift if the result is denormalized //***change this later
|
||||
// logic [3*`NF+5:0] CorrSumShifted; // the shifted sum after LZA correction
|
||||
// logic [3*`NF+7:0] SumShifted; // the shifted sum before LZA correction
|
||||
// logic [`NE+1:0] SumExpTmpTmp; // the exponent of the normalized sum with the `FLEN bias
|
||||
// logic PreResultDenorm; // is the result denormalized - calculated before LZA corection
|
||||
// logic PreResultDenorm2; // is the result denormalized - calculated before LZA corection
|
||||
// logic LZAPlus1; // add one to the sum's exponent due to LZA correction
|
||||
|
||||
// ///////////////////////////////////////////////////////////////////////////////
|
||||
// // Normalization
|
||||
// ///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// // Determine if the sum is zero
|
||||
// assign SumZero = ~(|SumM);
|
||||
|
||||
// // determine the length of the fraction based on precision
|
||||
// assign FracLen = FmtM ? `NF+1 : 13'd24;
|
||||
|
||||
// // calculate the sum's exponent
|
||||
// assign SumExpTmpTmp = KillProdM ? {2'b0, ZExpM} : ProdExpM + -({4'b0, NormCntM} + 1 - (`NF+4)); // ****try moving this into previous stage
|
||||
// assign SumExpTmp = FmtM ? SumExpTmpTmp : (SumExpTmpTmp-1023+127)&{`NE+2{|SumExpTmpTmp}}; // ***move this ^ the subtraction by a constant isn't simplified
|
||||
|
||||
// logic SumDLTEZ, SumDGEFL, SumSLTEZ, SumSGEFL;
|
||||
// assign SumDLTEZ = SumExpTmpTmp[`NE+1] | ~|SumExpTmpTmp;
|
||||
// assign SumDGEFL = ($signed(SumExpTmpTmp)>=$signed(-(13'd`NF+13'd1)));
|
||||
// assign SumSLTEZ = $signed(SumExpTmpTmp) <= $signed(13'd1023-13'd127);
|
||||
// assign SumSGEFL = ($signed(SumExpTmpTmp)>=$signed(-13'd24+13'd1023-13'd127)) | ~|SumExpTmpTmp;
|
||||
// assign PreResultDenorm2 = (FmtM ? SumDLTEZ : SumSLTEZ) & (FmtM ? SumDGEFL : SumSGEFL) & ~SumZero; //***make sure math good
|
||||
// // always_comb begin
|
||||
// // assert (PreResultDenorm == PreResultDenorm2) else $fatal ("PreResultDenorms not equal");
|
||||
// // end
|
||||
|
||||
|
||||
|
||||
// // Determine if the result is denormal
|
||||
// // assign PreResultDenorm = $signed(SumExpTmp)<=0 & ($signed(SumExpTmp)>=$signed(-FracLen)) & ~SumZero;
|
||||
|
||||
// // Determine the shift needed for denormal results
|
||||
// // - if not denorm add 1 to shift out the leading 1
|
||||
// assign DenormShift = PreResultDenorm2 ? SumExpTmp[8:0] : 1; //*** change this when changing the size of DenormShift also change to an and opperation
|
||||
// // Normalize the sum
|
||||
// assign SumShifted = {2'b0, SumM} << NormCntM+DenormShift; //*** fix mux's with constants in them //***NormCnt can be simplified
|
||||
// // LZA correction
|
||||
// assign LZAPlus1 = SumShifted[3*`NF+7];
|
||||
// assign CorrSumShifted = LZAPlus1 ? SumShifted[3*`NF+6:1] : SumShifted[3*`NF+5:0];
|
||||
// assign NormSum = CorrSumShifted[3*`NF+5:2*`NF+3];
|
||||
// // Calculate the sticky bit
|
||||
// assign NormSumSticky = (|CorrSumShifted[2*`NF+2:0]) | (|CorrSumShifted[136:2*`NF+3]&~FmtM);
|
||||
// assign UfSticky = AddendStickyM | NormSumSticky;
|
||||
|
||||
// // Determine sum's exponent
|
||||
// assign SumExp = (SumExpTmp+{12'b0, LZAPlus1}+{12'b0, ~|SumExpTmp&SumShifted[3*`NF+6]}) & {`NE+2{~(SumZero|ResultDenorm)}};
|
||||
// // recalculate if the result is denormalized
|
||||
// assign ResultDenorm = PreResultDenorm2&~SumShifted[3*`NF+6]&~SumShifted[3*`NF+7];
|
||||
|
||||
// endmodule
|
||||
|
||||
module normalize(
|
||||
input logic [3*`NF+5:0] SumM, // the positive sum
|
||||
input logic [`NE-1:0] ZExpM, // exponent of Z
|
||||
@ -733,7 +674,7 @@ module normalize(
|
||||
assign LZAPlus1 = SumShifted[3*`NF+7];
|
||||
assign LZAPlus2 = SumShifted[3*`NF+8];
|
||||
// the only possible mantissa for a plus two is all zeroes - a one has to propigate all the way through a sum. so we can leave the bottom statement alone
|
||||
assign CorrSumShifted = LZAPlus1 ? SumShifted[3*`NF+6:1] : SumShifted[3*`NF+5:0];
|
||||
assign CorrSumShifted = LZAPlus1&~KillProdM ? SumShifted[3*`NF+6:1] : SumShifted[3*`NF+5:0];
|
||||
assign NormSum = CorrSumShifted[3*`NF+5:2*`NF+3];
|
||||
// Calculate the sticky bit
|
||||
assign NormSumSticky = (|CorrSumShifted[2*`NF+2:0]) | (|CorrSumShifted[136:2*`NF+3]&~FmtM);
|
||||
@ -757,7 +698,7 @@ module fmaround(
|
||||
input logic ZZeroM, // is Z zero
|
||||
input logic InvZM, // invert Z
|
||||
input logic [`NE+1:0] SumExp, // exponent of the normalized sum
|
||||
input logic ResultSgn, // the result's sign
|
||||
input logic ResultSgnTmp, // the result's sign
|
||||
output logic CalcPlus1, Plus1, UfPlus1, Minus1, // do you add or subtract on from the result
|
||||
output logic [`NE+1:0] FullResultExp, // ResultExp with bits to determine sign and overflow
|
||||
output logic [`NF-1:0] ResultFrac, // Result fraction
|
||||
@ -824,8 +765,8 @@ module fmaround(
|
||||
case (FrmM)
|
||||
3'b000: CalcPlus1 = Guard & (Round | ((Sticky)&~(~Round&SubBySmallNum)) | (~Round&~(Sticky)&LSBNormSum&~SubBySmallNum));//round to nearest even
|
||||
3'b001: CalcPlus1 = 0;//round to zero
|
||||
3'b010: CalcPlus1 = ResultSgn & ~(SubBySmallNum & ~Guard & ~Round);//round down
|
||||
3'b011: CalcPlus1 = ~ResultSgn & ~(SubBySmallNum & ~Guard & ~Round);//round up
|
||||
3'b010: CalcPlus1 = ResultSgnTmp & ~(SubBySmallNum & ~Guard & ~Round);//round down
|
||||
3'b011: CalcPlus1 = ~ResultSgnTmp & ~(SubBySmallNum & ~Guard & ~Round);//round up
|
||||
3'b100: CalcPlus1 = (Guard & (Round | ((Sticky)&~(~Round&SubBySmallNum)) | (~Round&~(Sticky)&~SubBySmallNum)));//round to nearest max magnitude
|
||||
default: CalcPlus1 = 1'bx;
|
||||
endcase
|
||||
@ -833,8 +774,8 @@ module fmaround(
|
||||
case (FrmM)
|
||||
3'b000: UfCalcPlus1 = UfGuard & (UfRound | (UfSticky&UfRound|~UfSubBySmallNum) | (~Sticky&UfLSBNormSum&~UfSubBySmallNum));//round to nearest even
|
||||
3'b001: UfCalcPlus1 = 0;//round to zero
|
||||
3'b010: UfCalcPlus1 = ResultSgn & ~(UfSubBySmallNum & ~UfGuard & ~UfRound);//round down
|
||||
3'b011: UfCalcPlus1 = ~ResultSgn & ~(UfSubBySmallNum & ~UfGuard & ~UfRound);//round up
|
||||
3'b010: UfCalcPlus1 = ResultSgnTmp & ~(UfSubBySmallNum & ~UfGuard & ~UfRound);//round down
|
||||
3'b011: UfCalcPlus1 = ~ResultSgnTmp & ~(UfSubBySmallNum & ~UfGuard & ~UfRound);//round up
|
||||
3'b100: UfCalcPlus1 = (UfGuard & (UfRound | (UfSticky&~(~UfRound&UfSubBySmallNum)) | (~Sticky&~UfSubBySmallNum)));//round to nearest max magnitude
|
||||
default: UfCalcPlus1 = 1'bx;
|
||||
endcase
|
||||
@ -842,8 +783,8 @@ module fmaround(
|
||||
case (FrmM)
|
||||
3'b000: CalcMinus1 = 0;//round to nearest even
|
||||
3'b001: CalcMinus1 = SubBySmallNum & ~Guard & ~Round;//round to zero
|
||||
3'b010: CalcMinus1 = ~ResultSgn & ~Guard & ~Round & SubBySmallNum;//round down
|
||||
3'b011: CalcMinus1 = ResultSgn & ~Guard & ~Round & SubBySmallNum;//round up
|
||||
3'b010: CalcMinus1 = ~ResultSgnTmp & ~Guard & ~Round & SubBySmallNum;//round down
|
||||
3'b011: CalcMinus1 = ResultSgnTmp & ~Guard & ~Round & SubBySmallNum;//round up
|
||||
3'b100: CalcMinus1 = 0;//round to nearest max magnitude
|
||||
default: CalcMinus1 = 1'bx;
|
||||
endcase
|
||||
|
Loading…
Reference in New Issue
Block a user