fcvt.sv paramaterized

This commit is contained in:
Katherine Parry 2022-05-26 20:48:22 +00:00
parent f3b28b988b
commit 9d281b2604
4 changed files with 573 additions and 132 deletions

View File

@ -39,12 +39,12 @@
// MISA RISC-V configuration per specification // MISA RISC-V configuration per specification
//16 - quad 3 - double 5 - single //16 - quad 3 - double 5 - single
`define MISA (32'h00000104 | 1 << 5 | 1 << 3 | 0 << 16 | 1 << 18 | 1 << 20 | 1 << 12 | 1 << 0 ) `define MISA (32'h00000104 | 1 << 5 | 1 << 3 | 1 << 16 | 1 << 18 | 1 << 20 | 1 << 12 | 1 << 0 )
`define ZICSR_SUPPORTED 1 `define ZICSR_SUPPORTED 1
`define ZIFENCEI_SUPPORTED 1 `define ZIFENCEI_SUPPORTED 1
`define COUNTERS 32 `define COUNTERS 32
`define ZICOUNTERS_SUPPORTED 1 `define ZICOUNTERS_SUPPORTED 1
`define ZFH_SUPPORTED 0 `define ZFH_SUPPORTED 1
/// Microarchitectural Features /// Microarchitectural Features
`define UARCH_PIPELINED 1 `define UARCH_PIPELINED 1

View File

@ -82,7 +82,11 @@ module fcvt (
// choose the ouptut format depending on the opperation // choose the ouptut format depending on the opperation
// - fp -> fp: OpCtrl contains the percision of the output // - fp -> fp: OpCtrl contains the percision of the output
// - int -> fp: FmtE contains the percision of the output // - int -> fp: FmtE contains the percision of the output
assign OutFmt = IntToFp ? FmtE : (FOpCtrlE[1:0] == `FMT); if (`FPSIZES == 2)
assign OutFmt = IntToFp ? FmtE : (FOpCtrlE[1:0] == `FMT);
else if (`FPSIZES == 3 | `FPSIZES == 4)
assign OutFmt = IntToFp ? FmtE : FOpCtrlE[1:0];
/////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////
// negation // negation
@ -108,7 +112,7 @@ module fcvt (
// int -> fp : | positive integer | 00000... (if needed) | // int -> fp : | positive integer | 00000... (if needed) |
// fp -> fp : | fraction | 00000... (if needed) | // fp -> fp : | fraction | 00000... (if needed) |
assign LzcIn = IntToFp ? {PosInt, {`LGLEN-`XLEN{1'b0}}} : // I->F assign LzcIn = IntToFp ? {PosInt, {`LGLEN-`XLEN{1'b0}}} : // I->F
{XManE[`NF-1:0], {`LGLEN-`NF{1'b0}}}; // F->F {XManE[`NF-1:0], {`LGLEN-`NF{1'b0}}}; // F->F
// lglen is the largest possible value of ZeroCnt (NF or XLEN) hence normcnt must be log2(lglen) bits // lglen is the largest possible value of ZeroCnt (NF or XLEN) hence normcnt must be log2(lglen) bits
logic [$clog2(`LGLEN):0] i, ZeroCnt; logic [$clog2(`LGLEN):0] i, ZeroCnt;
@ -122,25 +126,6 @@ module fcvt (
/////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////
// shifter // shifter
/////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////
// F->F shift so the fraction is not denormalized
// Large->Small Denrom -> Norm Frac:
//
// | Frac | `NF zeros| << ShiftCnt
//
// Small->Large Norm -> Denorm Frac:
// - shift right so that the new-bias exponet = 1
// - so shift right by new-bias - 1 exponent
// - ie shift left by NF - 1 + new-bias exponent (if this is negitive then 0 is selected as a result later)
// - new-bias exponent is negitive
//
// | `NF-1 zeros |1| Frac | << NF + new-bias exponent
// | keep |
//
// Int -> Fp :
// | Int | `NF zeros| << ShiftCnt
// Fp -> Int :
// | `XLEN zeros | Man | << CalcExp
// seclect the input to the shifter // seclect the input to the shifter
// fp -> int: // fp -> int:
@ -150,12 +135,13 @@ module fcvt (
// - we do however want to keep the one in the sticky bit so set one of bits in the sticky bit area to 1 // - we do however want to keep the one in the sticky bit so set one of bits in the sticky bit area to 1
// - ex: for the case 0010000.... (double) // - ex: for the case 0010000.... (double)
// ??? -> fp: // ??? -> fp:
// - if result is denormalized or underflowed then we want to normalize the result: // - if result is denormalized or underflowed then we want to shift right i.e. shift right then shift left:
// | `NF zeros | Mantissa | 0's if nessisary | // | `NF-1 zeros | Mantissa | 0's if nessisary |
// - otherwise: // - otherwise:
// | lzcIn | 0's if nessisary | // | lzcIn | 0's if nessisary |
assign ShiftIn = ToInt ? {{`XLEN{1'b0}}, XManE[`NF]&~CalcExp[`NE], XManE[`NF-1]|(CalcExp[`NE]&XManE[`NF]), XManE[`NF-2:0], {`LGLEN-`XLEN{1'b0}}} : assign ShiftIn = ToInt ? {{`XLEN{1'b0}}, XManE[`NF]&~CalcExp[`NE], XManE[`NF-1]|(CalcExp[`NE]&XManE[`NF]), XManE[`NF-2:0], {`LGLEN-`XLEN{1'b0}}} :
ResDenormUf ? {{`NF-1{1'b0}}, XManE, {`LGLEN-`NF+1{1'b0}}} : {LzcIn, {`NF+1{1'b0}}}; ResDenormUf ? {{`NF-1{1'b0}}, XManE, {`LGLEN-`NF+1{1'b0}}} :
{LzcIn, {`NF+1{1'b0}}};
// kill the shift if it's negitive // kill the shift if it's negitive
// select the amount to shift by // select the amount to shift by
// fp -> int: // fp -> int:
@ -169,16 +155,49 @@ module fcvt (
// - this is a problem because the input to the lzc was the fraction rather than the mantissa // - this is a problem because the input to the lzc was the fraction rather than the mantissa
// - rather have a few and-gates than an extra bit in the priority encoder??? *** is this true? // - rather have a few and-gates than an extra bit in the priority encoder??? *** is this true?
assign ShiftAmt = ToInt ? CalcExp[$clog2(`LGLEN):0]&{$clog2(`LGLEN)+1{~CalcExp[`NE]}} : assign ShiftAmt = ToInt ? CalcExp[$clog2(`LGLEN):0]&{$clog2(`LGLEN)+1{~CalcExp[`NE]}} :
ResDenormUf&~IntToFp ? ($clog2(`LGLEN)+1)'(`NF-1)+CalcExp[$clog2(`LGLEN):0] : (ZeroCnt+1)&{$clog2(`LGLEN)+1{XOrigDenormE|IntToFp}}; ResDenormUf&~IntToFp ? ($clog2(`LGLEN)+1)'(`NF-1)+CalcExp[$clog2(`LGLEN):0] :
(ZeroCnt+1)&{$clog2(`LGLEN)+1{XOrigDenormE|IntToFp}};
// shift // shift
// fp -> int: | `XLEN zeros | Mantissa | 0's if nessisary | << CalcExp
// process:
// - start - CalcExp = 1 + XExp - Largest Bias
// | `XLEN zeros | Mantissa | 0's if nessisary |
//
// - shift left 1 (1)
// | `XLEN-1 zeros |bit| frac | 0's if nessisary |
// . <- binary point
//
// - shift left till unbiased exponent is 0 (XExp - Largest Bias)
// | 0's | Mantissa | 0's if nessisary |
// | keep |
//
// fp -> fp:
// - if result is denormalized or underflowed:
// | `NF-1 zeros | Mantissa | 0's if nessisary | << NF+CalcExp-1
// process:
// - start
// | mantissa | 0's |
//
// - shift right by NF-1 (NF-1)
// | `NF-1 zeros | mantissa | 0's |
//
// - shift left by CalcExp = XExp - Largest bias + new bias
// | 0's | mantissa | 0's |
// | keep |
//
// - if the input is denormalized:
// | lzcIn | 0's if nessisary | << ZeroCnt+1
// - plus 1 to shift out the first 1
//
// int -> fp: | lzcIn | 0's if nessisary | << ZeroCnt+1
// - plus 1 to shift out the first 1
assign Shifted = ShiftIn << ShiftAmt; assign Shifted = ShiftIn << ShiftAmt;
/////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////
// exp calculations // exp calculations
/////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////
// fp -> int
// CalcExp = 1 - largest bias + 1 -
// *** possible optimizaations: // *** possible optimizaations:
@ -192,10 +211,35 @@ module fcvt (
// Select the bias of the output // Select the bias of the output
// fp -> int : select 1 // fp -> int : select 1
// ??? -> fp : pick the new bias depending on the output format // ??? -> fp : pick the new bias depending on the output format
if (`FPSIZES == 1) begin
assign NewBias = ToInt ? (`NE-1)'(1) : (`NE-1)'(`BIAS);
assign NewBias = ToInt ? (`NE-1)'(1) : OutFmt ? (`NE-1)'(`BIAS) : (`NE-1)'(`BIAS1); end else if (`FPSIZES == 2) begin
assign NewBias = ToInt ? (`NE-1)'(1) : OutFmt ? (`NE-1)'(`BIAS) : (`NE-1)'(`BIAS1);
end else if (`FPSIZES == 3) begin
logic [`NE-2:0] NewBiasToFp;
always_comb
case (OutFmt)
`FMT: NewBiasToFp = (`NE-1)'(`BIAS);
`FMT1: NewBiasToFp = (`NE-1)'(`BIAS1);
`FMT2: NewBiasToFp = (`NE-1)'(`BIAS2);
default: NewBiasToFp = 1'bx;
endcase
assign NewBias = ToInt ? (`NE-1)'(1) : NewBiasToFp;
end else if (`FPSIZES == 4) begin
logic [`NE-2:0] NewBiasToFp;
always_comb
case (OutFmt)
2'h3: NewBiasToFp = (`NE-1)'(`Q_BIAS);
2'h1: NewBiasToFp = (`NE-1)'(`D_BIAS);
2'h0: NewBiasToFp = (`NE-1)'(`S_BIAS);
2'h2: NewBiasToFp = (`NE-1)'(`H_BIAS);
endcase
assign NewBias = ToInt ? (`NE-1)'(1) : NewBiasToFp;
end
// select the old exponent // select the old exponent
// int -> fp : largest bias + XLEN // int -> fp : largest bias + XLEN
// fp -> ??? : XExp // fp -> ??? : XExp
@ -203,22 +247,76 @@ module fcvt (
// calculate CalcExp // calculate CalcExp
// fp -> fp : // fp -> fp :
// - XExp - Largest bias + new bias // - XExp - Largest bias + new bias - (ZeroCnt+1)
// fp -> int : XExp // only do ^ if the input was denormalized
// int -> fp : largest bias + XLEN // - convert the expoenent to the final preciaion (Exp - oldBias + newBias)
// the -XOrigDenorm is to take into account the correction (which had a plus 1) // - correct the expoent when there is a normalization shift ( + ZeroCnt+1)
// fp -> int : XExp - Largest Bias + 1 - (ZeroCnt+1)
// | `XLEN zeros | Mantissa | 0's if nessisary | << CalcExp
// process:
// - start
// | `XLEN zeros | Mantissa | 0's if nessisary |
//
// - shift left 1 (1)
// | `XLEN-1 zeros |bit| frac | 0's if nessisary |
// . <- binary point
//
// - shift left till unbiased exponent is 0 (XExp - Largest Bias)
// | 0's | Mantissa | 0's if nessisary |
// | keep |
//
// - if the input is denormalized then we dont shift... so the "- (ZeroCnt+1)" is just leftovers from other options
// int -> fp : largest bias XLEN - Largest bias + new bias - 1 - ZeroCnt = XLEN + NewBias - 1 - ZeroCnt
// Process:
// - shifted right by XLEN (XLEN)
// - shift left to normilize (-1-ZeroCnt)
// - newBias to make the biased exponent
//
assign CalcExp = {1'b0, OldExp} - (`NE+1)'(`BIAS) + {2'b0, NewBias} - {{`NE{1'b0}}, XOrigDenormE|IntToFp} - {{`NE-$clog2(`LGLEN){1'b0}}, (ZeroCnt&{$clog2(`LGLEN)+1{XOrigDenormE|IntToFp}})}; assign CalcExp = {1'b0, OldExp} - (`NE+1)'(`BIAS) + {2'b0, NewBias} - {{`NE{1'b0}}, XOrigDenormE|IntToFp} - {{`NE-$clog2(`LGLEN){1'b0}}, (ZeroCnt&{$clog2(`LGLEN)+1{XOrigDenormE|IntToFp}})};
// if result is 0 or negitive // find if the result is dnormal or underflows
assign ResDenormUf = (~|CalcExp | CalcExp[`NE])&~XZeroE; // - if Calculated expoenent is 0 or negitive (and the input/result is not exactaly 0)
assign ResNegNF = (FOpCtrlE[1:0] == `FMT) ? -`NF : -`NF1; // - can't underflow an integer to Fp conversion
// if the reuslt underflows and somthing is shifted out set the sticky bit assign ResDenormUf = (~|CalcExp | CalcExp[`NE])&~XZeroE&~IntToFp;
assign ResUf = ($signed(CalcExp) < $signed({{`NE-$clog2(`NF){1'b1}}, ResNegNF}))&~XZeroE; // choose the negative of the fraction size
if (`FPSIZES == 1) begin
assign ResNegNF = -`NF;
end else if (`FPSIZES == 2) begin
assign ResNegNF = OutFmt ? -`NF : -`NF1;
end else if (`FPSIZES == 3) begin
always_comb
case (OutFmt)
`FMT: ResNegNF = -`NF;
`FMT1: ResNegNF = -`NF1;
`FMT2: ResNegNF = -`NF2;
default: ResNegNF = 1'bx;
endcase
end else if (`FPSIZES == 4) begin
always_comb
case (OutFmt)
2'h3: ResNegNF = -`Q_NF;
2'h1: ResNegNF = -`D_NF;
2'h0: ResNegNF = -`S_NF;
2'h2: ResNegNF = -`H_NF;
endcase
end
// determine if the result underflows ??? -> fp
// - if the first 1 is shifted out of the result then the result underflows
// - can't underflow an integer to fp conversions
assign ResUf = ($signed(CalcExp) < $signed({{`NE-$clog2(`NF){1'b1}}, ResNegNF}))&~XZeroE&~IntToFp;
/////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////
// sign // sign
/////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////
// determine the sign of the result
// - if int -> fp
// - if 64-bit : check the msb of the 64-bit integer input and if it's signed
// - if 32-bit : check the msb of the 32-bit integer input and if it's signed
// - otherwise: the floating point input's sign
assign ResSgn = IntToFp ? Int64 ? ForwardedSrcAE[`XLEN-1]&Signed : ForwardedSrcAE[31]&Signed : XSgnE; assign ResSgn = IntToFp ? Int64 ? ForwardedSrcAE[`XLEN-1]&Signed : ForwardedSrcAE[31]&Signed : XSgnE;
/////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////
@ -241,17 +339,80 @@ module fcvt (
// {Guard, Round, Sticky} // {Guard, Round, Sticky}
// 0x - do nothing // 0x - do nothing
// 1x - Plus1 // 1x - Plus1
// ResUf is used when a fp->fp result underflows but all the bits get shifted out, which leaves nothing for the sticky bit
if (`FPSIZES == 1) begin
assign Sticky = ToInt ? |Shifted[`LGLEN+`NF-`XLEN-1:0] : |Shifted[`LGLEN+`NF-`NF-1:0]|ResUf;
assign Round = ToInt ? Shifted[`LGLEN+`NF-`XLEN] : Shifted[`LGLEN+`NF-`NF];
assign LSBFrac = ToInt ? Shifted[`LGLEN+`NF-`XLEN+1] : Shifted[`LGLEN+`NF-`NF+1];
// ResUf is used when a fp->fp result underflows but all the bits get shifted out, leaving nothing for the sticky bit end else if (`FPSIZES == 2) begin
assign Sticky = ToInt ? |Shifted[`LGLEN+`NF-`XLEN-1:0] : assign Sticky = ToInt ? |Shifted[`LGLEN+`NF-`XLEN-1:0] :
(OutFmt ? |Shifted[`LGLEN+`NF-`NF-1:0] : |Shifted[`LGLEN+`NF-`NF1-1:0])|ResUf; (OutFmt ? |Shifted[`LGLEN+`NF-`NF-1:0] : |Shifted[`LGLEN+`NF-`NF1-1:0])|ResUf;
assign Round = ToInt ? Shifted[`LGLEN+`NF-`XLEN] : assign Round = ToInt ? Shifted[`LGLEN+`NF-`XLEN] :
OutFmt ? Shifted[`LGLEN+`NF-`NF] : |Shifted[`LGLEN+`NF-`NF1]; OutFmt ? Shifted[`LGLEN+`NF-`NF] : Shifted[`LGLEN+`NF-`NF1];
assign LSBFrac = ToInt ? Shifted[`LGLEN+`NF-`XLEN+1] : assign LSBFrac = ToInt ? Shifted[`LGLEN+`NF-`XLEN+1] :
OutFmt ? Shifted[`LGLEN+`NF-`NF+1] : Shifted[`LGLEN+`NF-`NF1+1]; OutFmt ? Shifted[`LGLEN+`NF-`NF+1] : Shifted[`LGLEN+`NF-`NF1+1];
end else if (`FPSIZES == 3) begin
logic ToFpSticky, ToFpRound, ToFpLSBFrac;
always_comb
case (OutFmt)
`FMT: begin
ToFpSticky = |Shifted[`LGLEN+`NF-`NF-1:0];
ToFpRound = Shifted[`LGLEN+`NF-`NF];
ToFpLSBFrac = Shifted[`LGLEN+`NF-`NF+1];
end
`FMT1: begin
ToFpSticky = |Shifted[`LGLEN+`NF-`NF1-1:0];
ToFpRound = Shifted[`LGLEN+`NF-`NF1];
ToFpLSBFrac = Shifted[`LGLEN+`NF-`NF1+1];
end
`FMT2: begin
ToFpSticky = |Shifted[`LGLEN+`NF-`NF2-1:0];
ToFpRound = Shifted[`LGLEN+`NF-`NF2];
ToFpLSBFrac = Shifted[`LGLEN+`NF-`NF2+1];
end
default: begin
ToFpSticky = 1'bx;
ToFpRound = 1'bx;
ToFpLSBFrac = 1'bx;
end
endcase
assign Sticky = ToInt ? |Shifted[`LGLEN+`NF-`XLEN-1:0] : ToFpSticky|ResUf;
assign Round = ToInt ? Shifted[`LGLEN+`NF-`XLEN] : ToFpRound;
assign LSBFrac = ToInt ? Shifted[`LGLEN+`NF-`XLEN+1] : ToFpLSBFrac;
always_comb begin // ***remove guard bit end else if (`FPSIZES == 4) begin
logic ToFpSticky, ToFpRound, ToFpLSBFrac;
always_comb
case (OutFmt)
2'h3: begin
ToFpSticky = |Shifted[`LGLEN+`Q_NF-`Q_NF-1:0];
ToFpRound = Shifted[`LGLEN+`Q_NF-`Q_NF];
ToFpLSBFrac = Shifted[`LGLEN+`Q_NF-`Q_NF+1];
end
2'h1: begin
ToFpSticky = |Shifted[`LGLEN+`Q_NF-`D_NF-1:0];
ToFpRound = Shifted[`LGLEN+`Q_NF-`D_NF];
ToFpLSBFrac = Shifted[`LGLEN+`Q_NF-`D_NF+1];
end
2'h0: begin
ToFpSticky = |Shifted[`LGLEN+`Q_NF-`S_NF-1:0];
ToFpRound = Shifted[`LGLEN+`Q_NF-`S_NF];
ToFpLSBFrac = Shifted[`LGLEN+`Q_NF-`S_NF+1];
end
2'h2: begin
ToFpSticky = |Shifted[`LGLEN+`Q_NF-`H_NF-1:0];
ToFpRound = Shifted[`LGLEN+`Q_NF-`H_NF];
ToFpLSBFrac = Shifted[`LGLEN+`Q_NF-`H_NF+1];
end
endcase
assign Sticky = ToInt ? |Shifted[`LGLEN+`NF-`XLEN-1:0] : ToFpSticky|ResUf;
assign Round = ToInt ? Shifted[`LGLEN+`NF-`XLEN] : ToFpRound;
assign LSBFrac = ToInt ? Shifted[`LGLEN+`NF-`XLEN+1] : ToFpLSBFrac;
end
always_comb
// Determine if you add 1 // Determine if you add 1
case (FrmE) case (FrmE)
3'b000: CalcPlus1 = Round & (Sticky | LSBFrac);//round to nearest even 3'b000: CalcPlus1 = Round & (Sticky | LSBFrac);//round to nearest even
@ -261,32 +422,98 @@ module fcvt (
3'b100: CalcPlus1 = Round;//round to nearest max magnitude 3'b100: CalcPlus1 = Round;//round to nearest max magnitude
default: CalcPlus1 = 1'bx; default: CalcPlus1 = 1'bx;
endcase endcase
end
assign Plus1 = CalcPlus1&(Round|Sticky);
assign ShiftedPlus1 = OutFmt ? {{`FLEN-1{1'b0}},Plus1} : {{`NE+`NF1{1'b0}}, Plus1, {`FLEN-`NE-`NF1-1{1'b0}}};
// dont round if exact
assign Plus1 = CalcPlus1&(Round|Sticky);
// shift the 1 to the propper position for rounding
// - dont round it converting to integer
if (`FPSIZES == 1) begin
assign ShiftedPlus1 = {{`FLEN-1{1'b0}},Plus1&~ToInt};
end else if (`FPSIZES == 2) begin
assign ShiftedPlus1 = OutFmt ? {{`FLEN-1{1'b0}},Plus1&~ToInt} : {{`NE+`NF1{1'b0}}, Plus1&~ToInt, {`FLEN-`NE-`NF1-1{1'b0}}};
end else if (`FPSIZES == 3) begin
always_comb
case (OutFmt)
`FMT: ShiftedPlus1 = {{`FLEN-1{1'b0}},Plus1&~ToInt};
`FMT1: ShiftedPlus1 = {{`NE+`NF1{1'b0}}, Plus1&~ToInt, {`FLEN-`NE-`NF1-1{1'b0}}};
`FMT2: ShiftedPlus1 = {{`NE+`NF2{1'b0}}, Plus1&~ToInt, {`FLEN-`NE-`NF2-1{1'b0}}};
default: ShiftedPlus1 = 0;
endcase
end else if (`FPSIZES == 4) begin
always_comb
case (OutFmt)
2'h3: ShiftedPlus1 = {{`Q_LEN-1{1'b0}},Plus1&~ToInt};
2'h1: ShiftedPlus1 = {{`Q_NE+`D_NF{1'b0}}, Plus1&~ToInt, {`Q_LEN-`Q_NE-`D_NF-1{1'b0}}};
2'h0: ShiftedPlus1 = {{`Q_NE+`S_NF{1'b0}}, Plus1&~ToInt, {`Q_LEN-`Q_NE-`S_NF-1{1'b0}}};
2'h2: ShiftedPlus1 = {{`Q_NE+`H_NF{1'b0}}, Plus1&~ToInt, {`Q_LEN-`Q_NE-`H_NF-1{1'b0}}};
endcase
end
// kill calcExp if the result is denormalized // kill calcExp if the result is denormalized
assign {FullResExp, ResFrac} = {CalcExp&{`NE+1{~ResDenormUf}}, Shifted[`LGLEN+`NF:`LGLEN+`NF+1-`NF]} + ShiftedPlus1; assign {FullResExp, ResFrac} = {CalcExp&{`NE+1{~ResDenormUf}}, Shifted[`LGLEN+`NF:`LGLEN+`NF+1-`NF]} + ShiftedPlus1;
// trim the result's expoent to size
assign ResExp = FullResExp[`NE-1:0]; assign ResExp = FullResExp[`NE-1:0];
/////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////
// flags // flags
/////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////
// calculate the flags // calculate the flags
// dont set underflow overflow or inexact flags if result is NaN
assign MaxExp = ToInt ? Int64 ? 65 : 33 : // find the maximum exponent (the exponent and larger overflows)
OutFmt ? {`NE{1'b1}} : {{`NE-`NE1{1'b0}}, {`NE1{1'b1}}}; if (`FPSIZES == 1) begin
// if the exponent is lager or equal to the maximum and it's not negitive assign MaxExp = ToInt ? Int64 ? 65 : 33 : {`NE{1'b1}};
// F->F if the input is inf then the output is also Inf ie exact, so dont set the underflow flag
end else if (`FPSIZES == 2) begin
assign MaxExp = ToInt ? Int64 ? 65 : 33 :
OutFmt ? {`NE{1'b1}} : {{`NE-`NE1{1'b0}}, {`NE1{1'b1}}};
end else if (`FPSIZES == 3) begin
logic [`NE-1:0] MaxExpFp;
always_comb
case (OutFmt)
`FMT: begin
MaxExpFp = {`NE{1'b1}};
end
`FMT1: begin
MaxExpFp = {{`NE-`NE1{1'b0}}, {`NE1{1'b1}}};
end
`FMT2: begin
MaxExpFp = {{`NE-`NE2{1'b0}}, {`NE2{1'b1}}};
end
default: begin
MaxExpFp = 1'bx;
end
endcase
assign MaxExp = ToInt ? Int64 ? 65 : 33 : MaxExpFp;
end else if (`FPSIZES == 4) begin
logic [`NE-1:0] MaxExpFp;
always_comb
case (OutFmt)
2'h3: begin
MaxExpFp = {`Q_NE{1'b1}};
end
2'h1: begin
MaxExpFp = {{`Q_NE-`D_NE{1'b0}}, {`D_NE{1'b1}}};
end
2'h0: begin
MaxExpFp = {{`Q_NE-`S_NE{1'b0}}, {`S_NE{1'b1}}};
end
2'h2: begin
MaxExpFp = {{`Q_NE-`H_NE{1'b0}}, {`H_NE{1'b1}}};
end
endcase
assign MaxExp = ToInt ? Int64 ? 65 : 33 : MaxExpFp;
end
// if the result exponent is larger then the maximum possible exponent // if the result exponent is larger then the maximum possible exponent
// | and the exponent is positive // | and the exponent is positive
// | | and the input is not NaN or Infinity // | | and the input is not NaN or Infinity
// | | | // | | |
assign Overflow = ((ResExp >= MaxExp)&~CalcExp[`NE]&~(XNaNE|XInfE)); assign Overflow = ((ResExp >= MaxExp)&~CalcExp[`NE]&(~(XNaNE|XInfE)|IntToFp));
// only set the underflow flag if not-exact
// set the underflow flag if the result is denomal or underflowed
// can't underflow durring to integer conversions
// if the result is denormalized or underflowed // if the result is denormalized or underflowed
// | and the result did not round into normal values // | and the result did not round into normal values
@ -294,18 +521,24 @@ module fcvt (
// | | | and the result isn't NaN // | | | and the result isn't NaN
// | | | | // | | | |
assign Underflow = ResDenormUf & ~(ResExp==1 & CalcExp == 0) & (Sticky|Round)&~(XNaNE); assign Underflow = ResDenormUf & ~(ResExp==1 & CalcExp == 0) & (Sticky|Round)&~(XNaNE);
// we are using the IEEE convertToIntegerExact opperations (rather then the exact ones) which do singal the inexact flag // we are using the IEEE convertToIntegerExact opperations (rather then the exact ones) which do singal the inexact flag
// if there were bits thrown away // if there were bits thrown away
// | if overflowed or underflowed // | if overflowed or underflowed
// | | and if not a NaN // | | and if not a NaN
// | | | // | | |
assign FpInexact = (Sticky|Round|Underflow|Overflow)&(~XNaNE|IntToFp); assign FpInexact = (Sticky|Round|Underflow|Overflow)&(~XNaNE|IntToFp);
// if the result is too small to be represented and not 0 // if the result is too small to be represented and not 0
// | and if the result is not invalid (outside the integer bounds) // | and if the result is not invalid (outside the integer bounds)
// | | // | |
assign IntInexact = ((CalcExp[`NE]&~XZeroE)|Sticky|Round)&~Invalid; assign IntInexact = ((CalcExp[`NE]&~XZeroE)|Sticky|Round)&~Invalid;
// select the inexact flag to output
assign Inexact = ToInt ? IntInexact : FpInexact; assign Inexact = ToInt ? IntInexact : FpInexact;
// if an input was a singaling NaN(and we're using a FP input) // if an input was a singaling NaN(and we're using a FP input)
// |
assign FpInvalid = (XSNaNE&~IntToFp); assign FpInvalid = (XSNaNE&~IntToFp);
assign NegResMSBS = Signed ? Int64 ? NegRes[`XLEN:`XLEN-1] : NegRes[32:31] : assign NegResMSBS = Signed ? Int64 ? NegRes[`XLEN:`XLEN-1] : NegRes[32:31] :
@ -320,54 +553,262 @@ module fcvt (
assign IntInvalid = XNaNE|XInfE|Overflow|((XSgnE&~Signed)&(~((CalcExp[`NE]|(~|CalcExp))&~Plus1)))|(NegResMSBS[1]^NegResMSBS[0]); assign IntInvalid = XNaNE|XInfE|Overflow|((XSgnE&~Signed)&(~((CalcExp[`NE]|(~|CalcExp))&~Plus1)))|(NegResMSBS[1]^NegResMSBS[0]);
// | // |
// or when the positive result rounds up out of range // or when the positive result rounds up out of range
// select the inexact flag to output
assign Invalid = ToInt ? IntInvalid : FpInvalid; assign Invalid = ToInt ? IntInvalid : FpInvalid;
// pack the flags together and choose the result based on the opperation // pack the flags together
// don't set the overflow or underfolw flags if converting to integer // - fp -> int does not set the overflow or underflow flags
assign CvtFlgE = {Invalid, 1'b0, Overflow&~ToInt, Underflow&~ToInt, Inexact}; assign CvtFlgE = {Invalid, 1'b0, Overflow&~ToInt, Underflow&~ToInt, Inexact};
/////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////
// result selection // result selection
/////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////
// when the input is zero for F->F the exponent is not calulated as 0 so combine with underflow result
//logic [$clog2(`NF)-1:0] MinDenormExp; // determine if you shoould kill the result
//assign MinDenormExp = FOpCtrlE[1:0] == `FMT ? -`NE : -`NE1; // - do so if the result underflows, is zero (the exp doesnt calculate correctly). or the integer input is 0
// - dont set to zero if fp input is zero but not using the fp input
// - dont set to zero if int input is zero but not using the int input
assign KillRes = (ResUf|(XZeroE&~IntToFp)|(~|PosInt&IntToFp)); assign KillRes = (ResUf|(XZeroE&~IntToFp)|(~|PosInt&IntToFp));
//assign NaNRes = FOpCtrlE[1:0] == `FMT ? {1'b0, {`NE+1{1'b1}}, (`NF-1)'(0)} : {{`FLEN-`LEN1{1'b1}}, 1'b0, {`NE1+1{1'b1}}, (`NF1-1)'(0)};
if (`FPSIZES == 1) begin
if(`IEEE754) begin // IEEE sends a payload while Riscv says to send a canonical quiet NaN
assign NaNRes = FOpCtrlE[1:0] == `FMT ? {1'b0, {`NE+1{1'b1}}, XManE[`NF-2:0]} : {{`FLEN-`LEN1{1'b1}}, 1'b0, {`NE1+1{1'b1}}, XManE[`NF-2:`NF-`NF1]}; if(`IEEE754) begin
end else begin assign NaNRes = {1'b0, {`NE+1{1'b1}}, XManE[`NF-2:0]};
assign NaNRes = FOpCtrlE[1:0] == `FMT ? {1'b0, {`NE+1{1'b1}}, {`NF-1{1'b0}}} : {{`FLEN-`LEN1{1'b1}}, 1'b0, {`NE1+1{1'b1}}, {`NF1-1{1'b0}}}; end else begin
assign NaNRes = {1'b0, {`NE+1{1'b1}}, {`NF-1{1'b0}}};
end
// determine the infinity result
// - if the input was infinity or rounding mode RZ, RU, RD (and not rounding the value) then output the maximum normalized floating point number with the correct sign
// - otherwise: output infinity with the correct sign
// - kill the infinity singal if the input isn't fp
assign InfRes = (~XInfE|IntToFp)&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {ResSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} : {ResSgn, {`NE{1'b1}}, {`NF{1'b0}}};
// result for when the result is killed i.e. underflowes
// - output a rounded 0 with the correct sign
assign UfRes = {ResSgn, (`FLEN-2)'(0), Plus1&FrmE[1]};
// format the result - NaN box single precision (put 1's in the unused msbs)
assign Res = {ResSgn, ResExp, ResFrac};
end else if (`FPSIZES == 2) begin
// IEEE sends a payload while Riscv says to send a canonical quiet NaN
if(`IEEE754) begin
assign NaNRes = OutFmt ? {1'b0, {`NE+1{1'b1}}, XManE[`NF-2:0]} : {{`FLEN-`LEN1{1'b1}}, 1'b0, {`NE1+1{1'b1}}, XManE[`NF-2:`NF-`NF1]};
end else begin
assign NaNRes = OutFmt ? {1'b0, {`NE+1{1'b1}}, {`NF-1{1'b0}}} : {{`FLEN-`LEN1{1'b1}}, 1'b0, {`NE1+1{1'b1}}, {`NF1-1{1'b0}}};
end
// determine the infinity result
// - if the input was infinity or rounding mode RZ, RU, RD (and not rounding the value) then output the maximum normalized floating point number with the correct sign
// - otherwise: output infinity with the correct sign
// - kill the infinity singal if the input isn't fp
assign InfRes = OutFmt ? (~XInfE|IntToFp)&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {ResSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} :
{ResSgn, {`NE{1'b1}}, {`NF{1'b0}}} :
(~XInfE|IntToFp)&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {{`FLEN-`LEN1{1'b1}}, ResSgn, {`NE1-1{1'b1}}, 1'b0, {`NF1{1'b1}}} :
{{`FLEN-`LEN1{1'b1}}, ResSgn, {`NE1{1'b1}}, (`NF1)'(0)};
// result for when the result is killed i.e. underflowes
// - output a rounded 0 with the correct sign
assign UfRes = OutFmt ? {ResSgn, (`FLEN-2)'(0), Plus1&FrmE[1]} : {{`FLEN-`LEN1{1'b1}}, ResSgn, (`LEN1-2)'(0), Plus1&FrmE[1]};
// format the result - NaN box single precision (put 1's in the unused msbs)
assign Res = OutFmt ? {ResSgn, ResExp, ResFrac} : {{`FLEN-`LEN1{1'b1}}, ResSgn, ResExp[`NE1-1:0], ResFrac[`NF-1:`NF-`NF1]};
end else if (`FPSIZES == 3) begin
always_comb
case (OutFmt)
`FMT: begin
// IEEE sends a payload while Riscv says to send a canonical quiet NaN
if(`IEEE754) begin
NaNRes = {1'b0, {`NE+1{1'b1}}, XManE[`NF-2:0]};
end else begin
NaNRes = {1'b0, {`NE+1{1'b1}}, {`NF-1{1'b0}}};
end
// determine the infinity result
// - if the input was infinity or rounding mode RZ, RU, RD (and not rounding the value) then output the maximum normalized floating point number with the correct sign
// - otherwise: output infinity with the correct sign
// - kill the infinity singal if the input isn't fp
InfRes = (~XInfE|IntToFp)&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {ResSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} : {ResSgn, {`NE{1'b1}}, {`NF{1'b0}}};
// result for when the result is killed i.e. underflowes
// - output a rounded 0 with the correct sign
UfRes = {ResSgn, (`FLEN-2)'(0), Plus1&FrmE[1]};
// format the result - NaN box single precision (put 1's in the unused msbs)
Res = {ResSgn, ResExp, ResFrac};
end
`FMT1: begin
// IEEE sends a payload while Riscv says to send a canonical quiet NaN
if(`IEEE754) begin
NaNRes = {{`FLEN-`LEN1{1'b1}}, 1'b0, {`NE1+1{1'b1}}, XManE[`NF-2:`NF-`NF1]};
end else begin
NaNRes = {{`FLEN-`LEN1{1'b1}}, 1'b0, {`NE1+1{1'b1}}, {`NF1-1{1'b0}}};
end
// determine the infinity result
// - if the input was infinity or rounding mode RZ, RU, RD (and not rounding the value) then output the maximum normalized floating point number with the correct sign
// - otherwise: output infinity with the correct sign
// - kill the infinity singal if the input isn't fp
InfRes = (~XInfE|IntToFp)&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {{`FLEN-`LEN1{1'b1}}, ResSgn, {`NE1-1{1'b1}}, 1'b0, {`NF1{1'b1}}} : {{`FLEN-`LEN1{1'b1}}, ResSgn, {`NE1{1'b1}}, (`NF1)'(0)};
// result for when the result is killed i.e. underflowes
// - output a rounded 0 with the correct sign
UfRes = {{`FLEN-`LEN1{1'b1}}, ResSgn, (`LEN1-2)'(0), Plus1&FrmE[1]};
// format the result - NaN box single precision (put 1's in the unused msbs)
Res = {{`FLEN-`LEN1{1'b1}}, ResSgn, ResExp[`NE1-1:0], ResFrac[`NF-1:`NF-`NF1]};
end
`FMT2: begin
// IEEE sends a payload while Riscv says to send a canonical quiet NaN
if(`IEEE754) begin
NaNRes = {{`FLEN-`LEN2{1'b1}}, 1'b0, {`NE2+1{1'b1}}, XManE[`NF-2:`NF-`NF2]};
end else begin
NaNRes = {{`FLEN-`LEN2{1'b1}}, 1'b0, {`NE2+1{1'b1}}, {`NF2-1{1'b0}}};
end
// determine the infinity result
// - if the input was infinity or rounding mode RZ, RU, RD (and not rounding the value) then output the maximum normalized floating point number with the correct sign
// - otherwise: output infinity with the correct sign
// - kill the infinity singal if the input isn't fp
InfRes = (~XInfE|IntToFp)&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {{`FLEN-`LEN2{1'b1}}, ResSgn, {`NE2-1{1'b1}}, 1'b0, {`NF2{1'b1}}} : {{`FLEN-`LEN2{1'b1}}, ResSgn, {`NE2{1'b1}}, (`NF2)'(0)};
// result for when the result is killed i.e. underflowes
// - output a rounded 0 with the correct sign
UfRes = {{`FLEN-`LEN2{1'b1}}, ResSgn, (`LEN2-2)'(0), Plus1&FrmE[1]};
// format the result - NaN box single precision (put 1's in the unused msbs)
Res = {{`FLEN-`LEN2{1'b1}}, ResSgn, ResExp[`NE2-1:0], ResFrac[`NF-1:`NF-`NF2]};
end
default: begin
NaNRes = 1'bx;
InfRes = 1'bx;
UfRes = 1'bx;
Res = 1'bx;
end
endcase
end else if (`FPSIZES == 4) begin
always_comb
case (OutFmt)
2'h3: begin
// IEEE sends a payload while Riscv says to send a canonical quiet NaN
if(`IEEE754) begin
NaNRes = {1'b0, {`Q_NE+1{1'b1}}, XManE[`Q_NF-2:0]};
end else begin
NaNRes = {1'b0, {`Q_NE+1{1'b1}}, {`Q_NF-1{1'b0}}};
end
// determine the infinity result
// - if the input was infinity or rounding mode RZ, RU, RD (and not rounding the value) then output the maximum normalized floating point number with the correct sign
// - otherwise: output infinity with the correct sign
// - kill the infinity singal if the input isn't fp
InfRes = (~XInfE|IntToFp)&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {ResSgn, {`Q_NE-1{1'b1}}, 1'b0, {`Q_NF{1'b1}}} : {ResSgn, {`Q_NE{1'b1}}, {`Q_NF{1'b0}}};
// result for when the result is killed i.e. underflowes
// - output a rounded 0 with the correct sign
UfRes = {ResSgn, (`Q_LEN-2)'(0), Plus1&FrmE[1]};
// format the result - NaN box single precision (put 1's in the unused msbs)
Res = {ResSgn, ResExp, ResFrac};
end
2'h1: begin
// IEEE sends a payload while Riscv says to send a canonical quiet NaN
if(`IEEE754) begin
NaNRes = {{`Q_LEN-`D_LEN{1'b1}}, 1'b0, {`D_NE+1{1'b1}}, XManE[`Q_NF-2:`Q_NF-`D_NF]};
end else begin
NaNRes = {{`Q_LEN-`D_LEN{1'b1}}, 1'b0, {`D_NE+1{1'b1}}, {`D_NF-1{1'b0}}};
end
// determine the infinity result
// - if the input was infinity or rounding mode RZ, RU, RD (and not rounding the value) then output the maximum normalized floating point number with the correct sign
// - otherwise: output infinity with the correct sign
// - kill the infinity singal if the input isn't fp
InfRes = (~XInfE|IntToFp)&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {{`Q_LEN-`D_LEN{1'b1}}, ResSgn, {`D_NE-1{1'b1}}, 1'b0, {`D_NF{1'b1}}} : {{`Q_LEN-`D_LEN{1'b1}}, ResSgn, {`D_NE{1'b1}}, (`D_NF)'(0)};
// result for when the result is killed i.e. underflowes
// - output a rounded 0 with the correct sign
UfRes = {{`Q_LEN-`D_LEN{1'b1}}, ResSgn, (`D_LEN-2)'(0), Plus1&FrmE[1]};
// format the result - NaN box single precision (put 1's in the unused msbs)
Res = {{`Q_LEN-`D_LEN{1'b1}}, ResSgn, ResExp[`D_NE-1:0], ResFrac[`Q_NF-1:`Q_NF-`D_NF]};
end
2'h0: begin
// IEEE sends a payload while Riscv says to send a canonical quiet NaN
if(`IEEE754) begin
NaNRes = {{`Q_LEN-`S_LEN{1'b1}}, 1'b0, {`S_NE+1{1'b1}}, XManE[`Q_NF-2:`Q_NF-`S_NF]};
end else begin
NaNRes = {{`Q_LEN-`S_LEN{1'b1}}, 1'b0, {`S_NE+1{1'b1}}, {`S_NF-1{1'b0}}};
end
// determine the infinity result
// - if the input was infinity or rounding mode RZ, RU, RD (and not rounding the value) then output the maximum normalized floating point number with the correct sign
// - otherwise: output infinity with the correct sign
// - kill the infinity singal if the input isn't fp
InfRes = (~XInfE|IntToFp)&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {{`Q_LEN-`S_LEN{1'b1}}, ResSgn, {`S_NE-1{1'b1}}, 1'b0, {`S_NF{1'b1}}} : {{`Q_LEN-`S_LEN{1'b1}}, ResSgn, {`S_NE{1'b1}}, (`S_NF)'(0)};
// result for when the result is killed i.e. underflowes
// - output a rounded 0 with the correct sign
UfRes = {{`Q_LEN-`S_LEN{1'b1}}, ResSgn, (`S_LEN-2)'(0), Plus1&FrmE[1]};
// format the result - NaN box single precision (put 1's in the unused msbs)
Res = {{`Q_LEN-`S_LEN{1'b1}}, ResSgn, ResExp[`S_NE-1:0], ResFrac[`Q_NF-1:`Q_NF-`S_NF]};
end
2'h2: begin
// IEEE sends a payload while Riscv says to send a canonical quiet NaN
if(`IEEE754) begin
NaNRes = {{`Q_LEN-`H_LEN{1'b1}}, 1'b0, {`H_NE+1{1'b1}}, XManE[`Q_NF-2:`Q_NF-`H_NF]};
end else begin
NaNRes = {{`Q_LEN-`H_LEN{1'b1}}, 1'b0, {`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}};
end
// determine the infinity result
// - if the input was infinity or rounding mode RZ, RU, RD (and not rounding the value) then output the maximum normalized floating point number with the correct sign
// - otherwise: output infinity with the correct sign
// - kill the infinity singal if the input isn't fp
InfRes = (~XInfE|IntToFp)&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {{`Q_LEN-`H_LEN{1'b1}}, ResSgn, {`H_NE-1{1'b1}}, 1'b0, {`H_NF{1'b1}}} : {{`Q_LEN-`H_LEN{1'b1}}, ResSgn, {`H_NE{1'b1}}, (`H_NF)'(0)};
// result for when the result is killed i.e. underflowes
// - output a rounded 0 with the correct sign
UfRes = {{`Q_LEN-`H_LEN{1'b1}}, ResSgn, (`H_LEN-2)'(0), Plus1&FrmE[1]};
// format the result - NaN box single precision (put 1's in the unused msbs)
Res = {{`Q_LEN-`H_LEN{1'b1}}, ResSgn, ResExp[`H_NE-1:0], ResFrac[`Q_NF-1:`Q_NF-`H_NF]};
end
endcase
end end
// assign InfRes = FOpCtrlE[1:0] == `FMT ? {ResSgn, {`NE{1'b1}}, (`NF)'(0)} : {{`FLEN-`LEN1{1'b1}}, ResSgn, {`NE1{1'b1}}, (`NF1)'(0)};
// output one less then the maximum value if rounding down (RZ RU RD)
// if infinitiy output infinity // choose the floating point result
assign InfRes = FOpCtrlE[1:0] == `FMT ? ~XInfE&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {ResSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} : // - if the input is NaN (and using the NaN input) output the NaN result
{ResSgn, {`NE{1'b1}}, {`NF{1'b0}}} : // - if the input is infinity or the output overflows
~XInfE&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {{`FLEN-`LEN1{1'b1}}, ResSgn, {`NE1-1{1'b1}}, 1'b0, {`NF1{1'b1}}} : // - kill the InfE signal if the input isn't a floating point value
{{`FLEN-`LEN1{1'b1}}, ResSgn, {`NE1{1'b1}}, (`NF1)'(0)}; // - if killing the result output the underflow result
// if RU/RD then round the underflowed result if needed // - otherwise output the normal result
// integer zero's exponent is not calculated corresctly so go through underflow result
assign UfRes = OutFmt ? {ResSgn, (`FLEN-2)'(0), Plus1&FrmE[1]} : {{`FLEN-`LEN1{1'b1}}, ResSgn, (`LEN1-2)'(0), Plus1&FrmE[1]};
assign Res = OutFmt ? {ResSgn, ResExp, ResFrac} : {{`FLEN-`LEN1{1'b1}}, ResSgn, ResExp[`NE1-1:0], ResFrac[`NF-1:`NF-`NF1]};
assign CvtResE = XNaNE&~IntToFp ? NaNRes : assign CvtResE = XNaNE&~IntToFp ? NaNRes :
(XInfE|Overflow)&~IntToFp ? InfRes : (XInfE&~IntToFp)|Overflow ? InfRes :
KillRes ? UfRes : KillRes ? UfRes :
Res; Res;
// *** probably can optimize the negation // *** probably can optimize the negation
// NaNs sould ouput the same as a positive infinity // select the overflow integer result
// a 32bit unsigend result should be sign extended (as if it is not a unsigned number) // - negitive infinity and out of range negitive input
// | int | long |
// signed | -2^31 | -2^63 |
// unsigned | 0 | 0 |
//
// - positive infinity and out of range negitive input and NaNs
// | int | long |
// signed | 2^31-1 | 2^63-1 |
// unsigned | 2^32-1 | 2^64-1 |
//
// other: 32 bit unsinged result should be sign extended as if it were a signed number
assign OfIntRes = Signed ? XSgnE&~XNaNE ? Int64 ? {1'b1, {`XLEN-1{1'b0}}} : {{`XLEN-32{1'b1}}, 1'b1, {31{1'b0}}} : // signed negitive assign OfIntRes = Signed ? XSgnE&~XNaNE ? Int64 ? {1'b1, {`XLEN-1{1'b0}}} : {{`XLEN-32{1'b1}}, 1'b1, {31{1'b0}}} : // signed negitive
Int64 ? {1'b0, {`XLEN-1{1'b1}}} : {{`XLEN-32{1'b0}}, 1'b0, {31{1'b1}}} : // signed positive Int64 ? {1'b0, {`XLEN-1{1'b1}}} : {{`XLEN-32{1'b0}}, 1'b0, {31{1'b1}}} : // signed positive
XSgnE&~XNaNE ? {`XLEN{1'b0}} : // unsigned negitive XSgnE&~XNaNE ? {`XLEN{1'b0}} : // unsigned negitive
{`XLEN{1'b1}};// unsigned positive {`XLEN{1'b1}};// unsigned positive
// round and negate the positive result if needed
assign NegRes = XSgnE ? -({2'b0, Shifted[`LGLEN+`NF:`LGLEN+`NF+1-`XLEN]}+{{`XLEN+1{1'b0}},Plus1}) : {2'b0, Shifted[`LGLEN+`NF:`LGLEN+`NF+1-`XLEN]}+{{`XLEN+1{1'b0}},Plus1}; assign NegRes = XSgnE ? -({2'b0, Shifted[`LGLEN+`NF:`LGLEN+`NF+1-`XLEN]}+{{`XLEN+1{1'b0}}, Plus1}) : {2'b0, Shifted[`LGLEN+`NF:`LGLEN+`NF+1-`XLEN]}+{{`XLEN+1{1'b0}}, Plus1};
// select the integer output
// - if the input is invalid (out of bounds NaN or Inf) then output overflow result
// - if the input underflows
// - if rounding and signed opperation and negitive input, output -1
// - otherwise output a rounded 0
// - otherwise output the normal result (trmined and sign extended if nessisary)
assign CvtIntResE = Invalid ? OfIntRes : assign CvtIntResE = Invalid ? OfIntRes :
CalcExp[`NE] ? XSgnE&Signed&Plus1 ? {{`XLEN{1'b1}}} : {{`XLEN-1{1'b0}}, Plus1} : //CalcExp has to come after invalid ***swap to actual mux at some point?? CalcExp[`NE] ? XSgnE&Signed&Plus1 ? {{`XLEN{1'b1}}} : {{`XLEN-1{1'b0}}, Plus1} : //CalcExp has to come after invalid ***swap to actual mux at some point??
Int64 ? NegRes[`XLEN-1:0] : {{`XLEN-32{NegRes[31]}}, NegRes[31:0]}; Int64 ? NegRes[`XLEN-1:0] : {{`XLEN-32{NegRes[31]}}, NegRes[31:0]};
endmodule endmodule

View File

@ -545,15 +545,15 @@ module testbenchfp;
Fmt = {Fmt, 2'b10}; Fmt = {Fmt, 2'b10};
end end
if (`XLEN == 64) begin // if 64-bit integers are supported if (`XLEN == 64) begin // if 64-bit integers are supported
Tests = {Tests, f16rv64cvtint, f16rv32cvtint}; Tests = {Tests, f16rv64cvtint};
// add the op-codes for these tests to the op-code list // add the op-codes for these tests to the op-code list
OpCtrl = {OpCtrl, `FROM_UL_OPCTRL, `FROM_L_OPCTRL, `TO_UL_OPCTRL, `TO_L_OPCTRL}; OpCtrl = {OpCtrl, `FROM_UL_OPCTRL, `FROM_L_OPCTRL, `TO_UL_OPCTRL, `TO_L_OPCTRL};
WriteInt = {WriteInt, 1'b0, 1'b0, 1'b1, 1'b1}; WriteInt = {WriteInt, 1'b0, 1'b0, 1'b1, 1'b1};
// add what unit is used and the fmt to their lists (one for each test) // add what unit is used and the fmt to their lists (one for each test)
for(int i = 0; i<20; i++) begin for(int i = 0; i<20; i++) begin
Unit = {Unit, `CVTINTUNIT}; Unit = {Unit, `CVTINTUNIT};
Fmt = {Fmt, 2'b10}; Fmt = {Fmt, 2'b10};
end end
end end
end end
if (TEST === "cmp" | TEST === "all") begin // if comparisions are being tested if (TEST === "cmp" | TEST === "all") begin // if comparisions are being tested
@ -1187,9 +1187,9 @@ end
// Testfloat outputs 800... for both the largest integer values for both positive and negitive numbers but // Testfloat outputs 800... for both the largest integer values for both positive and negitive numbers but
// the riscv spec specifies 2^31-1 for positive values out of range and NaNs ie 7fff... // the riscv spec specifies 2^31-1 for positive values out of range and NaNs ie 7fff...
else if ((UnitVal === `CVTINTUNIT) & ~(((WriteIntVal&~OpCtrlVal[0]&AnsFlg[4]&XSgn&(Res === (`FLEN)'(0))) | else if ((UnitVal === `CVTINTUNIT) & ~(((WriteIntVal&~OpCtrlVal[0]&AnsFlg[4]&XSgn&(Res[`XLEN-1:0] === (`XLEN)'(0))) |
(WriteIntVal&OpCtrlVal[0]&AnsFlg[4]&(~XSgn|XNaN)&OpCtrlVal[1]&(Res === {1'b0, {`FLEN-1{1'b1}}})) | (WriteIntVal&OpCtrlVal[0]&AnsFlg[4]&(~XSgn|XNaN)&OpCtrlVal[1]&(Res[`XLEN-1:0] === {1'b0, {`XLEN-1{1'b1}}})) |
(WriteIntVal&OpCtrlVal[0]&AnsFlg[4]&(~XSgn|XNaN)&~OpCtrlVal[1]&(Res === {{`FLEN{1'b0}}, 1'b0, {31{1'b1}}})) | (WriteIntVal&OpCtrlVal[0]&AnsFlg[4]&(~XSgn|XNaN)&~OpCtrlVal[1]&(Res[`XLEN-1:0] === {{`XLEN-32{1'b0}}, 1'b0, {31{1'b1}}})) |
(Res === Ans | NaNGood | NaNGood === 1'bx)) & (ResFlg === AnsFlg | AnsFlg === 5'bx))) begin (Res === Ans | NaNGood | NaNGood === 1'bx)) & (ResFlg === AnsFlg | AnsFlg === 5'bx))) begin
errors += 1; errors += 1;
$display("There is an error in %s", Tests[TestNum]); $display("There is an error in %s", Tests[TestNum]);

View File

@ -54,16 +54,6 @@
`define CMPUNIT 4 `define CMPUNIT 4
string f16rv32cvtint[] = '{ string f16rv32cvtint[] = '{
"f16_to_i32_rne.tv",
"f16_to_i32_rz.tv",
"f16_to_i32_ru.tv",
"f16_to_i32_rd.tv",
"f16_to_i32_rnm.tv",
"f16_to_ui32_rne.tv",
"f16_to_ui32_rz.tv",
"f16_to_ui32_ru.tv",
"f16_to_ui32_rd.tv",
"f16_to_ui32_rnm.tv",
"ui32_to_f16_rne.tv", "ui32_to_f16_rne.tv",
"ui32_to_f16_rz.tv", "ui32_to_f16_rz.tv",
"ui32_to_f16_ru.tv", "ui32_to_f16_ru.tv",
@ -73,20 +63,20 @@ string f16rv32cvtint[] = '{
"i32_to_f16_rz.tv", "i32_to_f16_rz.tv",
"i32_to_f16_ru.tv", "i32_to_f16_ru.tv",
"i32_to_f16_rd.tv", "i32_to_f16_rd.tv",
"i32_to_f16_rnm.tv" "i32_to_f16_rnm.tv",
"f16_to_ui32_rne.tv",
"f16_to_ui32_rz.tv",
"f16_to_ui32_ru.tv",
"f16_to_ui32_rd.tv",
"f16_to_ui32_rnm.tv",
"f16_to_i32_rne.tv",
"f16_to_i32_rz.tv",
"f16_to_i32_ru.tv",
"f16_to_i32_rd.tv",
"f16_to_i32_rnm.tv"
}; };
string f16rv64cvtint[] = '{ string f16rv64cvtint[] = '{
"f16_to_ui64_rne.tv",
"f16_to_ui64_rz.tv",
"f16_to_ui64_ru.tv",
"f16_to_ui64_rd.tv",
"f16_to_ui64_rnm.tv",
"f16_to_i64_rne.tv",
"f16_to_i64_rz.tv",
"f16_to_i64_ru.tv",
"f16_to_i64_rd.tv",
"f16_to_i64_rnm.tv",
"ui64_to_f16_rne.tv", "ui64_to_f16_rne.tv",
"ui64_to_f16_rz.tv", "ui64_to_f16_rz.tv",
"ui64_to_f16_ru.tv", "ui64_to_f16_ru.tv",
@ -96,7 +86,17 @@ string f16rv64cvtint[] = '{
"i64_to_f16_rz.tv", "i64_to_f16_rz.tv",
"i64_to_f16_ru.tv", "i64_to_f16_ru.tv",
"i64_to_f16_rd.tv", "i64_to_f16_rd.tv",
"i64_to_f16_rnm.tv" "i64_to_f16_rnm.tv",
"f16_to_ui64_rne.tv",
"f16_to_ui64_rz.tv",
"f16_to_ui64_ru.tv",
"f16_to_ui64_rd.tv",
"f16_to_ui64_rnm.tv",
"f16_to_i64_rne.tv",
"f16_to_i64_rz.tv",
"f16_to_i64_ru.tv",
"f16_to_i64_rd.tv",
"f16_to_i64_rnm.tv"
}; };
string f32rv32cvtint[] = '{ string f32rv32cvtint[] = '{
@ -307,16 +307,16 @@ string f128f32cvt[] = '{
string f128f64cvt[] = '{ string f128f64cvt[] = '{
"f64_to_f128_rne.tv",
"f64_to_f128_rz.tv",
"f64_to_f128_ru.tv",
"f64_to_f128_rd.tv",
"f64_to_f128_rnm.tv",
"f128_to_f64_rne.tv", "f128_to_f64_rne.tv",
"f128_to_f64_rz.tv", "f128_to_f64_rz.tv",
"f128_to_f64_ru.tv", "f128_to_f64_ru.tv",
"f128_to_f64_rd.tv", "f128_to_f64_rd.tv",
"f128_to_f64_rnm.tv" "f128_to_f64_rnm.tv",
"f64_to_f128_rne.tv",
"f64_to_f128_rz.tv",
"f64_to_f128_ru.tv",
"f64_to_f128_rd.tv",
"f64_to_f128_rnm.tv"
}; };
string f16add[] = '{ string f16add[] = '{