|
|
|
@ -23,7 +23,7 @@
|
|
|
|
|
///////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
`include "wally-config.vh"
|
|
|
|
|
// `include "../../../config/rv64icfd/wally-config.vh"
|
|
|
|
|
// `include "../../../config/rv64icfd/wally-config.vh"
|
|
|
|
|
|
|
|
|
|
module fma(
|
|
|
|
|
input logic clk,
|
|
|
|
@ -45,7 +45,6 @@ module fma(
|
|
|
|
|
input logic XSNaNM, YSNaNM, ZSNaNM, // is signaling NaN
|
|
|
|
|
input logic XZeroM, YZeroM, ZZeroM, // is zero - memory stage
|
|
|
|
|
input logic XInfM, YInfM, ZInfM, // is infinity
|
|
|
|
|
input logic [10:0] BiasE, // bias (max exponent/2) ***parameterize in unpacking unit
|
|
|
|
|
output logic [`FLEN-1:0] FMAResM, // FMA result
|
|
|
|
|
output logic [4:0] FMAFlgM); // FMA flags
|
|
|
|
|
|
|
|
|
@ -70,7 +69,7 @@ module fma(
|
|
|
|
|
logic [8:0] NormCntE, NormCntM;
|
|
|
|
|
|
|
|
|
|
fma1 fma1 (.XSgnE, .YSgnE, .ZSgnE, .XExpE, .YExpE, .ZExpE, .XManE, .YManE, .ZManE,
|
|
|
|
|
.BiasE, .XDenormE, .YDenormE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE,
|
|
|
|
|
.XDenormE, .YDenormE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE,
|
|
|
|
|
.FOpCtrlE, .FmtE, .SumE, .NegSumE, .InvZE, .NormCntE, .ZSgnEffE, .PSgnE,
|
|
|
|
|
.ProdExpE, .AddendStickyE, .KillProdE);
|
|
|
|
|
|
|
|
|
@ -96,7 +95,6 @@ module fma1(
|
|
|
|
|
input logic [`NF:0] XManE, YManE, ZManE, // fractions in U(0.NF) format
|
|
|
|
|
input logic XDenormE, YDenormE, ZDenormE, // is the input denormal
|
|
|
|
|
input logic XZeroE, YZeroE, ZZeroE, // is the input zero
|
|
|
|
|
input logic [`NE-1:0] BiasE, // bias (max exponent/2)
|
|
|
|
|
input logic [2:0] FOpCtrlE, // 000 = fmadd (X*Y)+Z, 001 = fmsub (X*Y)-Z, 010 = fnmsub -(X*Y)+Z, 011 = fnmadd -(X*Y)-Z, 100 = fmul (X*Y)
|
|
|
|
|
input logic FmtE, // precision 1 = double 0 = single
|
|
|
|
|
output logic [`NE+1:0] ProdExpE, // X exponent + Y exponent - bias in B(NE+2.0) format; adds 2 bits to allow for size of number and negative sign
|
|
|
|
@ -111,25 +109,26 @@ module fma1(
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
logic [`NE-1:0] Denorm; // value of a denormaized number based on precision
|
|
|
|
|
logic [`NE-1:0] XExpVal, YExpVal; // Exponent value after taking into account denormals
|
|
|
|
|
logic [2*`NF+1:0] ProdManE; // 1.X frac * 1.Y frac in U(2.2Nf) format
|
|
|
|
|
logic [3*`NF+5:0] AlignedAddendE; // Z aligned for addition in U(NF+5.2NF+1)
|
|
|
|
|
logic [3*`NF+6:0] AlignedAddendInv; // aligned addend possibly inverted
|
|
|
|
|
logic [2*`NF+1:0] ProdManKilled; // the product's mantissa possibly killed
|
|
|
|
|
logic [3*`NF+6:0] NegProdManKilled; // a negated ProdManKilled
|
|
|
|
|
logic [8:0] PNormCnt, NNormCnt; // the positive and nagitive LOA results
|
|
|
|
|
logic [3*`NF+6:0] PreSum, NegPreSum; // positive and negitve versions of the sum
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// Calculate the product
|
|
|
|
|
// - When multipliying two fp numbers, add the exponents
|
|
|
|
|
// - Subtract the bias (XExp + YExp has two biases, one from each exponent)
|
|
|
|
|
// - If the product is zero then kill the exponent - this is a problem
|
|
|
|
|
// - If the product is zero then kill the exponent
|
|
|
|
|
// - Multiply the mantissas
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
// denormalized numbers have diffrent values depending on which precison it is.
|
|
|
|
|
// double - 1
|
|
|
|
|
// single - 1024-128+1 = 897
|
|
|
|
|
assign Denorm = FmtE ? 1 : 897;
|
|
|
|
|
assign XExpVal = XDenormE ? Denorm : XExpE;
|
|
|
|
|
assign YExpVal = YDenormE ? Denorm : YExpE;
|
|
|
|
|
// take into account if the product is zero, the product's exponent does not compute properly if X or Y is zero
|
|
|
|
|
assign ProdExpE = (XExpVal + YExpVal - BiasE)&{`NE+2{~(XZeroE|YZeroE)}};
|
|
|
|
|
|
|
|
|
|
// calculate the product's exponent
|
|
|
|
|
expadd expadd(.FmtE, .XExpE, .YExpE, .XZeroE, .YZeroE, .XDenormE, .YDenormE,
|
|
|
|
|
.Denorm, .ProdExpE);
|
|
|
|
|
|
|
|
|
|
// multiplication of the mantissa's
|
|
|
|
|
mult mult(.XManE, .YManE, .ProdManE);
|
|
|
|
@ -138,174 +137,49 @@ module fma1(
|
|
|
|
|
// Alignment shifter
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
alignshift alignshift(.ZExpE, .ZManE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE, .ProdExpE, .Denorm,
|
|
|
|
|
align align(.ZExpE, .ZManE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE, .ProdExpE, .Denorm,
|
|
|
|
|
.AlignedAddendE, .AddendStickyE, .KillProdE);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Calculate the product's sign
|
|
|
|
|
// Negate product's sign if FNMADD or FNMSUB
|
|
|
|
|
|
|
|
|
|
assign PSgnE = XSgnE ^ YSgnE ^ (FOpCtrlE[1]&~FOpCtrlE[2]);
|
|
|
|
|
assign ZSgnEffE = ZSgnE^FOpCtrlE[0]; // Swap sign of Z for subtract
|
|
|
|
|
|
|
|
|
|
// calculate the signs and take the opperation into account
|
|
|
|
|
sign sign(.FOpCtrlE, .XSgnE, .YSgnE, .ZSgnE, .PSgnE, .ZSgnEffE);
|
|
|
|
|
|
|
|
|
|
// ///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// // Addition/LZA
|
|
|
|
|
// ///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
fmaadd fmaadd(.AlignedAddendE, .ProdManE, .PSgnE, .ZSgnEffE, .KillProdE, .SumE, .NegSumE, .InvZE, .NormCntE, .XZeroE, .YZeroE);
|
|
|
|
|
add add(.AlignedAddendE, .ProdManE, .PSgnE, .ZSgnEffE, .KillProdE, .AlignedAddendInv, .ProdManKilled, .NegProdManKilled, .NegSumE, .PreSum, .NegPreSum, .InvZE, .XZeroE, .YZeroE);
|
|
|
|
|
|
|
|
|
|
loa loa(.AlignedAddendE, .AlignedAddendInv, .ProdManKilled, .NegProdManKilled, .PNormCnt, .NNormCnt);
|
|
|
|
|
|
|
|
|
|
// Choose the positive sum and accompanying LZA result.
|
|
|
|
|
assign SumE = NegSumE ? NegPreSum[3*`NF+5:0] : PreSum[3*`NF+5:0];
|
|
|
|
|
assign NormCntE = NegSumE ? NNormCnt : PNormCnt;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
endmodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
module expadd(
|
|
|
|
|
input logic FmtE, // precision
|
|
|
|
|
input logic [`NE-1:0] XExpE, YExpE, // input exponents
|
|
|
|
|
input logic XDenormE, YDenormE, // are the inputs denormalized
|
|
|
|
|
input logic XZeroE, YZeroE, // are the inputs zero
|
|
|
|
|
output logic [`NE-1:0] Denorm, // value of denormalized exponent
|
|
|
|
|
output logic [`NE+1:0] ProdExpE // product's exponent B^(1023)NE+2
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
logic [`NE-1:0] XExpVal, YExpVal; // Exponent value after taking into account denormals
|
|
|
|
|
|
|
|
|
|
// denormalized numbers have diffrent values depending on which precison it is.
|
|
|
|
|
// double - 1
|
|
|
|
|
// single - 1024-128+1 = 897
|
|
|
|
|
assign Denorm = FmtE ? 1 : 897;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
module fma2(
|
|
|
|
|
|
|
|
|
|
input logic XSgnM, YSgnM, // input signs
|
|
|
|
|
input logic [`NE-1:0] XExpM, YExpM, ZExpM, // input exponents
|
|
|
|
|
input logic [`NF:0] XManM, YManM, ZManM, // input mantissas
|
|
|
|
|
input logic [2:0] FrmM, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
|
|
|
|
|
input logic FmtM, // precision 1 = double 0 = single
|
|
|
|
|
input logic [`NE+1:0] ProdExpM, // X exponent + Y exponent - bias
|
|
|
|
|
input logic AddendStickyM, // sticky bit that is calculated during alignment
|
|
|
|
|
input logic KillProdM, // set the product to zero before addition if the product is too small to matter
|
|
|
|
|
input logic XZeroM, YZeroM, ZZeroM, // inputs are zero
|
|
|
|
|
input logic XInfM, YInfM, ZInfM, // inputs are infinity
|
|
|
|
|
input logic XNaNM, YNaNM, ZNaNM, // inputs are NaN
|
|
|
|
|
input logic XSNaNM, YSNaNM, ZSNaNM, // inputs are signaling NaNs
|
|
|
|
|
input logic [3*`NF+5:0] SumM, // the positive sum
|
|
|
|
|
input logic NegSumM, // was the sum negitive
|
|
|
|
|
input logic InvZM, // do you invert Z
|
|
|
|
|
input logic ZSgnEffM, // the modified Z sign - depends on instruction
|
|
|
|
|
input logic PSgnM, // the product's sign
|
|
|
|
|
input logic [8:0] NormCntM, // the normalization shift count
|
|
|
|
|
output logic [`FLEN-1:0] FMAResM, // FMA final result
|
|
|
|
|
output logic [4:0] FMAFlgM); // FMA flags {invalid, divide by zero, overflow, underflow, inexact}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logic [`NF-1:0] ResultFrac; // Result fraction
|
|
|
|
|
logic [`NE-1:0] ResultExp; // Result exponent
|
|
|
|
|
logic ResultSgn; // Result sign
|
|
|
|
|
logic [`NE+1:0] SumExp; // exponent of the normalized sum
|
|
|
|
|
logic [`NE+1:0] FullResultExp; // ResultExp with bits to determine sign and overflow
|
|
|
|
|
logic [`NF+2:0] NormSum; // normalized sum
|
|
|
|
|
logic NormSumSticky; // sticky bit calulated from the normalized sum
|
|
|
|
|
logic SumZero; // is the sum zero
|
|
|
|
|
logic ResultDenorm; // is the result denormalized
|
|
|
|
|
logic Sticky, UfSticky; // Sticky bit
|
|
|
|
|
logic Plus1, Minus1, CalcPlus1; // do you add or subtract one for rounding
|
|
|
|
|
logic UfPlus1; // do you add one (for determining underflow flag)
|
|
|
|
|
logic Invalid,Underflow,Overflow; // flags
|
|
|
|
|
logic ZeroSgn; // the result's sign if the sum is zero
|
|
|
|
|
logic ResultSgnTmp; // the result's sign assuming the result is not zero
|
|
|
|
|
logic Guard, Round; // bits needed to determine rounding
|
|
|
|
|
logic UfRound, UfLSBNormSum; // bits needed to determine rounding for underflow flag
|
|
|
|
|
logic [`FLEN-1:0] XNaNResult, YNaNResult, ZNaNResult, InvalidResult, OverflowResult, KillProdResult, UnderflowResult; // possible results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// Normalization
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
normalize normalize(.SumM, .ZExpM, .ProdExpM, .NormCntM, .FmtM, .KillProdM, .AddendStickyM, .NormSum,
|
|
|
|
|
.SumZero, .NormSumSticky, .UfSticky, .SumExp, .ResultDenorm);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// Rounding
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
// round to nearest even
|
|
|
|
|
// round to zero
|
|
|
|
|
// round to -infinity
|
|
|
|
|
// round to infinity
|
|
|
|
|
// round to nearest max magnitude
|
|
|
|
|
|
|
|
|
|
fmaround fmaround(.FmtM, .FrmM, .Sticky, .UfSticky, .NormSum, .AddendStickyM, .NormSumSticky, .ZZeroM, .InvZM, .ResultSgn, .SumExp,
|
|
|
|
|
.CalcPlus1, .Plus1, .UfPlus1, .Minus1, .FullResultExp, .ResultFrac, .ResultExp, .Round, .Guard, .UfRound, .UfLSBNormSum);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// Sign calculation
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
// Determine the sign if the sum is zero
|
|
|
|
|
// if cancelation then 0 unless round to -infinity
|
|
|
|
|
// otherwise psign
|
|
|
|
|
assign ZeroSgn = (PSgnM^ZSgnEffM)&~Underflow ? FrmM[1:0] == 2'b10 : PSgnM;
|
|
|
|
|
|
|
|
|
|
// is the result negitive
|
|
|
|
|
// if p - z is the Sum negitive
|
|
|
|
|
// if -p + z is the Sum positive
|
|
|
|
|
// if -p - z then the Sum is negitive
|
|
|
|
|
assign ResultSgnTmp = InvZM&(ZSgnEffM)&NegSumM | InvZM&PSgnM&~NegSumM | ((ZSgnEffM)&PSgnM);
|
|
|
|
|
assign ResultSgn = SumZero ? ZeroSgn : ResultSgnTmp;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// Flags
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
fmaflags fmaflags(.XSNaNM, .YSNaNM, .ZSNaNM, .XInfM, .YInfM, .ZInfM, .XZeroM, .YZeroM,
|
|
|
|
|
.XNaNM, .YNaNM, .ZNaNM, .FullResultExp, .SumExp, .ZSgnEffM, .PSgnM, .Round, .Guard, .UfRound, .UfLSBNormSum, .Sticky, .UfPlus1,
|
|
|
|
|
.FmtM, .Invalid, .Overflow, .Underflow, .FMAFlgM);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// Select the result
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
assign XNaNResult = FmtM ? {XSgnM, XExpM, 1'b1, XManM[`NF-2:0]} : {{32{1'b1}}, XSgnM, XExpM[7:0], 1'b1, XManM[50:29]};
|
|
|
|
|
assign YNaNResult = FmtM ? {YSgnM, YExpM, 1'b1, YManM[`NF-2:0]} : {{32{1'b1}}, YSgnM, YExpM[7:0], 1'b1, YManM[50:29]};
|
|
|
|
|
assign ZNaNResult = FmtM ? {ZSgnEffM, ZExpM, 1'b1, ZManM[`NF-2:0]} : {{32{1'b1}}, ZSgnEffM, ZExpM[7:0], 1'b1, ZManM[50:29]};
|
|
|
|
|
assign OverflowResult = FmtM ? ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} :
|
|
|
|
|
{ResultSgn, {`NE{1'b1}}, {`NF{1'b0}}} :
|
|
|
|
|
((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{32{1'b1}}, ResultSgn, 8'hfe, {23{1'b1}}} :
|
|
|
|
|
{{32{1'b1}}, ResultSgn, 8'hff, 23'b0};
|
|
|
|
|
assign InvalidResult = FmtM ? {ResultSgn, {`NE{1'b1}}, 1'b1, {`NF-1{1'b0}}} : {{32{1'b1}}, ResultSgn, 8'hff, 1'b1, 22'b0};
|
|
|
|
|
assign KillProdResult = FmtM ? {ResultSgn, {ZExpM, ZManM[`NF-1:0]} - (Minus1&AddendStickyM) + (Plus1&AddendStickyM)} : {{32{1'b1}}, ResultSgn, {ZExpM[`NE-1],ZExpM[6:0], ZManM[51:29]} - {30'b0, (Minus1&AddendStickyM)} + {30'b0, (Plus1&AddendStickyM)}};
|
|
|
|
|
assign UnderflowResult = FmtM ? {ResultSgn, {`FLEN-1{1'b0}}} + (CalcPlus1&(AddendStickyM|FrmM[1])) : {{32{1'b1}}, {ResultSgn, 31'b0} + {31'b0, (CalcPlus1&(AddendStickyM|FrmM[1]))}};
|
|
|
|
|
assign FMAResM = XNaNM ? XNaNResult :
|
|
|
|
|
YNaNM ? YNaNResult :
|
|
|
|
|
ZNaNM ? ZNaNResult :
|
|
|
|
|
Invalid ? InvalidResult :
|
|
|
|
|
XInfM ? FmtM ? {PSgnM, XExpM, XManM[`NF-1:0]} : {{32{1'b1}}, PSgnM, XExpM[7:0], XManM[51:29]} :
|
|
|
|
|
YInfM ? FmtM ? {PSgnM, YExpM, YManM[`NF-1:0]} : {{32{1'b1}}, PSgnM, YExpM[7:0], YManM[51:29]} :
|
|
|
|
|
ZInfM ? FmtM ? {ZSgnEffM, ZExpM, ZManM[`NF-1:0]} : {{32{1'b1}}, ZSgnEffM, ZExpM[7:0], ZManM[51:29]} :
|
|
|
|
|
KillProdM ? KillProdResult :
|
|
|
|
|
Overflow ? OverflowResult :
|
|
|
|
|
Underflow & ~ResultDenorm & (ResultExp!=1) ? UnderflowResult :
|
|
|
|
|
FmtM ? {ResultSgn, ResultExp, ResultFrac} :
|
|
|
|
|
{{32{1'b1}}, ResultSgn, ResultExp[7:0], ResultFrac[51:29]};
|
|
|
|
|
|
|
|
|
|
// *** use NF where needed
|
|
|
|
|
// pick denormalized value or exponent
|
|
|
|
|
assign XExpVal = XDenormE ? Denorm : XExpE;
|
|
|
|
|
assign YExpVal = YDenormE ? Denorm : YExpE;
|
|
|
|
|
// kill the exponent if the product is zero - either X or Y is 0
|
|
|
|
|
assign ProdExpE = (XExpVal + YExpVal - `NE'h3ff)&{`NE+2{~(XZeroE|YZeroE)}};
|
|
|
|
|
|
|
|
|
|
endmodule
|
|
|
|
|
|
|
|
|
@ -313,7 +187,6 @@ endmodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
module mult(
|
|
|
|
|
input logic [`NF:0] XManE, YManE,
|
|
|
|
|
output logic [2*`NF+1:0] ProdManE
|
|
|
|
@ -325,7 +198,34 @@ endmodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
module alignshift(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
module sign(
|
|
|
|
|
input logic [2:0] FOpCtrlE, // precision
|
|
|
|
|
input logic XSgnE, YSgnE, ZSgnE, // are the inputs denormalized
|
|
|
|
|
output logic PSgnE, // the product's sign - takes opperation into account
|
|
|
|
|
output logic ZSgnEffE // Z sign used in fma - takes opperation into account
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
// Calculate the product's sign
|
|
|
|
|
// Negate product's sign if FNMADD or FNMSUB
|
|
|
|
|
|
|
|
|
|
// flip is negation opperation
|
|
|
|
|
assign PSgnE = XSgnE ^ YSgnE ^ (FOpCtrlE[1]&~FOpCtrlE[2]);
|
|
|
|
|
// flip if subtraction
|
|
|
|
|
assign ZSgnEffE = ZSgnE^FOpCtrlE[0];
|
|
|
|
|
|
|
|
|
|
endmodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
module align(
|
|
|
|
|
input logic [`NE-1:0] ZExpE, // biased exponents in B(NE.0) format
|
|
|
|
|
input logic [`NF:0] ZManE, // fractions in U(0.NF) format]
|
|
|
|
|
input logic ZDenormE, // is the input denormal
|
|
|
|
@ -397,22 +297,25 @@ module alignshift(
|
|
|
|
|
|
|
|
|
|
endmodule
|
|
|
|
|
|
|
|
|
|
module fmaadd(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
module add(
|
|
|
|
|
input logic [3*`NF+5:0] AlignedAddendE, // Z aligned for addition in U(NF+5.2NF+1)
|
|
|
|
|
input logic [2*`NF+1:0] ProdManE, // the product's mantissa
|
|
|
|
|
input logic PSgnE, ZSgnEffE,// the product and modified Z signs
|
|
|
|
|
input logic KillProdE, // should the product be set to 0
|
|
|
|
|
input logic XZeroE, YZeroE, // is the input zero
|
|
|
|
|
output logic [3*`NF+5:0] SumE, // the positive sum
|
|
|
|
|
output logic [3*`NF+6:0] AlignedAddendInv, // aligned addend possibly inverted
|
|
|
|
|
output logic [2*`NF+1:0] ProdManKilled, // the product's mantissa possibly killed
|
|
|
|
|
output logic [3*`NF+6:0] NegProdManKilled, // a negated ProdManKilled
|
|
|
|
|
output logic NegSumE, // was the sum negitive
|
|
|
|
|
output logic InvZE, // do you invert Z
|
|
|
|
|
output logic [8:0] NormCntE // normalization shift count
|
|
|
|
|
output logic [3*`NF+6:0] PreSum, NegPreSum// possibly negitive sum
|
|
|
|
|
);
|
|
|
|
|
logic [3*`NF+6:0] PreSum, NegPreSum; // possibly negitive sum
|
|
|
|
|
logic [2*`NF+1:0] ProdMan2; // product being added
|
|
|
|
|
logic [3*`NF+6:0] AlignedAddend2; // possibly inverted aligned Z
|
|
|
|
|
logic [3*`NF+6:0] NegProdMan2; // a negated ProdMan2
|
|
|
|
|
logic [8:0] PNormCnt, NNormCnt; // results from the LZA
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// Addition
|
|
|
|
@ -424,36 +327,42 @@ module fmaadd(
|
|
|
|
|
assign InvZE = ZSgnEffE ^ PSgnE;
|
|
|
|
|
|
|
|
|
|
// Choose an inverted or non-inverted addend - the one has to be added now for the LZA
|
|
|
|
|
assign AlignedAddend2 = InvZE ? -{1'b0, AlignedAddendE} : {1'b0, AlignedAddendE};
|
|
|
|
|
assign AlignedAddendInv = InvZE ? -{1'b0, AlignedAddendE} : {1'b0, AlignedAddendE};
|
|
|
|
|
// Kill the product if the product is too small to effect the addition (determined in fma1.sv)
|
|
|
|
|
assign ProdMan2 = ProdManE&{2*`NF+2{~KillProdE}};
|
|
|
|
|
assign ProdManKilled = ProdManE&{2*`NF+2{~KillProdE}};
|
|
|
|
|
// Negate ProdMan for LZA and the negitive sum calculation
|
|
|
|
|
assign NegProdMan2 = {{`NF+3{~(XZeroE|YZeroE|KillProdE)}}, -ProdMan2, 2'b0};
|
|
|
|
|
assign NegProdManKilled = {{`NF+3{~(XZeroE|YZeroE|KillProdE)}}, -ProdManKilled, 2'b0};
|
|
|
|
|
|
|
|
|
|
// LZAs one for the positive result and one for the negitive
|
|
|
|
|
// - the +1 from inverting causes problems for normalization
|
|
|
|
|
poslza poslza(AlignedAddend2, ProdMan2, PNormCnt);
|
|
|
|
|
neglza neglza({1'b0,AlignedAddendE}, NegProdMan2, NNormCnt);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Do the addition
|
|
|
|
|
// - calculate a positive and negitive sum in parallel
|
|
|
|
|
assign PreSum = AlignedAddend2 + {ProdMan2, 2'b0};
|
|
|
|
|
assign NegPreSum = AlignedAddendE + NegProdMan2;
|
|
|
|
|
assign PreSum = AlignedAddendInv + {ProdManKilled, 2'b0};
|
|
|
|
|
assign NegPreSum = AlignedAddendE + NegProdManKilled;
|
|
|
|
|
|
|
|
|
|
// Is the sum negitive
|
|
|
|
|
assign NegSumE = PreSum[3*`NF+6];
|
|
|
|
|
// Choose the positive sum and accompanying LZA result.
|
|
|
|
|
assign SumE = NegSumE ? NegPreSum[3*`NF+5:0] : PreSum[3*`NF+5:0];
|
|
|
|
|
assign NormCntE = NegSumE ? NNormCnt : PNormCnt;
|
|
|
|
|
|
|
|
|
|
endmodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
module loa(
|
|
|
|
|
input logic [3*`NF+5:0] AlignedAddendE, // Z aligned for addition in U(NF+5.2NF+1)
|
|
|
|
|
input logic [3*`NF+6:0] AlignedAddendInv, // aligned addend possibly inverted
|
|
|
|
|
input logic [2*`NF+1:0] ProdManKilled, // the product's mantissa possibly killed
|
|
|
|
|
input logic [3*`NF+6:0] NegProdManKilled, // a negated ProdManKilled
|
|
|
|
|
output logic [8:0] PNormCnt, NNormCnt // positive and negitive LOA result
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
// LZAs one for the positive result and one for the negitive
|
|
|
|
|
// - the +1 from inverting causes problems for normalization
|
|
|
|
|
posloa posloa(AlignedAddendInv, ProdManKilled, PNormCnt);
|
|
|
|
|
negloa negloa({1'b0,AlignedAddendE}, NegProdManKilled, NNormCnt);
|
|
|
|
|
|
|
|
|
|
endmodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
module poslza(
|
|
|
|
|
module posloa(
|
|
|
|
|
input logic [3*`NF+6:0] A, // addend
|
|
|
|
|
input logic [2*`NF+1:0] P, // product
|
|
|
|
|
output logic [8:0] PCnt // normalization shift count for the positive result
|
|
|
|
@ -484,7 +393,7 @@ module poslza(
|
|
|
|
|
|
|
|
|
|
endmodule
|
|
|
|
|
|
|
|
|
|
module neglza(
|
|
|
|
|
module negloa(
|
|
|
|
|
input logic [3*`NF+6:0] A, // addend
|
|
|
|
|
input logic [3*`NF+6:0] P, // product
|
|
|
|
|
output logic [8:0] NCnt // normalization shift count for the negitive result
|
|
|
|
@ -512,6 +421,197 @@ endmodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
module fma2(
|
|
|
|
|
|
|
|
|
|
input logic XSgnM, YSgnM, // input signs
|
|
|
|
|
input logic [`NE-1:0] XExpM, YExpM, ZExpM, // input exponents
|
|
|
|
|
input logic [`NF:0] XManM, YManM, ZManM, // input mantissas
|
|
|
|
|
input logic [2:0] FrmM, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
|
|
|
|
|
input logic FmtM, // precision 1 = double 0 = single
|
|
|
|
|
input logic [`NE+1:0] ProdExpM, // X exponent + Y exponent - bias
|
|
|
|
|
input logic AddendStickyM, // sticky bit that is calculated during alignment
|
|
|
|
|
input logic KillProdM, // set the product to zero before addition if the product is too small to matter
|
|
|
|
|
input logic XZeroM, YZeroM, ZZeroM, // inputs are zero
|
|
|
|
|
input logic XInfM, YInfM, ZInfM, // inputs are infinity
|
|
|
|
|
input logic XNaNM, YNaNM, ZNaNM, // inputs are NaN
|
|
|
|
|
input logic XSNaNM, YSNaNM, ZSNaNM, // inputs are signaling NaNs
|
|
|
|
|
input logic [3*`NF+5:0] SumM, // the positive sum
|
|
|
|
|
input logic NegSumM, // was the sum negitive
|
|
|
|
|
input logic InvZM, // do you invert Z
|
|
|
|
|
input logic ZSgnEffM, // the modified Z sign - depends on instruction
|
|
|
|
|
input logic PSgnM, // the product's sign
|
|
|
|
|
input logic [8:0] NormCntM, // the normalization shift count
|
|
|
|
|
output logic [`FLEN-1:0] FMAResM, // FMA final result
|
|
|
|
|
output logic [4:0] FMAFlgM); // FMA flags {invalid, divide by zero, overflow, underflow, inexact}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logic [`NF-1:0] ResultFrac; // Result fraction
|
|
|
|
|
logic [`NE-1:0] ResultExp; // Result exponent
|
|
|
|
|
logic ResultSgn; // Result sign
|
|
|
|
|
logic [`NE+1:0] SumExp; // exponent of the normalized sum
|
|
|
|
|
logic [`NE+1:0] FullResultExp; // ResultExp with bits to determine sign and overflow
|
|
|
|
|
logic [`NF+2:0] NormSum; // normalized sum
|
|
|
|
|
logic NormSumSticky; // sticky bit calulated from the normalized sum
|
|
|
|
|
logic SumZero; // is the sum zero
|
|
|
|
|
logic ResultDenorm; // is the result denormalized
|
|
|
|
|
logic Sticky, UfSticky; // Sticky bit
|
|
|
|
|
logic Plus1, Minus1, CalcPlus1; // do you add or subtract one for rounding
|
|
|
|
|
logic UfPlus1; // do you add one (for determining underflow flag)
|
|
|
|
|
logic Invalid,Underflow,Overflow; // flags
|
|
|
|
|
logic ZeroSgn; // the result's sign if the sum is zero
|
|
|
|
|
logic ResultSgnTmp; // the result's sign assuming the result is not zero
|
|
|
|
|
logic Guard, Round; // bits needed to determine rounding
|
|
|
|
|
logic UfRound, UfLSBNormSum; // bits needed to determine rounding for underflow flag
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// Normalization
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
normalize normalize(.SumM, .ZExpM, .ProdExpM, .NormCntM, .FmtM, .KillProdM, .AddendStickyM, .NormSum,
|
|
|
|
|
.SumZero, .NormSumSticky, .UfSticky, .SumExp, .ResultDenorm);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// Rounding
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
// round to nearest even
|
|
|
|
|
// round to zero
|
|
|
|
|
// round to -infinity
|
|
|
|
|
// round to infinity
|
|
|
|
|
// round to nearest max magnitude
|
|
|
|
|
|
|
|
|
|
fmaround fmaround(.FmtM, .FrmM, .Sticky, .UfSticky, .NormSum, .AddendStickyM, .NormSumSticky, .ZZeroM, .InvZM, .ResultSgn, .SumExp,
|
|
|
|
|
.CalcPlus1, .Plus1, .UfPlus1, .Minus1, .FullResultExp, .ResultFrac, .ResultExp, .Round, .Guard, .UfRound, .UfLSBNormSum);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// Sign calculation
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
resultsign resultsign(.FrmM, .PSgnM, .ZSgnEffM, .Underflow, .InvZM, .NegSumM, .SumZero, .ResultSgn);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// Flags
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
fmaflags fmaflags(.XSNaNM, .YSNaNM, .ZSNaNM, .XInfM, .YInfM, .ZInfM, .XZeroM, .YZeroM,
|
|
|
|
|
.XNaNM, .YNaNM, .ZNaNM, .FullResultExp, .SumExp, .ZSgnEffM, .PSgnM, .Round, .Guard, .UfRound, .UfLSBNormSum, .Sticky, .UfPlus1,
|
|
|
|
|
.FmtM, .Invalid, .Overflow, .Underflow, .FMAFlgM);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// Select the result
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
resultselect resultselect(.XSgnM, .YSgnM, .XExpM, .YExpM, .ZExpM, .XManM, .YManM, .ZManM,
|
|
|
|
|
.FrmM, .FmtM, .AddendStickyM, .KillProdM, .XInfM, .YInfM, .ZInfM, .XNaNM, .YNaNM, .ZNaNM,
|
|
|
|
|
.ZSgnEffM, .PSgnM, .ResultSgn, .Minus1, .Plus1, .CalcPlus1, .Invalid, .Overflow, .Underflow,
|
|
|
|
|
.ResultDenorm, .ResultExp, .ResultFrac, .FMAResM);
|
|
|
|
|
|
|
|
|
|
// *** use NF where needed
|
|
|
|
|
|
|
|
|
|
endmodule
|
|
|
|
|
|
|
|
|
|
module resultsign(
|
|
|
|
|
input logic [2:0] FrmM,
|
|
|
|
|
input logic PSgnM, ZSgnEffM,
|
|
|
|
|
input logic Underflow,
|
|
|
|
|
input logic InvZM,
|
|
|
|
|
input logic NegSumM,
|
|
|
|
|
input logic SumZero,
|
|
|
|
|
output logic ResultSgn
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
logic ZeroSgn;
|
|
|
|
|
logic ResultSgnTmp;
|
|
|
|
|
|
|
|
|
|
// Determine the sign if the sum is zero
|
|
|
|
|
// if cancelation then 0 unless round to -infinity
|
|
|
|
|
// otherwise psign
|
|
|
|
|
assign ZeroSgn = (PSgnM^ZSgnEffM)&~Underflow ? FrmM[1:0] == 2'b10 : PSgnM;
|
|
|
|
|
|
|
|
|
|
// is the result negitive
|
|
|
|
|
// if p - z is the Sum negitive
|
|
|
|
|
// if -p + z is the Sum positive
|
|
|
|
|
// if -p - z then the Sum is negitive
|
|
|
|
|
assign ResultSgnTmp = InvZM&(ZSgnEffM)&NegSumM | InvZM&PSgnM&~NegSumM | ((ZSgnEffM)&PSgnM);
|
|
|
|
|
assign ResultSgn = SumZero ? ZeroSgn : ResultSgnTmp;
|
|
|
|
|
|
|
|
|
|
endmodule
|
|
|
|
|
|
|
|
|
|
module resultselect(
|
|
|
|
|
input logic XSgnM, YSgnM, // input signs
|
|
|
|
|
input logic [`NE-1:0] XExpM, YExpM, ZExpM, // input exponents
|
|
|
|
|
input logic [`NF:0] XManM, YManM, ZManM, // input mantissas
|
|
|
|
|
input logic [2:0] FrmM, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
|
|
|
|
|
input logic FmtM, // precision 1 = double 0 = single
|
|
|
|
|
input logic AddendStickyM, // sticky bit that is calculated during alignment
|
|
|
|
|
input logic KillProdM, // set the product to zero before addition if the product is too small to matter
|
|
|
|
|
input logic XInfM, YInfM, ZInfM, // inputs are infinity
|
|
|
|
|
input logic XNaNM, YNaNM, ZNaNM, // inputs are NaN
|
|
|
|
|
input logic ZSgnEffM, // the modified Z sign - depends on instruction
|
|
|
|
|
input logic PSgnM, // the product's sign
|
|
|
|
|
input logic ResultSgn, // the result's sign
|
|
|
|
|
input logic Minus1, Plus1, CalcPlus1, // rounding bits
|
|
|
|
|
input logic Invalid, Overflow, Underflow, // flags
|
|
|
|
|
input logic ResultDenorm, // is the result denormalized
|
|
|
|
|
input logic [`NE-1:0] ResultExp, // Result exponent
|
|
|
|
|
input logic [`NF-1:0] ResultFrac, // Result fraction
|
|
|
|
|
output logic [`FLEN-1:0] FMAResM // FMA final result
|
|
|
|
|
);
|
|
|
|
|
logic [`FLEN-1:0] XNaNResult, YNaNResult, ZNaNResult, InvalidResult, OverflowResult, KillProdResult, UnderflowResult; // possible results
|
|
|
|
|
|
|
|
|
|
assign XNaNResult = FmtM ? {XSgnM, XExpM, 1'b1, XManM[`NF-2:0]} : {{32{1'b1}}, XSgnM, XExpM[7:0], 1'b1, XManM[50:29]};
|
|
|
|
|
assign YNaNResult = FmtM ? {YSgnM, YExpM, 1'b1, YManM[`NF-2:0]} : {{32{1'b1}}, YSgnM, YExpM[7:0], 1'b1, YManM[50:29]};
|
|
|
|
|
assign ZNaNResult = FmtM ? {ZSgnEffM, ZExpM, 1'b1, ZManM[`NF-2:0]} : {{32{1'b1}}, ZSgnEffM, ZExpM[7:0], 1'b1, ZManM[50:29]};
|
|
|
|
|
assign OverflowResult = FmtM ? ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} :
|
|
|
|
|
{ResultSgn, {`NE{1'b1}}, {`NF{1'b0}}} :
|
|
|
|
|
((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{32{1'b1}}, ResultSgn, 8'hfe, {23{1'b1}}} :
|
|
|
|
|
{{32{1'b1}}, ResultSgn, 8'hff, 23'b0};
|
|
|
|
|
assign InvalidResult = FmtM ? {ResultSgn, {`NE{1'b1}}, 1'b1, {`NF-1{1'b0}}} : {{32{1'b1}}, ResultSgn, 8'hff, 1'b1, 22'b0};
|
|
|
|
|
assign KillProdResult = FmtM ? {ResultSgn, {ZExpM, ZManM[`NF-1:0]} - (Minus1&AddendStickyM) + (Plus1&AddendStickyM)} : {{32{1'b1}}, ResultSgn, {ZExpM[`NE-1],ZExpM[6:0], ZManM[51:29]} - {30'b0, (Minus1&AddendStickyM)} + {30'b0, (Plus1&AddendStickyM)}};
|
|
|
|
|
assign UnderflowResult = FmtM ? {ResultSgn, {`FLEN-1{1'b0}}} + (CalcPlus1&(AddendStickyM|FrmM[1])) : {{32{1'b1}}, {ResultSgn, 31'b0} + {31'b0, (CalcPlus1&(AddendStickyM|FrmM[1]))}};
|
|
|
|
|
assign FMAResM = XNaNM ? XNaNResult :
|
|
|
|
|
YNaNM ? YNaNResult :
|
|
|
|
|
ZNaNM ? ZNaNResult :
|
|
|
|
|
Invalid ? InvalidResult :
|
|
|
|
|
XInfM ? FmtM ? {PSgnM, XExpM, XManM[`NF-1:0]} : {{32{1'b1}}, PSgnM, XExpM[7:0], XManM[51:29]} :
|
|
|
|
|
YInfM ? FmtM ? {PSgnM, YExpM, YManM[`NF-1:0]} : {{32{1'b1}}, PSgnM, YExpM[7:0], YManM[51:29]} :
|
|
|
|
|
ZInfM ? FmtM ? {ZSgnEffM, ZExpM, ZManM[`NF-1:0]} : {{32{1'b1}}, ZSgnEffM, ZExpM[7:0], ZManM[51:29]} :
|
|
|
|
|
KillProdM ? KillProdResult :
|
|
|
|
|
Overflow ? OverflowResult :
|
|
|
|
|
Underflow & ~ResultDenorm & (ResultExp!=1) ? UnderflowResult :
|
|
|
|
|
FmtM ? {ResultSgn, ResultExp, ResultFrac} :
|
|
|
|
|
{{32{1'b1}}, ResultSgn, ResultExp[7:0], ResultFrac[51:29]};
|
|
|
|
|
|
|
|
|
|
endmodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
module normalize(
|
|
|
|
|
input logic [3*`NF+5:0] SumM, // the positive sum
|
|
|
|
|
input logic [`NE-1:0] ZExpM, // exponent of Z
|
|
|
|
|