Merge branch 'main' of https://github.com/openhwgroup/cvw into dev

This commit is contained in:
David Harris 2023-04-03 06:13:16 -07:00
commit af8f1ab786
14 changed files with 542 additions and 203 deletions

View File

@ -37,14 +37,13 @@ module alu #(parameter WIDTH=32) (
input logic [1:0] BSelect, // Binary encoding of if it's a ZBA_ZBB_ZBC_ZBS instruction
input logic [2:0] ZBBSelect, // ZBB mux select signal
input logic [2:0] Funct3, // For BMU decoding
input logic CompLT, // Less-Than flag from comparator
input logic [2:0] BALUControl, // ALU Control signals for B instructions in Execute Stage
output logic [WIDTH-1:0] Result, // ALU result
output logic [WIDTH-1:0] ALUResult, // ALU result
output logic [WIDTH-1:0] Sum); // Sum of operands
// CondInvB = ~B when subtracting, B otherwise. Shift = shift result. SLT/U = result of a slt/u instruction.
// FullResult = ALU result before adjusting for a RV64 w-suffix instruction.
logic [WIDTH-1:0] CondMaskInvB, Shift, FullResult, ALUResult; // Intermediate Signals
logic [WIDTH-1:0] CondMaskInvB, Shift, FullResult, PreALUResult; // Intermediate Signals
logic [WIDTH-1:0] CondMaskB; // Result of B mask select mux
logic [WIDTH-1:0] CondShiftA; // Result of A shifted select mux
logic [WIDTH-1:0] CondExtA; // Result of Zero Extend A select mux
@ -84,16 +83,16 @@ module alu #(parameter WIDTH=32) (
end
// Support RV64I W-type addw/subw/addiw/shifts that discard upper 32 bits and sign-extend 32-bit result to 64 bits
if (WIDTH == 64) assign ALUResult = W64 ? {{32{FullResult[31]}}, FullResult[31:0]} : FullResult;
else assign ALUResult = FullResult;
if (WIDTH == 64) assign PreALUResult = W64 ? {{32{FullResult[31]}}, FullResult[31:0]} : FullResult;
else assign PreALUResult = FullResult;
// Final Result B instruction select mux
if (`ZBC_SUPPORTED | `ZBS_SUPPORTED | `ZBA_SUPPORTED | `ZBB_SUPPORTED) begin : bitmanipalu
bitmanipalu #(WIDTH) balu(.A, .B, .W64, .BSelect, .ZBBSelect,
.Funct3, .CompLT, .BALUControl, .ALUResult, .FullResult,
.CondMaskB, .CondShiftA, .Result);
.Funct3, .LT,.LTU, .BALUControl, .PreALUResult, .FullResult,
.CondMaskB, .CondShiftA, .ALUResult);
end else begin
assign Result = ALUResult;
assign ALUResult = PreALUResult;
assign CondMaskB = B;
assign CondShiftA = A;
end

View File

@ -35,12 +35,13 @@ module bitmanipalu #(parameter WIDTH=32) (
input logic [1:0] BSelect, // Binary encoding of if it's a ZBA_ZBB_ZBC_ZBS instruction
input logic [2:0] ZBBSelect, // ZBB mux select signal
input logic [2:0] Funct3, // Funct3 field of opcode indicates operation to perform
input logic CompLT, // Less-Than flag from comparator
input logic LT, // less than flag
input logic LTU, // less than unsigned flag
input logic [2:0] BALUControl, // ALU Control signals for B instructions in Execute Stage
input logic [WIDTH-1:0] ALUResult, FullResult, // ALUResult, FullResult signals
input logic [WIDTH-1:0] PreALUResult, FullResult,// PreALUResult, FullResult signals
output logic [WIDTH-1:0] CondMaskB, // B is conditionally masked for ZBS instructions
output logic [WIDTH-1:0] CondShiftA, // A is conditionally shifted for ShAdd instructions
output logic [WIDTH-1:0] Result); // Result
output logic [WIDTH-1:0] ALUResult); // Result
logic [WIDTH-1:0] ZBBResult, ZBCResult; // ZBB, ZBC Result
logic [WIDTH-1:0] MaskB; // BitMask of B
@ -84,16 +85,16 @@ module bitmanipalu #(parameter WIDTH=32) (
// ZBB Unit
if (`ZBB_SUPPORTED) begin: zbb
zbb #(WIDTH) ZBB(.A, .RevA, .B, .W64, .lt(CompLT), .ZBBSelect, .ZBBResult);
zbb #(WIDTH) ZBB(.A, .RevA, .B, .W64, .LT, .LTU, .BUnsigned(Funct3[0]), .ZBBSelect, .ZBBResult);
end else assign ZBBResult = 0;
// Result Select Mux
always_comb
case (BSelect)
// 00: ALU, 01: ZBA/ZBS, 10: ZBB, 11: ZBC
2'b00: Result = ALUResult;
2'b01: Result = FullResult; // NOTE: We don't use ALUResult because ZBA/ZBS instructions don't sign extend the MSB of the right-hand word.
2'b10: Result = ZBBResult;
2'b11: Result = ZBCResult;
2'b00: ALUResult = PreALUResult;
2'b01: ALUResult = FullResult; // NOTE: We don't use ALUResult because ZBA/ZBS instructions don't sign extend the MSB of the right-hand word.
2'b10: ALUResult = ZBBResult;
2'b11: ALUResult = ZBCResult;
endcase
endmodule

View File

@ -48,7 +48,6 @@ module bmuctrl(
output logic [1:0] BSelectE, // Indicates if ZBA_ZBB_ZBC_ZBS instruction in one-hot encoding
output logic [2:0] ZBBSelectE, // ZBB mux select signal
output logic BRegWriteE, // Indicates if it is a R type B instruction in Execute
output logic BComparatorSignedE, // Indicates if comparator signed in Execute Stage
output logic [2:0] BALUControlE // ALU Control signals for B instructions in Execute Stage
);
@ -56,7 +55,6 @@ module bmuctrl(
logic [2:0] Funct3D; // Funct3 field in Decode stage
logic [6:0] Funct7D; // Funct7 field in Decode stage
logic [4:0] Rs2D; // Rs2 source register in Decode stage
logic BComparatorSignedD; // Indicates if comparator signed (max, min instruction) in Decode Stage
logic RotateD; // Indicates if rotate instruction in Decode Stage
logic MaskD; // Indicates if zbs instruction in Decode Stage
logic PreShiftD; // Indicates if sh1add, sh2add, sh3add instruction in Decode Stage
@ -112,10 +110,10 @@ module bmuctrl(
BMUControlsD = `BMUCTRLW'b000_10_010_1_1_0_1_0_0_0_0_0; // rev8
17'b0010011_0010100_101: if (Rs2D[4:0] == 5'b00111)
BMUControlsD = `BMUCTRLW'b000_10_010_1_1_0_1_0_0_0_0_0; // orc.b
17'b0110011_0000101_110: BMUControlsD = `BMUCTRLW'b000_10_111_1_0_0_1_0_0_0_0_0; // max
17'b0110011_0000101_111: BMUControlsD = `BMUCTRLW'b000_10_111_1_0_0_1_0_0_0_0_0; // maxu
17'b0110011_0000101_100: BMUControlsD = `BMUCTRLW'b000_10_011_1_0_0_1_0_0_0_0_0; // min
17'b0110011_0000101_101: BMUControlsD = `BMUCTRLW'b000_10_011_1_0_0_1_0_0_0_0_0; // minu
17'b0110011_0000101_110: BMUControlsD = `BMUCTRLW'b000_10_111_1_0_0_1_1_0_0_0_0; // max
17'b0110011_0000101_111: BMUControlsD = `BMUCTRLW'b000_10_111_1_0_0_1_1_0_0_0_0; // maxu
17'b0110011_0000101_100: BMUControlsD = `BMUCTRLW'b000_10_011_1_0_0_1_1_0_0_0_0; // min
17'b0110011_0000101_101: BMUControlsD = `BMUCTRLW'b000_10_011_1_0_0_1_1_0_0_0_0; // minu
endcase
if (`XLEN==32)
casez({OpD, Funct7D, Funct3D})
@ -174,12 +172,9 @@ module bmuctrl(
// Pack BALUControl Signals
assign BALUControlD = {RotateD, MaskD, PreShiftD};
// Comparator should perform signed comparison when min/max instruction. We have overlap in funct3 with some branch instructions so we use opcode to differentiate betwen min/max and branches
assign BComparatorSignedD = (Funct3D[2]^Funct3D[0]) & ~OpD[6];
// Choose ALUSelect brom BMU for BMU operations, Funct3 for IEU operations, or 0 for addition
assign ALUSelectD = BALUOpD ? BALUSelectD : (ALUOpD ? Funct3D : 3'b000);
// BMU Execute stage pipieline control register
flopenrc#(10) controlregBMU(clk, reset, FlushE, ~StallE, {BSelectD, ZBBSelectD, BRegWriteD, BComparatorSignedD, BALUControlD}, {BSelectE, ZBBSelectE, BRegWriteE, BComparatorSignedE, BALUControlE});
flopenrc#(9) controlregBMU(clk, reset, FlushE, ~StallE, {BSelectD, ZBBSelectD, BRegWriteD, BALUControlD}, {BSelectE, ZBBSelectE, BRegWriteE, BALUControlE});
endmodule

View File

@ -30,20 +30,20 @@
`include "wally-config.vh"
module clmul #(parameter WIDTH=32) (
input logic [WIDTH-1:0] A, B, // Operands
input logic [WIDTH-1:0] X, Y, // Operands
output logic [WIDTH-1:0] ClmulResult); // ZBS result
logic [(WIDTH*WIDTH)-1:0] s; // intermediary signals for carry-less multiply
logic [(WIDTH*WIDTH)-1:0] S; // intermediary signals for carry-less multiply
integer i,j;
always_comb begin
for (i=0;i<WIDTH;i++) begin: outer
s[WIDTH*i]=A[0]&B[i];
S[WIDTH*i] = X[0] & Y[i];
for (j=1;j<=i;j++) begin: inner
s[WIDTH*i+j] = (A[j]&B[i-j])^s[WIDTH*i+j-1];
S[WIDTH*i+j] = (X[j] & Y[i-j]) ^ S[WIDTH*i+j-1];
end
ClmulResult[i] = s[WIDTH*i+j-1];
ClmulResult[i] = S[WIDTH*i+j-1];
end
end
endmodule

View File

@ -33,21 +33,25 @@
module zbb #(parameter WIDTH=32) (
input logic [WIDTH-1:0] A, RevA, B, // Operands
input logic W64, // Indicates word operation
input logic lt, // lt flag
input logic LT, // lt flag
input logic LTU, // ltu flag
input logic BUnsigned, // max/min (signed) flag
input logic [2:0] ZBBSelect, // ZBB Result select signal
output logic [WIDTH-1:0] ZBBResult); // ZBB result
logic lt; // lt given signed/unsigned
logic [WIDTH-1:0] CntResult; // count result
logic [WIDTH-1:0] MinMaxResult; // min, max result
logic [WIDTH-1:0] ByteResult; // byte results
logic [WIDTH-1:0] ExtResult; // sign/zero extend results
mux2 #(1) ltmux(LT, LTU, BUnsigned , lt);
cnt #(WIDTH) cnt(.A, .RevA, .B(B[1:0]), .W64, .CntResult);
byteUnit #(WIDTH) bu(.A, .ByteSelect(B[0]), .ByteResult);
ext #(WIDTH) ext(.A, .ExtSelect({~B[2], {B[2] & B[0]}}), .ExtResult);
// ZBBSelect[2] differentiates between min(u) vs max(u) instruction
mux2 #(WIDTH) minmaxmux(B, A, lt^ZBBSelect[2], MinMaxResult);
mux2 #(WIDTH) minmaxmux(B, A, ZBBSelect[2]^lt, MinMaxResult);
// ZBB Result select mux
mux4 #(WIDTH) zbbresultmux(CntResult, ExtResult, ByteResult, MinMaxResult, ZBBSelect[1:0], ZBBResult);

View File

@ -36,19 +36,16 @@ module zbc #(parameter WIDTH=32) (
logic [WIDTH-1:0] ClmulResult, RevClmulResult;
logic [WIDTH-1:0] RevB;
logic [WIDTH-1:0] x,y;
logic [1:0] select;
logic [WIDTH-1:0] X, Y;
assign select = ~Funct3[1:0];
bitreverse #(WIDTH) brB(B, RevB);
bitreverse #(WIDTH) brB(.A(B), .RevA(RevB));
mux3 #(WIDTH) xmux({RevA[WIDTH-2:0], {1'b0}}, RevA, A, ~Funct3[1:0], X);
mux3 #(WIDTH) ymux({{1'b0}, RevB[WIDTH-2:0]}, RevB, B, ~Funct3[1:0], Y);
mux3 #(WIDTH) xmux({RevA[WIDTH-2:0], {1'b0}}, RevA, A, select, x);
mux3 #(WIDTH) ymux({{1'b0},RevB[WIDTH-2:0]}, RevB, B, select, y);
clmul #(WIDTH) clm(.A(x), .B(y), .ClmulResult(ClmulResult));
clmul #(WIDTH) clm(.X, .Y, .ClmulResult);
bitreverse #(WIDTH) brClmulResult(.A(ClmulResult), .RevA(RevClmulResult));
bitreverse #(WIDTH) brClmulResult(ClmulResult, RevClmulResult);
mux2 #(WIDTH) zbcresultmux(ClmulResult, RevClmulResult, Funct3[1], ZBCResult);
endmodule

View File

@ -125,7 +125,6 @@ module controller(
logic IntDivM; // Integer divide instruction
logic [1:0] BSelectD; // One-Hot encoding if it's ZBA_ZBB_ZBC_ZBS instruction in decode stage
logic [2:0] ZBBSelectD; // ZBB Mux Select Signal
logic BComparatorSignedE; // Indicates if max, min (signed comarison) instruction in Execute Stage
logic IFunctD, RFunctD, MFunctD; // Detect I, R, and M-type RV32IM/Rv64IM instructions
logic LFunctD, SFunctD, BFunctD; // Detect load, store, branch instructions
logic JFunctD; // detect jalr instruction
@ -257,7 +256,7 @@ module controller(
bmuctrl bmuctrl(.clk, .reset, .StallD, .FlushD, .InstrD, .ALUOpD, .BSelectD, .ZBBSelectD,
.BRegWriteD, .BALUSrcBD, .BW64D, .BSubArithD, .IllegalBitmanipInstrD, .StallE, .FlushE,
.ALUSelectD, .BSelectE, .ZBBSelectE, .BRegWriteE, .BComparatorSignedE, .BALUControlE);
.ALUSelectD, .BSelectE, .ZBBSelectE, .BRegWriteE, .BALUControlE);
if (`ZBA_SUPPORTED) begin
// ALU Decoding is more comprehensive when ZBA is supported. slt and slti conflicts with sh1add, sh1add.uw
assign sltD = (Funct3D == 3'b010 & (~(Funct7D[4]) | ~OpD[5])) ;
@ -285,7 +284,6 @@ module controller(
assign BSelectE = 2'b00;
assign BSelectD = 2'b00;
assign ZBBSelectE = 3'b000;
assign BComparatorSignedE = 1'b0;
assign BALUControlE = 3'b0;
end
@ -313,8 +311,7 @@ module controller(
// Branch Logic
// The comparator handles both signed and unsigned branches using BranchSignedE
// Hence, only eq and lt flags are needed
// We also want comparator to handle signed comparison on a max/min bitmanip instruction
assign BranchSignedE = (~(Funct3E[2:1] == 2'b11) & BranchE) | BComparatorSignedE;
assign BranchSignedE = (~(Funct3E[2:1] == 2'b11) & BranchE);
assign {eqE, ltE} = FlagsE;
mux2 #(1) branchflagmux(eqE, ltE, Funct3E[2], BranchFlagE);
assign BranchTakenE = BranchFlagE ^ Funct3E[0];

View File

@ -114,7 +114,7 @@ module datapath (
comparator #(`XLEN) comp(ForwardedSrcAE, ForwardedSrcBE, BranchSignedE, FlagsE);
mux2 #(`XLEN) srcamux(ForwardedSrcAE, PCE, ALUSrcAE, SrcAE);
mux2 #(`XLEN) srcbmux(ForwardedSrcBE, ImmExtE, ALUSrcBE, SrcBE);
alu #(`XLEN) alu(SrcAE, SrcBE, W64E, SubArithE, ALUSelectE, BSelectE, ZBBSelectE, Funct3E, FlagsE[0], BALUControlE, ALUResultE, IEUAdrE);
alu #(`XLEN) alu(SrcAE, SrcBE, W64E, SubArithE, ALUSelectE, BSelectE, ZBBSelectE, Funct3E, BALUControlE, ALUResultE, IEUAdrE);
mux2 #(`XLEN) altresultmux(ImmExtE, PCLinkE, JumpE, AltResultE);
mux2 #(`XLEN) ieuresultmux(ALUResultE, AltResultE, ALUResultSrcE, IEUResultE);

View File

@ -1,7 +1,8 @@
///////////////////////////////////////////
<///////////////////////////////////////////
//
// Written: me@KatherineParry.com
// Modified: 7/5/2022
// Modified: 4/2/2023
//
// Purpose: Testbench for Testfloat
//
@ -32,75 +33,74 @@
module testbenchfp;
parameter TEST="none";
string Tests[]; // list of tests to be run
logic [2:0] OpCtrl[]; // list of op controls
logic [2:0] Unit[]; // list of units being tested
logic WriteInt[]; // Is being written to integer resgiter
logic [2:0] Frm[4:0] = {3'b100, 3'b010, 3'b011, 3'b001, 3'b000}; // rounding modes: rne-000, rz-001, ru-011, rd-010, rnm-100
logic [1:0] Fmt[]; // list of formats for the other units
string Tests[]; // list of tests to be run
logic [2:0] OpCtrl[]; // list of op controls
logic [2:0] Unit[]; // list of units being tested
logic WriteInt[]; // Is being written to integer resgiter
logic [2:0] Frm[4:0] = {3'b100, 3'b010, 3'b011, 3'b001, 3'b000}; // rounding modes: rne-000, rz-001, ru-011, rd-010, rnm-100
logic [1:0] Fmt[]; // list of formats for the other units
logic clk=0;
logic [31:0] TestNum=0; // index for the test
logic [31:0] OpCtrlNum=0; // index for OpCtrl
logic [31:0] errors=0; // how many errors
logic [31:0] VectorNum=0; // index for test vector
logic [31:0] FrmNum=0; // index for rounding mode
logic [`FLEN*4+7:0] TestVectors[8388609:0]; // list of test vectors
logic clk=0;
logic [31:0] TestNum=0; // index for the test
logic [31:0] OpCtrlNum=0; // index for OpCtrl
logic [31:0] errors=0; // how many errors
logic [31:0] VectorNum=0; // index for test vector
logic [31:0] FrmNum=0; // index for rounding mode
logic [`FLEN*4+7:0] TestVectors[8388609:0]; // list of test vectors
logic [1:0] FmtVal; // value of the current Fmt
logic [2:0] UnitVal, OpCtrlVal, FrmVal; // value of the currnet Unit/OpCtrl/FrmVal
logic WriteIntVal; // value of the current WriteInt
logic [`FLEN-1:0] X, Y, Z; // inputs read from TestFloat
logic [`XLEN-1:0] SrcA; // integer input
logic [`FLEN-1:0] Ans; // correct answer from TestFloat
logic [`FLEN-1:0] Res; // result from other units
logic [4:0] AnsFlg; // correct flags read from testfloat
logic [4:0] ResFlg, Flg; // Result flags
logic [`FMTBITS-1:0] ModFmt; // format - 10 = half, 00 = single, 01 = double, 11 = quad
logic [`FLEN-1:0] FpRes, FpCmpRes; // Results from each unit
logic [`XLEN-1:0] IntRes, CmpRes; // Results from each unit
logic [4:0] FmaFlg, CvtFlg, DivFlg, CmpFlg; // Outputed flags
logic AnsNaN, ResNaN, NaNGood;
logic Xs, Ys, Zs; // sign of the inputs
logic [`NE-1:0] Xe, Ye, Ze; // exponent of the inputs
logic [`NF:0] Xm, Ym, Zm; // mantissas of the inputs
logic XNaN, YNaN, ZNaN; // is the input NaN
logic XSNaN, YSNaN, ZSNaN; // is the input a signaling NaN
logic XSubnorm, ZSubnorm; // is the input denormalized
logic XInf, YInf, ZInf; // is the input infinity
logic XZero, YZero, ZZero; // is the input zero
logic XExpMax, YExpMax, ZExpMax; // is the input's exponent all ones
logic [`CVTLEN-1:0] CvtLzcInE; // input to the Leading Zero Counter (priority encoder)
logic IntZero;
logic CvtResSgnE;
logic [`NE:0] CvtCalcExpE; // the calculated expoent
logic [`LOGCVTLEN-1:0] CvtShiftAmtE; // how much to shift by
logic [`DIVb:0] Quot;
logic CvtResSubnormUfE;
logic DivStart, FDivBusyE, OldFDivBusyE;
logic reset = 1'b0;
logic [$clog2(`NF+2)-1:0] XZeroCnt, YZeroCnt;
logic [`DURLEN-1:0] Dur;
logic [1:0] FmtVal; // value of the current Fmt
logic [2:0] UnitVal, OpCtrlVal, FrmVal; // value of the currnet Unit/OpCtrl/FrmVal
logic WriteIntVal; // value of the current WriteInt
logic [`FLEN-1:0] X, Y, Z; // inputs read from TestFloat
logic [`XLEN-1:0] SrcA; // integer input
logic [`FLEN-1:0] Ans; // correct answer from TestFloat
logic [`FLEN-1:0] Res; // result from other units
logic [4:0] AnsFlg; // correct flags read from testfloat
logic [4:0] ResFlg, Flg; // Result flags
logic [`FMTBITS-1:0] ModFmt; // format - 10 = half, 00 = single, 01 = double, 11 = quad
logic [`FLEN-1:0] FpRes, FpCmpRes; // Results from each unit
logic [`XLEN-1:0] IntRes, CmpRes; // Results from each unit
logic [4:0] FmaFlg, CvtFlg, DivFlg, CmpFlg; // Outputed flags
logic AnsNaN, ResNaN, NaNGood;
logic Xs, Ys, Zs; // sign of the inputs
logic [`NE-1:0] Xe, Ye, Ze; // exponent of the inputs
logic [`NF:0] Xm, Ym, Zm; // mantissas of the inputs
logic XNaN, YNaN, ZNaN; // is the input NaN
logic XSNaN, YSNaN, ZSNaN; // is the input a signaling NaN
logic XSubnorm, ZSubnorm; // is the input denormalized
logic XInf, YInf, ZInf; // is the input infinity
logic XZero, YZero, ZZero; // is the input zero
logic XExpMax, YExpMax, ZExpMax; // is the input's exponent all ones
logic [`CVTLEN-1:0] CvtLzcInE; // input to the Leading Zero Counter (priority encoder)
logic IntZero;
logic CvtResSgnE;
logic [`NE:0] CvtCalcExpE; // the calculated expoent
logic [`LOGCVTLEN-1:0] CvtShiftAmtE; // how much to shift by
logic [`DIVb:0] Quot;
logic CvtResSubnormUfE;
logic DivStart, FDivBusyE, OldFDivBusyE;
logic reset = 1'b0;
logic [$clog2(`NF+2)-1:0] XZeroCnt, YZeroCnt;
logic [`DURLEN-1:0] Dur;
// in-between FMA signals
logic Mult;
logic Ss;
logic [`NE+1:0] Pe;
logic [`NE+1:0] Se;
logic ASticky;
logic KillProd;
logic [$clog2(3*`NF+5)-1:0] SCnt;
logic [3*`NF+3:0] Sm;
logic InvA;
logic NegSum;
logic As;
logic Ps;
logic DivSticky;
logic DivDone;
logic DivNegSticky;
logic [`NE+1:0] DivCalcExp;
logic divsqrtop;
logic Mult;
logic Ss;
logic [`NE+1:0] Pe;
logic [`NE+1:0] Se;
logic ASticky;
logic KillProd;
logic [$clog2(3*`NF+5)-1:0] SCnt;
logic [3*`NF+3:0] Sm;
logic InvA;
logic NegSum;
logic As;
logic Ps;
logic DivSticky;
logic DivDone;
logic DivNegSticky;
logic [`NE+1:0] DivCalcExp;
logic divsqrtop;
///////////////////////////////////////////////////////////////////////////////////////////////
@ -126,28 +126,28 @@ module testbenchfp;
$display("TEST is %s", TEST);
if (`Q_SUPPORTED) begin // if Quad percision is supported
if (TEST === "cvtint"| TEST === "all") begin // if testing integer conversion
// add the 128-bit cvtint tests to the to-be-tested list
Tests = {Tests, f128rv32cvtint};
// add the op-codes for these tests to the op-code list
OpCtrl = {OpCtrl, `FROM_UI_OPCTRL, `FROM_I_OPCTRL, `TO_UI_OPCTRL, `TO_I_OPCTRL};
WriteInt = {WriteInt, 1'b0, 1'b0, 1'b1, 1'b1};
// add what unit is used and the fmt to their lists (one for each test)
for(int i = 0; i<20; i++) begin
Unit = {Unit, `CVTINTUNIT};
Fmt = {Fmt, 2'b11};
end
if (`XLEN == 64) begin // if 64-bit integers are supported add their conversions
Tests = {Tests, f128rv64cvtint};
// add the op-codes for these tests to the op-code list
OpCtrl = {OpCtrl, `FROM_UL_OPCTRL, `FROM_L_OPCTRL, `TO_UL_OPCTRL, `TO_L_OPCTRL};
WriteInt = {WriteInt, 1'b0, 1'b0, 1'b1, 1'b1};
// add what unit is used and the fmt to their lists (one for each test)
for(int i = 0; i<20; i++) begin
Unit = {Unit, `CVTINTUNIT};
Fmt = {Fmt, 2'b11};
end
end
end
// add the 128-bit cvtint tests to the to-be-tested list
Tests = {Tests, f128rv32cvtint};
// add the op-codes for these tests to the op-code list
OpCtrl = {OpCtrl, `FROM_UI_OPCTRL, `FROM_I_OPCTRL, `TO_UI_OPCTRL, `TO_I_OPCTRL};
WriteInt = {WriteInt, 1'b0, 1'b0, 1'b1, 1'b1};
// add what unit is used and the fmt to their lists (one for each test)
for(int i = 0; i<20; i++) begin
Unit = {Unit, `CVTINTUNIT};
Fmt = {Fmt, 2'b11};
end
if (`XLEN == 64) begin // if 64-bit integers are supported add their conversions
Tests = {Tests, f128rv64cvtint};
// add the op-codes for these tests to the op-code list
OpCtrl = {OpCtrl, `FROM_UL_OPCTRL, `FROM_L_OPCTRL, `TO_UL_OPCTRL, `TO_L_OPCTRL};
WriteInt = {WriteInt, 1'b0, 1'b0, 1'b1, 1'b1};
// add what unit is used and the fmt to their lists (one for each test)
for(int i = 0; i<20; i++) begin
Unit = {Unit, `CVTINTUNIT};
Fmt = {Fmt, 2'b11};
end
end
end
if (TEST === "cvtfp" | TEST === "all") begin // if the floating-point conversions are being tested
if(`D_SUPPORTED) begin // if double precision is supported
// add the 128 <-> 64 bit conversions to the to-be-tested list
@ -270,27 +270,27 @@ module testbenchfp;
end
if (`D_SUPPORTED) begin // if double precision is supported
if (TEST === "cvtint"| TEST === "all") begin // if integer conversion is being tested
Tests = {Tests, f64rv32cvtint};
// add the op-codes for these tests to the op-code list
OpCtrl = {OpCtrl, `FROM_UI_OPCTRL, `FROM_I_OPCTRL, `TO_UI_OPCTRL, `TO_I_OPCTRL};
WriteInt = {WriteInt, 1'b0, 1'b0, 1'b1, 1'b1};
// add what unit is used and the fmt to their lists (one for each test)
for(int i = 0; i<20; i++) begin
Unit = {Unit, `CVTINTUNIT};
Fmt = {Fmt, 2'b01};
end
if (`XLEN == 64) begin // if 64-bit integers are being supported
Tests = {Tests, f64rv64cvtint};
// add the op-codes for these tests to the op-code list
OpCtrl = {OpCtrl, `FROM_UL_OPCTRL, `FROM_L_OPCTRL, `TO_UL_OPCTRL, `TO_L_OPCTRL};
WriteInt = {WriteInt, 1'b0, 1'b0, 1'b1, 1'b1};
// add what unit is used and the fmt to their lists (one for each test)
for(int i = 0; i<20; i++) begin
Unit = {Unit, `CVTINTUNIT};
Fmt = {Fmt, 2'b01};
end
end
end
Tests = {Tests, f64rv32cvtint};
// add the op-codes for these tests to the op-code list
OpCtrl = {OpCtrl, `FROM_UI_OPCTRL, `FROM_I_OPCTRL, `TO_UI_OPCTRL, `TO_I_OPCTRL};
WriteInt = {WriteInt, 1'b0, 1'b0, 1'b1, 1'b1};
// add what unit is used and the fmt to their lists (one for each test)
for(int i = 0; i<20; i++) begin
Unit = {Unit, `CVTINTUNIT};
Fmt = {Fmt, 2'b01};
end
if (`XLEN == 64) begin // if 64-bit integers are being supported
Tests = {Tests, f64rv64cvtint};
// add the op-codes for these tests to the op-code list
OpCtrl = {OpCtrl, `FROM_UL_OPCTRL, `FROM_L_OPCTRL, `TO_UL_OPCTRL, `TO_L_OPCTRL};
WriteInt = {WriteInt, 1'b0, 1'b0, 1'b1, 1'b1};
// add what unit is used and the fmt to their lists (one for each test)
for(int i = 0; i<20; i++) begin
Unit = {Unit, `CVTINTUNIT};
Fmt = {Fmt, 2'b01};
end
end
end
if (TEST === "cvtfp" | TEST === "all") begin // if floating point conversions are being tested
if(`F_SUPPORTED) begin // if single precision is supported
// add the 64 <-> 32 bit conversions to the to-be-tested list
@ -397,27 +397,27 @@ module testbenchfp;
end
if (`F_SUPPORTED) begin // if single precision being supported
if (TEST === "cvtint"| TEST === "all") begin // if integer conversion is being tested
Tests = {Tests, f32rv32cvtint};
// add the op-codes for these tests to the op-code list
OpCtrl = {OpCtrl, `FROM_UI_OPCTRL, `FROM_I_OPCTRL, `TO_UI_OPCTRL, `TO_I_OPCTRL};
WriteInt = {WriteInt, 1'b0, 1'b0, 1'b1, 1'b1};
// add what unit is used and the fmt to their lists (one for each test)
for(int i = 0; i<20; i++) begin
Unit = {Unit, `CVTINTUNIT};
Fmt = {Fmt, 2'b00};
end
if (`XLEN == 64) begin // if 64-bit integers are supported
Tests = {Tests, f32rv64cvtint};
// add the op-codes for these tests to the op-code list
OpCtrl = {OpCtrl, `FROM_UL_OPCTRL, `FROM_L_OPCTRL, `TO_UL_OPCTRL, `TO_L_OPCTRL};
WriteInt = {WriteInt, 1'b0, 1'b0, 1'b1, 1'b1};
// add what unit is used and the fmt to their lists (one for each test)
for(int i = 0; i<20; i++) begin
Unit = {Unit, `CVTINTUNIT};
Fmt = {Fmt, 2'b00};
end
end
end
Tests = {Tests, f32rv32cvtint};
// add the op-codes for these tests to the op-code list
OpCtrl = {OpCtrl, `FROM_UI_OPCTRL, `FROM_I_OPCTRL, `TO_UI_OPCTRL, `TO_I_OPCTRL};
WriteInt = {WriteInt, 1'b0, 1'b0, 1'b1, 1'b1};
// add what unit is used and the fmt to their lists (one for each test)
for(int i = 0; i<20; i++) begin
Unit = {Unit, `CVTINTUNIT};
Fmt = {Fmt, 2'b00};
end
if (`XLEN == 64) begin // if 64-bit integers are supported
Tests = {Tests, f32rv64cvtint};
// add the op-codes for these tests to the op-code list
OpCtrl = {OpCtrl, `FROM_UL_OPCTRL, `FROM_L_OPCTRL, `TO_UL_OPCTRL, `TO_L_OPCTRL};
WriteInt = {WriteInt, 1'b0, 1'b0, 1'b1, 1'b1};
// add what unit is used and the fmt to their lists (one for each test)
for(int i = 0; i<20; i++) begin
Unit = {Unit, `CVTINTUNIT};
Fmt = {Fmt, 2'b00};
end
end
end
if (TEST === "cvtfp" | TEST === "all") begin // if floating point conversion is being tested
if(`ZFH_SUPPORTED) begin
// add the 32 <-> 16 bit conversions to the to-be-tested list
@ -508,27 +508,27 @@ module testbenchfp;
end
if (`ZFH_SUPPORTED) begin // if half precision supported
if (TEST === "cvtint"| TEST === "all") begin // if in conversions are being tested
Tests = {Tests, f16rv32cvtint};
// add the op-codes for these tests to the op-code list
OpCtrl = {OpCtrl, `FROM_UI_OPCTRL, `FROM_I_OPCTRL, `TO_UI_OPCTRL, `TO_I_OPCTRL};
WriteInt = {WriteInt, 1'b0, 1'b0, 1'b1, 1'b1};
// add what unit is used and the fmt to their lists (one for each test)
for(int i = 0; i<20; i++) begin
Unit = {Unit, `CVTINTUNIT};
Fmt = {Fmt, 2'b10};
end
if (`XLEN == 64) begin // if 64-bit integers are supported
Tests = {Tests, f16rv64cvtint};
// add the op-codes for these tests to the op-code list
OpCtrl = {OpCtrl, `FROM_UL_OPCTRL, `FROM_L_OPCTRL, `TO_UL_OPCTRL, `TO_L_OPCTRL};
WriteInt = {WriteInt, 1'b0, 1'b0, 1'b1, 1'b1};
// add what unit is used and the fmt to their lists (one for each test)
for(int i = 0; i<20; i++) begin
Unit = {Unit, `CVTINTUNIT};
Fmt = {Fmt, 2'b10};
end
end
end
Tests = {Tests, f16rv32cvtint};
// add the op-codes for these tests to the op-code list
OpCtrl = {OpCtrl, `FROM_UI_OPCTRL, `FROM_I_OPCTRL, `TO_UI_OPCTRL, `TO_I_OPCTRL};
WriteInt = {WriteInt, 1'b0, 1'b0, 1'b1, 1'b1};
// add what unit is used and the fmt to their lists (one for each test)
for(int i = 0; i<20; i++) begin
Unit = {Unit, `CVTINTUNIT};
Fmt = {Fmt, 2'b10};
end
if (`XLEN == 64) begin // if 64-bit integers are supported
Tests = {Tests, f16rv64cvtint};
// add the op-codes for these tests to the op-code list
OpCtrl = {OpCtrl, `FROM_UL_OPCTRL, `FROM_L_OPCTRL, `TO_UL_OPCTRL, `TO_L_OPCTRL};
WriteInt = {WriteInt, 1'b0, 1'b0, 1'b1, 1'b1};
// add what unit is used and the fmt to their lists (one for each test)
for(int i = 0; i<20; i++) begin
Unit = {Unit, `CVTINTUNIT};
Fmt = {Fmt, 2'b10};
end
end
end
if (TEST === "cmp" | TEST === "all") begin // if comparisions are being tested
// add the correct tests/op-ctrls/unit/fmt to their lists
Tests = {Tests, f16cmp};
@ -656,7 +656,8 @@ module testbenchfp;
end
// extract the inputs (X, Y, Z, SrcA) and the output (Ans, AnsFlg) from the current test vector
readvectors readvectors (.clk, .Fmt(FmtVal), .ModFmt, .TestVector(TestVectors[VectorNum]), .VectorNum, .Ans(Ans), .AnsFlg(AnsFlg), .SrcA,
readvectors readvectors (.clk, .Fmt(FmtVal), .ModFmt, .TestVector(TestVectors[VectorNum]),
.VectorNum, .Ans(Ans), .AnsFlg(AnsFlg), .SrcA,
.Xs, .Ys, .Zs, .Unit(UnitVal),
.Xe, .Ye, .Ze, .TestNum, .OpCtrl(OpCtrlVal),
.Xm, .Ym, .Zm, .DivStart,
@ -680,7 +681,7 @@ module testbenchfp;
///////////////////////////////////////////////////////////////////////////////////////////////
// instantiate devices under test
if (TEST === "fma"| TEST === "mul" | TEST === "add" | TEST === "all") begin : fma
if (TEST === "fma"| TEST === "mul" | TEST === "add" | TEST === "sub" | TEST === "all") begin : fma
fma fma(.Xs(Xs), .Ys(Ys), .Zs(Zs),
.Xe(Xe), .Ye(Ye), .Ze(Ze),
.Xm(Xm), .Ym(Ym), .Zm(Zm),
@ -1331,4 +1332,4 @@ module readvectors (
.Xm, .Ym, .Zm, .XNaN, .YNaN, .ZNaN, .XSNaN, .YSNaN, .ZSNaN,
.XSubnorm, .XZero, .YZero, .ZZero, .XInf, .YInf, .ZInf,
.XEn, .YEn, .ZEn, .XExpMax);
endmodule
endmodule

View File

@ -0,0 +1,4 @@
This folder holds the archtest and testfloat vectors necessary fo evaluating performance
of standalone intdiv vs combined IFdivsqrt
to generate vectors, uncomment line 8 in create_all_vectors.sh

View File

@ -0,0 +1,8 @@
#!/bin/sh
# create test vectors for stand alone int
./extract_testfloat_vectors.py
./extract_arch_vectors.py
# to create tvs for evaluation of combined IFdivsqrt
#./combined_IF_vectors/create_IF_vectors.sh

View File

@ -0,0 +1,251 @@
#! /usr/bin/python3
# author: Alessandro Maiuolo
# contact: amaiuolo@g.hmc.edu
# date created: 3-29-2023
# extract all arch test vectors
import os
wally = os.popen('echo $WALLY').read().strip()
def ext_bits(my_string):
target_len = 32 # we want 128 bits, div by 4 bc hex notation
zeroes_to_add = target_len - len(my_string)
return zeroes_to_add*"0" + my_string
def twos_comp(b, x):
if b == 32:
return hex(0x100000000 - int(x,16))[2:]
elif b == 64:
return hex(0x10000000000000000 - int(x,16))[2:]
else:
return "UNEXPECTED_BITSIZE"
def unpack_rf(packed):
bin_u = bin(int(packed, 16))[2:].zfill(8) # translate to binary
flags = hex(int(bin_u[3:],2))[2:].zfill(2)
rounding_mode = hex(int(bin_u[:3],2))[2:]
return flags, rounding_mode
# rounding mode dictionary
round_dict = {
"rne":"0",
"rnm":"4",
"ru":"3",
"rz":"1",
"rd":"2",
"dyn":"7"
}
# fcsr dictionary
fcsr_dict = {
"0":"rne",
"128":"rnm",
"96":"ru",
"32":"rz",
"64":"rd",
"224":"dyn"
}
print("creating arch test vectors")
class Config:
def __init__(self, bits, letter, op, filt, op_code):
self.bits = bits
self.letter = letter
self.op = op
self.filt = filt
self.op_code = op_code
def create_vectors(my_config):
suite_folder_num = my_config.bits
if my_config.bits == 64 and my_config.letter == "F": suite_folder_num = 32
source_dir1 = "{}/addins/riscv-arch-test/riscv-test-suite/rv{}i_m/{}/src/".format(wally, suite_folder_num, my_config.letter)
source_dir2 = "{}/tests/riscof/work/riscv-arch-test/rv{}i_m/{}/src/".format(wally, my_config.bits, my_config.letter)
dest_dir = "{}/tests/fp/combined_IF_vectors/IF_vectors/".format(wally)
all_vectors1 = os.listdir(source_dir1)
filt_vectors1 = [v for v in all_vectors1 if my_config.filt in v]
# print(filt_vectors1)
filt_vectors2 = [v + "/ref/Reference-sail_c_simulator.signature" for v in all_vectors1 if my_config.filt in v]
# iterate through all vectors
for i in range(len(filt_vectors1)):
vector1 = filt_vectors1[i]
vector2 = filt_vectors2[i]
operation = my_config.op_code
rounding_mode = "X"
flags = "XX"
# use name to create our new tv
dest_file = open("{}cvw_{}_{}.tv".format(dest_dir, my_config.bits, vector1[:-2]), 'a')
# open vectors
src_file1 = open(source_dir1 + vector1,'r')
src_file2 = open(source_dir2 + vector2,'r')
# for each test in the vector
reading = True
src_file2.readline() #skip first bc junk
# print(my_config.bits, my_config.letter)
if my_config.letter == "F" and my_config.bits == 64:
reading = True
# print("trigger 64F")
#skip first 2 lines bc junk
src_file2.readline()
while reading:
# get answer and flags from Ref...signature
# answers are before deadbeef (first line of 4)
# flags are after deadbeef (third line of 4)
answer = src_file2.readline().strip()
deadbeef = src_file2.readline().strip()
# print(answer)
if not (answer == "e7d4b281" and deadbeef == "6f5ca309"): # if there is still stuff to read
# get flags
packed = src_file2.readline().strip()[6:]
flags, rounding_mode = unpack_rf(packed)
# skip 00000000 buffer
src_file2.readline()
# parse through .S file
detected = False
done = False
op1val = "0"
op2val = "0"
while not (detected or done):
# print("det1")
line = src_file1.readline()
# print(line)
if "op1val" in line:
# print("det2")
# parse line
op1val = line.split("op1val")[1].split("x")[1].split(";")[0]
if my_config.op != "fsqrt": # sqrt doesn't have two input vals
op2val = line.split("op2val")[1].split("x")[1].strip()
if op2val[-1] == ";": op2val = op2val[:-1] # remove ; if it's there
else:
op2val = 32*"X"
# go to next test in vector
detected = True
elif "RVTEST_CODE_END" in line:
done = True
# put it all together
if not done:
translation = "{}_{}_{}_{}_{}_{}".format(operation, ext_bits(op1val), ext_bits(op2val), ext_bits(answer.strip()), flags, rounding_mode)
dest_file.write(translation + "\n")
else:
# print("read false")
reading = False
elif my_config.letter == "M" and my_config.bits == 64:
reading = True
#skip first 2 lines bc junk
src_file2.readline()
while reading:
# print("trigger 64M")
# get answer from Ref...signature
# answers span two lines and are reversed
answer2 = src_file2.readline().strip()
answer1 = src_file2.readline().strip()
answer = answer1 + answer2
# print(answer1,answer2)
if not (answer2 == "e7d4b281" and answer1 == "6f5ca309"): # if there is still stuff to read
# parse through .S file
detected = False
done = False
op1val = "0"
op2val = "0"
while not (detected or done):
# print("det1")
line = src_file1.readline()
# print(line)
if "op1val" in line:
# print("det2")
# parse line
op1val = line.split("op1val")[1].split("x")[1].split(";")[0]
if "-" in line.split("op1val")[1].split("x")[0]: # neg sign handling
op1val = twos_comp(my_config.bits, op1val)
if my_config.op != "fsqrt": # sqrt doesn't have two input vals, unnec here but keeping for later
op2val = line.split("op2val")[1].split("x")[1].strip()
if op2val[-1] == ";": op2val = op2val[:-1] # remove ; if it's there
if "-" in line.split("op2val")[1].split("x")[0]: # neg sign handling
op2val = twos_comp(my_config.bits, op2val)
# go to next test in vector
detected = True
elif "RVTEST_CODE_END" in line:
done = True
# ints don't have flags
flags = "XX"
# put it all together
if not done:
translation = "{}_{}_{}_{}_{}_{}".format(operation, ext_bits(op1val), ext_bits(op2val), ext_bits(answer.strip()), flags.strip(), rounding_mode)
dest_file.write(translation + "\n")
else:
# print("read false")
reading = False
else:
while reading:
# get answer and flags from Ref...signature
answer = src_file2.readline()
# print(answer)
packed = src_file2.readline()[6:]
# print(packed)
if len(packed.strip())>0: # if there is still stuff to read
# print("packed")
# parse through .S file
detected = False
done = False
op1val = "0"
op2val = "0"
while not (detected or done):
# print("det1")
line = src_file1.readline()
# print(line)
if "op1val" in line:
# print("det2")
# parse line
op1val = line.split("op1val")[1].split("x")[1].split(";")[0]
if "-" in line.split("op1val")[1].split("x")[0]: # neg sign handling
op1val = twos_comp(my_config.bits, op1val)
if my_config.op != "fsqrt": # sqrt doesn't have two input vals
op2val = line.split("op2val")[1].split("x")[1].strip()
if op2val[-1] == ";": op2val = op2val[:-1] # remove ; if it's there
if "-" in line.split("op2val")[1].split("x")[0]: # neg sign handling
op2val = twos_comp(my_config.bits, op2val)
# go to next test in vector
detected = True
elif "RVTEST_CODE_END" in line:
done = True
# rounding mode for float
if not done and (my_config.op == "fsqrt" or my_config.op == "fdiv"):
flags, rounding_mode = unpack_rf(packed)
# put it all together
if not done:
translation = "{}_{}_{}_{}_{}_{}".format(operation, ext_bits(op1val), ext_bits(op2val), ext_bits(answer.strip()), flags, rounding_mode)
dest_file.write(translation + "\n")
else:
# print("read false")
reading = False
print("out")
dest_file.close()
src_file1.close()
src_file2.close()
config_list = [
Config(32, "M", "div", "div_", 0),
Config(32, "F", "fdiv", "fdiv", 1),
Config(32, "F", "fsqrt", "fsqrt", 2),
Config(32, "M", "rem", "rem-", 3),
Config(32, "M", "divu", "divu-", 4),
Config(32, "M", "remu", "remu-", 5),
Config(64, "M", "div", "div-", 0),
Config(64, "F", "fdiv", "fdiv", 1),
Config(64, "F", "fsqrt", "fsqrt", 2),
Config(64, "M", "rem", "rem-", 3),
Config(64, "M", "divu", "divu-", 4),
Config(64, "M", "remu", "remu-", 5),
Config(64, "M", "divw", "divw-", 6),
Config(64, "M", "divuw", "divuw-", 7),
Config(64, "M", "remw", "remw-", 8),
Config(64, "M", "remuw", "remuw-", 9)
]
for c in config_list:
create_vectors(c)

View File

@ -0,0 +1,79 @@
#! /usr/bin/python3
# extract sqrt and float div testfloat vectors
# author: Alessandro Maiuolo
# contact: amaiuolo@g.hmc.edu
# date created: 3-29-2023
import os
wally = os.popen('echo $WALLY').read().strip()
# print(wally)
def ext_bits(my_string):
target_len = 32 # we want 128 bits, div by 4 bc hex notation
zeroes_to_add = target_len - len(my_string)
return zeroes_to_add*"0" + my_string
# rounding mode dictionary
round_dict = {
"rne":"0",
"rnm":"4",
"ru":"3",
"rz":"1",
"rd":"2",
"dyn":"7"
}
print("creating testfloat div test vectors")
source_dir = "{}/tests/fp/vectors/".format(wally)
dest_dir = "{}/tests/fp/combined_IF_vectors/IF_vectors/".format(wally)
all_vectors = os.listdir(source_dir)
div_vectors = [v for v in all_vectors if "div" in v]
# iterate through all float div vectors
for vector in div_vectors:
# use name to determine configs
config_list = vector.split(".")[0].split("_")
operation = "1" #float div
rounding_mode = round_dict[str(config_list[2])]
# use name to create our new tv
dest_file = open(dest_dir + "cvw_" + vector, 'a')
# open vector
src_file = open(source_dir + vector,'r')
# for each test in the vector
for i in src_file.readlines():
translation = "" # this stores the test that we are currently working on
[input_1, input_2, answer, flags] = i.split("_") # separate inputs, answer, and flags
# put it all together, strip nec for removing \n on the end of the flags
translation = "{}_{}_{}_{}_{}_{}".format(operation, ext_bits(input_1), ext_bits(input_2), ext_bits(answer), flags.strip(), rounding_mode)
dest_file.write(translation + "\n")
dest_file.close()
src_file.close()
print("creating testfloat sqrt test vectors")
sqrt_vectors = [v for v in all_vectors if "sqrt" in v]
# iterate through all float div vectors
for vector in sqrt_vectors:
# use name to determine configs
config_list = vector.split(".")[0].split("_")
operation = "2" #sqrt
rounding_mode = round_dict[str(config_list[2])]
# use name to create our new tv
dest_file = open(dest_dir + "cvw_" + vector, 'a')
# open vector
src_file = open(source_dir + vector,'r')
# for each test in the vector
for i in src_file.readlines():
translation = "" # this stores the test that we are currently working on
[input_1, answer, flags] = i.split("_") # separate inputs, answer, and flags
# put it all together, strip nec for removing \n on the end of the flags
translation = "{}_{}_{}_{}_{}_{}".format(operation, ext_bits(input_1), "X"*32, ext_bits(answer), flags.strip(), rounding_mode)
dest_file.write(translation + "\n")
dest_file.close()
src_file.close()

View File

@ -3,3 +3,6 @@
mkdir -p vectors
./create_vectors.sh
./remove_spaces.sh
# to create tvs for evaluation of combined IFdivsqrt
#./combined_IF_vectors/create_IF_vectors.sh