forked from Github_Repos/cvw
Finished unified divsqrt otfc and fgen name changes
This commit is contained in:
parent
34bd82e4a3
commit
a36747fda0
@ -102,7 +102,7 @@
|
||||
|
||||
// division constants
|
||||
`define RADIX 32'h2
|
||||
`define DIVCOPIES 32'h1
|
||||
`define DIVCOPIES 32'h5
|
||||
`define DIVLEN ((`NF < `XLEN) ? (`XLEN) : (`NF + 3))
|
||||
// `define DIVN (`NF < `XLEN ? `XLEN : `NF+1) // length of input
|
||||
`define DIVN (`NF < `XLEN ? `XLEN : `NF+3) // length of input
|
||||
|
@ -119,13 +119,13 @@ module fdivsqrtiter(
|
||||
if (`RADIX == 2) begin: stage
|
||||
fdivsqrtstage2 fdivsqrtstage(.D, .DBar, .D2, .DBar2, .SqrtM,
|
||||
.WS(WS[i]), .WC(WC[i]), .WSA(WSA[i]), .WCA(WCA[i]),
|
||||
.C(C[i]), .S(U[i]), .SM(UM[i]), .CNext(C[i+1]), .SNext(UNext[i]), .SMNext(UMNext[i]), .qn(qn[i]));
|
||||
.C(C[i]), .U(U[i]), .UM(UM[i]), .CNext(C[i+1]), .UNext(UNext[i]), .UMNext(UMNext[i]), .qn(qn[i]));
|
||||
end else begin: stage
|
||||
logic j1;
|
||||
assign j1 = (i == 0 & ~C[0][`DIVb-1]);
|
||||
fdivsqrtstage4 fdivsqrtstage(.D, .DBar, .D2, .DBar2, .SqrtM, .j1,
|
||||
.WS(WS[i]), .WC(WC[i]), .WSA(WSA[i]), .WCA(WCA[i]),
|
||||
.C(C[i]), .S(U[i]), .SM(UM[i]), .CNext(C[i+1]), .SNext(UNext[i]), .SMNext(UMNext[i]), .qn(qn[i]));
|
||||
.C(C[i]), .U(U[i]), .UM(UM[i]), .CNext(C[i+1]), .UNext(UNext[i]), .UMNext(UMNext[i]), .qn(qn[i]));
|
||||
end
|
||||
if(i<(`DIVCOPIES-1)) begin
|
||||
assign WS[i+1] = WSA[i] << `LOGR;
|
||||
|
@ -71,11 +71,13 @@ module fdivsqrtpostproc(
|
||||
|
||||
// division takes the result from the next cycle, which is shifted to the left one more time so the square root also needs to be shifted
|
||||
always_comb
|
||||
if(SqrtM) // sqrt ouputs in the range (1, .5]
|
||||
if(NegSticky) QmM = FirstUM[`DIVb-(`RADIX/4):0] << SqrtM;
|
||||
else QmM = FirstU[`DIVb-(`RADIX/4):0] << SqrtM;
|
||||
/* if(SqrtM) // sqrt ouputs in the range (1, .5]
|
||||
if(NegSticky) QmM = {FirstUM[`DIVb-1-(`RADIX/4):0], 1'b0};
|
||||
else QmM = {FirstU[`DIVb-1-(`RADIX/4):0], 1'b0};
|
||||
else
|
||||
if(NegSticky) QmM = FirstUM[`DIVb-(`RADIX/4):0];
|
||||
else QmM = FirstU[`DIVb-(`RADIX/4):0];
|
||||
else QmM = FirstU[`DIVb-(`RADIX/4):0]; */
|
||||
|
||||
endmodule
|
@ -34,13 +34,13 @@
|
||||
module fdivsqrtstage2 (
|
||||
input logic [`DIVN-2:0] D,
|
||||
input logic [`DIVb+3:0] DBar, D2, DBar2,
|
||||
input logic [`DIVb:0] S, SM,
|
||||
input logic [`DIVb:0] U, UM,
|
||||
input logic [`DIVb+3:0] WS, WC,
|
||||
input logic [`DIVb+1:0] C,
|
||||
input logic SqrtM,
|
||||
output logic qn,
|
||||
output logic [`DIVb+1:0] CNext,
|
||||
output logic [`DIVb:0] SNext, SMNext,
|
||||
output logic [`DIVb:0] UNext, UMNext,
|
||||
output logic [`DIVb+3:0] WSA, WCA
|
||||
);
|
||||
/* verilator lint_on UNOPTFLAT */
|
||||
@ -61,7 +61,7 @@ module fdivsqrtstage2 (
|
||||
// 0010 = -1
|
||||
// 0001 = -2
|
||||
qsel2 qsel2(WS[`DIVb+3:`DIVb], WC[`DIVb+3:`DIVb], qp, qz, qn);
|
||||
fgen2 fgen2(.sp(qp), .sz(qz), .C(CNext), .S, .SM, .F);
|
||||
fgen2 fgen2(.sp(qp), .sz(qz), .C(CNext), .U, .UM, .F);
|
||||
|
||||
assign Dsel = {`DIVb+4{~qz}}&(qp ? DBar : {3'b0, 1'b1, D, {`DIVb-`DIVN+1{1'b0}}});
|
||||
// Partial Product Generation
|
||||
@ -69,7 +69,7 @@ module fdivsqrtstage2 (
|
||||
assign AddIn = SqrtM ? F : Dsel;
|
||||
csa #(`DIVb+4) csa(WS, WC, AddIn, qp&~SqrtM, WSA, WCA);
|
||||
|
||||
sotfc2 sotfc2(.sp(qp), .sz(qz), .C(CNext), .S, .SM, .SNext, .SMNext);
|
||||
uotfc2 uotfc2(.sp(qp), .sz(qz), .C(CNext), .U, .UM, .UNext, .UMNext);
|
||||
endmodule
|
||||
|
||||
|
||||
|
@ -34,13 +34,13 @@
|
||||
module fdivsqrtstage4 (
|
||||
input logic [`DIVN-2:0] D,
|
||||
input logic [`DIVb+3:0] DBar, D2, DBar2,
|
||||
input logic [`DIVb:0] S, SM,
|
||||
input logic [`DIVb:0] U, UM,
|
||||
input logic [`DIVb+3:0] WS, WC,
|
||||
input logic [`DIVb+1:0] C,
|
||||
output logic [`DIVb+1:0] CNext,
|
||||
input logic SqrtM, j1,
|
||||
output logic qn,
|
||||
output logic [`DIVb:0] SNext, SMNext,
|
||||
output logic [`DIVb:0] UNext, UMNext,
|
||||
output logic [`DIVb+3:0] WSA, WCA
|
||||
);
|
||||
/* verilator lint_on UNOPTFLAT */
|
||||
@ -61,9 +61,9 @@ module fdivsqrtstage4 (
|
||||
// 0000 = 0
|
||||
// 0010 = -1
|
||||
// 0001 = -2
|
||||
assign Smsbs = S[`DIVb:`DIVb-4];
|
||||
assign Smsbs = U[`DIVb:`DIVb-4];
|
||||
qsel4 qsel4(.D, .Smsbs, .WS, .WC, .Sqrt(SqrtM), .j1, .q);
|
||||
fgen4 fgen4(.s(q), .C({2'b11, CNext}), .S({3'b000, S}), .SM({3'b000, SM}), .F);
|
||||
fgen4 fgen4(.s(q), .C({2'b11, CNext}), .U({3'b000, U}), .UM({3'b000, UM}), .F);
|
||||
|
||||
always_comb
|
||||
case (q)
|
||||
@ -81,7 +81,7 @@ module fdivsqrtstage4 (
|
||||
assign CarryIn = ~SqrtM & (q[3] | q[2]); // +1 for 2's complement of -D and -2D
|
||||
csa #(`DIVb+4) csa(WS, WC, AddIn, CarryIn, WSA, WCA);
|
||||
|
||||
sotfc4 sotfc4(.s(q), .Sqrt(SqrtM), .C(CNext[`DIVb:0]), .S, .SM, .SNext, .SMNext);
|
||||
uotfc4 uotfc4(.s(q), .Sqrt(SqrtM), .C(CNext[`DIVb:0]), .U, .UM, .UNext, .UMNext);
|
||||
|
||||
assign qn = 0; // unused for radix 4
|
||||
endmodule
|
||||
|
@ -31,45 +31,44 @@
|
||||
`include "wally-config.vh"
|
||||
|
||||
///////////////////////////////
|
||||
// Square Root OTFC, Radix 2 //
|
||||
// Un ified OTFC, Radix 2 //
|
||||
///////////////////////////////
|
||||
module sotfc2(
|
||||
module uotfc2(
|
||||
input logic sp, sz,
|
||||
input logic [`DIVb+1:0] C,
|
||||
input logic [`DIVb:0] S, SM,
|
||||
output logic [`DIVb:0] SNext, SMNext
|
||||
input logic [`DIVb:0] U, UM,
|
||||
output logic [`DIVb:0] UNext, UMNext
|
||||
);
|
||||
// The on-the-fly converter transfers the square root
|
||||
// The on-the-fly converter transfers the divsqrt
|
||||
// bits to the quotient as they come.
|
||||
// Use this otfc for division and square root.
|
||||
logic [`DIVb:0] K;
|
||||
|
||||
assign K = (C[`DIVb:0] & ~(C[`DIVb:0] << 1));
|
||||
|
||||
always_comb begin
|
||||
if (sp) begin
|
||||
SNext = S | K;
|
||||
SMNext = S;
|
||||
UNext = U | K;
|
||||
UMNext = U;
|
||||
end else if (sz) begin
|
||||
SNext = S;
|
||||
SMNext = SM | K;
|
||||
UNext = U;
|
||||
UMNext = UM | K;
|
||||
end else begin // If sp and sz are not true, then sn is
|
||||
SNext = SM | K;
|
||||
SMNext = SM;
|
||||
UNext = UM | K;
|
||||
UMNext = UM;
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
///////////////////////////////
|
||||
// Square Root OTFC, Radix 4 //
|
||||
// Unified OTFC, Radix 4 //
|
||||
///////////////////////////////
|
||||
module sotfc4(
|
||||
module uotfc4(
|
||||
input logic [3:0] s,
|
||||
input logic Sqrt,
|
||||
input logic [`DIVb:0] S, SM,
|
||||
input logic [`DIVb:0] U, UM,
|
||||
input logic [`DIVb:0] C,
|
||||
output logic [`DIVb:0] SNext, SMNext
|
||||
output logic [`DIVb:0] UNext, UMNext
|
||||
);
|
||||
// The on-the-fly converter transfers the square root
|
||||
// bits to the quotient as they come.
|
||||
@ -82,20 +81,20 @@ module sotfc4(
|
||||
|
||||
always_comb begin
|
||||
if (s[3]) begin
|
||||
SNext = S | K2;
|
||||
SMNext = S | K1;
|
||||
UNext = U | K2;
|
||||
UMNext = U | K1;
|
||||
end else if (s[2]) begin
|
||||
SNext = S | K1;
|
||||
SMNext = S;
|
||||
UNext = U | K1;
|
||||
UMNext = U;
|
||||
end else if (s[1]) begin
|
||||
SNext = SM | K3;
|
||||
SMNext = SM | K2;
|
||||
UNext = UM | K3;
|
||||
UMNext = UM | K2;
|
||||
end else if (s[0]) begin
|
||||
SNext = SM | K2;
|
||||
SMNext = SM | K1;
|
||||
UNext = UM | K2;
|
||||
UMNext = UM | K1;
|
||||
end else begin // If sp and sn are not true, then sz is
|
||||
SNext = S;
|
||||
SMNext = SM | K3;
|
||||
UNext = U;
|
||||
UMNext = UM | K3;
|
||||
end
|
||||
end
|
||||
|
||||
|
@ -68,14 +68,14 @@ endmodule
|
||||
module fgen2 (
|
||||
input logic sp, sz,
|
||||
input logic [`DIVb+1:0] C,
|
||||
input logic [`DIVb:0] S, SM,
|
||||
input logic [`DIVb:0] U, UM,
|
||||
output logic [`DIVb+3:0] F
|
||||
);
|
||||
logic [`DIVb+3:0] FP, FN, FZ;
|
||||
logic [`DIVb+3:0] SExt, SMExt, CExt;
|
||||
|
||||
assign SExt = {3'b0, S};
|
||||
assign SMExt = {3'b0, SM};
|
||||
assign SExt = {3'b0, U};
|
||||
assign SMExt = {3'b0, UM};
|
||||
assign CExt = {2'b11, C}; // extend C from Q2.k to Q4.k
|
||||
|
||||
// Generate for both positive and negative bits
|
||||
@ -254,17 +254,17 @@ endmodule
|
||||
////////////////////////////////////
|
||||
module fgen4 (
|
||||
input logic [3:0] s,
|
||||
input logic [`DIVb+3:0] C, S, SM,
|
||||
input logic [`DIVb+3:0] C, U, UM,
|
||||
output logic [`DIVb+3:0] F
|
||||
);
|
||||
logic [`DIVb+3:0] F2, F1, F0, FN1, FN2;
|
||||
|
||||
// Generate for both positive and negative bits
|
||||
assign F2 = (~S << 2) & (C << 2);
|
||||
assign F1 = ~(S << 1) & C;
|
||||
assign F2 = (~U << 2) & (C << 2);
|
||||
assign F1 = ~(U << 1) & C;
|
||||
assign F0 = '0;
|
||||
assign FN1 = (SM << 1) | (C & ~(C << 3));
|
||||
assign FN2 = (SM << 2) | ((C << 2)&~(C << 4));
|
||||
assign FN1 = (UM << 1) | (C & ~(C << 3));
|
||||
assign FN2 = (UM << 2) | ((C << 2)&~(C << 4));
|
||||
|
||||
// Choose which adder input will be used
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user