This commit is contained in:
David Harris 2022-03-30 16:26:27 +00:00
commit 9b1f85d353
11 changed files with 229 additions and 139 deletions

View File

@ -0,0 +1,71 @@
///////////////////////////////////////////
// block ram model should be equivalent to srsam.
//
// Written: Ross Thompson
// March 29, 2022
// Modified: Based on UG901 vivado documentation.
//
// Purpose: On-chip SIMPLERAM, external to core
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
// This model actually works correctly with vivado.
`include "wally-config.vh"
module bram1p1rw
#(
//--------------------------------------------------------------------------
parameter NUM_COL = 8,
parameter COL_WIDTH = 8,
parameter ADDR_WIDTH = 10,
// Addr Width in bits : 2 *ADDR_WIDTH = RAM Depth
parameter DATA_WIDTH = NUM_COL*COL_WIDTH // Data Width in bits
//----------------------------------------------------------------------
) (
input logic clk,
input logic ena,
input logic [NUM_COL-1:0] we,
input logic [ADDR_WIDTH-1:0] addr,
output logic [DATA_WIDTH-1:0] dout,
input logic [DATA_WIDTH-1:0] din
);
// Core Memory
logic [DATA_WIDTH-1:0] RAM [(2**ADDR_WIDTH)-1:0];
integer i;
initial begin
$readmemh("big64.txt", RAM);
end
always @ (posedge clk) begin
dout <= RAM[addr];
if(ena) begin
for(i=0;i<NUM_COL;i=i+1) begin
if(we[i]) begin
RAM[addr][i*COL_WIDTH +: COL_WIDTH] <= din[i*COL_WIDTH +:COL_WIDTH];
end
end
end
end
endmodule // bytewrite_tdp_ram_rf

View File

@ -0,0 +1,82 @@
///////////////////////////////////////////
// block ram model should be equivalent to srsam.
//
// Written: Ross Thompson
// March 29, 2022
// Modified: Based on UG901 vivado documentation.
//
// Purpose: On-chip SIMPLERAM, external to core
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
// This model actually works correctly with vivado.
`include "wally-config.vh"
module bram2p1r1w
#(
//--------------------------------------------------------------------------
parameter NUM_COL = 8,
parameter COL_WIDTH = 8,
parameter ADDR_WIDTH = 10,
parameter PRELOAD_ENABLED = 0,
parameter PRELOAD_FILE = "bootrom.txt",
// Addr Width in bits : 2 *ADDR_WIDTH = RAM Depth
parameter DATA_WIDTH = NUM_COL*COL_WIDTH // Data Width in bits
//----------------------------------------------------------------------
) (
input logic clk,
input logic enaA,
input logic [ADDR_WIDTH-1:0] addrA,
output logic [DATA_WIDTH-1:0] doutA,
input logic enaB,
input logic [NUM_COL-1:0] weB,
input logic [ADDR_WIDTH-1:0] addrB,
input logic [DATA_WIDTH-1:0] dinB
);
// Core Memory
logic [DATA_WIDTH-1:0] RAM [(2**ADDR_WIDTH)-1:0];
integer i;
initial begin
if(PRELOAD_ENABLED)
$readmemh(PRELOAD_FILE, RAM);
end
// Port-A Operation
always @ (posedge clk) begin
if(enaA) begin
doutA <= RAM[addrA];
end
end
// Port-B Operation:
always @ (posedge clk) begin
if(enaB) begin
for(i=0;i<NUM_COL;i=i+1) begin
if(weB[i]) begin
RAM[addrB][i*COL_WIDTH +: COL_WIDTH] <= dinB[i*COL_WIDTH +:COL_WIDTH];
end
end
end
end
endmodule // bytewrite_tdp_ram_rf

View File

@ -39,6 +39,14 @@ module simpleram #(parameter BASE=0, RANGE = 65535) (
output logic [`XLEN-1:0] rd
);
localparam ADDR_WDITH = $clog2(RANGE/8);
localparam OFFSET = $clog2(`XLEN/8);
bram1p1rw #(`XLEN/8, 8, ADDR_WDITH)
memory(.clk, .ena(we), .we(ByteMask), .addr(a[ADDR_WDITH+OFFSET-1:OFFSET]), .dout(rd), .din(wd));
/* -----\/----- EXCLUDED -----\/-----
logic [`XLEN-1:0] RAM[BASE>>(1+`XLEN/32):(RANGE+BASE)>>1+(`XLEN/32)];
// discard bottom 2 or 3 bits of address offset within word or doubleword
@ -55,5 +63,6 @@ module simpleram #(parameter BASE=0, RANGE = 65535) (
if (we & ByteMask[index]) RAM[adrmsbs][8*(index+1)-1:8*index] <= #1 wd[8*(index+1)-1:8*index];
end
end
-----/\----- EXCLUDED -----/\----- */
endmodule

View File

@ -142,8 +142,7 @@ module ifu (
mmu #(.TLB_ENTRIES(`ITLB_ENTRIES), .IMMU(1))
immu(.clk, .reset, .SATP_REGW, .STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_MPP,
.PrivilegeModeW, .DisableTranslation(1'b0),
.PAdr(PCFExt[`PA_BITS-1:0]),
.VAdr(PCFSpill),
.VAdr(PCFExt),
.Size(2'b10),
.PTE(PTE),
.PageTypeWriteVal(PageType),

View File

@ -48,7 +48,7 @@ module dtim(
output logic DCacheCommittedM,
output logic DCacheMiss,
output logic DCacheAccess);
simpleram #(.BASE(`RAM_BASE), .RANGE(`RAM_RANGE)) ram (
.clk, .ByteMask(ByteMaskM),
.a(CPUBusy | LSURWM[0] | reset ? IEUAdrM[31:0] : IEUAdrE[31:0]), // move mux out; this shouldn't be needed when stails are handled differently ***

View File

@ -91,7 +91,7 @@ module lsu (
logic [2:0] LSUFunct3M;
logic [6:0] LSUFunct7M;
logic [1:0] LSUAtomicM;
(* mark_debug = "true" *) logic [`PA_BITS-1:0] PreLSUPAdrM;
(* mark_debug = "true" *) logic [`XLEN+1:0] PreLSUPAdrM;
logic [11:0] PreLSUAdrE, LSUAdrE;
logic CPUBusy;
logic DCacheStallM;
@ -132,7 +132,7 @@ module lsu (
assign {InterlockStall, SelHPTW, PTE, PageType, DTLBWriteM, ITLBWriteF, IgnoreRequestTLB} = '0;
assign IgnoreRequestTrapM = TrapM; assign CPUBusy = StallW; assign PreLSURWM = MemRWM;
assign LSUAdrE = PreLSUAdrE; assign PreLSUAdrE = IEUAdrE[11:0];
assign PreLSUPAdrM = IEUAdrExtM[`PA_BITS-1:0];
assign PreLSUPAdrM = IEUAdrExtM;
assign LSUFunct3M = Funct3M; assign LSUFunct7M = Funct7M; assign LSUAtomicM = AtomicM;
assign LSUWriteDataM = WriteDataM;
end
@ -151,8 +151,7 @@ module lsu (
mmu #(.TLB_ENTRIES(`DTLB_ENTRIES), .IMMU(0))
dmmu(.clk, .reset, .SATP_REGW, .STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_MPP,
.PrivilegeModeW, .DisableTranslation,
.PAdr(PreLSUPAdrM),
.VAdr(IEUAdrM),
.VAdr(PreLSUPAdrM),
.Size(LSUFunct3M[1:0]),
.PTE,
.PageTypeWriteVal(PageType),

View File

@ -59,7 +59,7 @@ module lsuvirtmem(
output logic [1:0] PreLSURWM,
output logic [1:0] LSUAtomicM,
output logic [11:0] LSUAdrE,
output logic [`PA_BITS-1:0] PreLSUPAdrM,
output logic [`XLEN+1:0] PreLSUPAdrM,
input logic [`XLEN+1:0] IEUAdrExtM, // *** can move internally.
output logic InterlockStall,
@ -71,13 +71,15 @@ module lsuvirtmem(
logic AnyCPUReqM;
logic [`PA_BITS-1:0] HPTWAdr;
logic [`XLEN+1:0] HPTWAdrExt;
logic [1:0] HPTWRW;
logic [2:0] HPTWSize;
logic SelReplayMemE;
logic [11:0] PreLSUAdrE;
logic ITLBMissOrDAFaultF, ITLBMissOrDAFaultNoTrapF;
logic DTLBMissOrDAFaultM, DTLBMissOrDAFaultNoTrapM;
logic DTLBMissOrDAFaultM, DTLBMissOrDAFaultNoTrapM;
logic SelHPTWAdr;
assign ITLBMissOrDAFaultF = ITLBMissF | (`HPTW_WRITES_SUPPORTED & InstrDAPageFaultF);
assign DTLBMissOrDAFaultM = DTLBMissM | (`HPTW_WRITES_SUPPORTED & DataDAPageFaultM);
assign ITLBMissOrDAFaultNoTrapF = ITLBMissOrDAFaultF & ~TrapM;
@ -94,13 +96,22 @@ module lsuvirtmem(
.DCacheStallM, .HPTWAdr, .HPTWRW, .HPTWSize);
// *** possible future optimization of simplifying page table entry with precomputed misalignment (Ross) low priority
// Once the walk is done and it is time to update the DTLB we need to switch back
// to the orignal data virtual address.
assign SelHPTWAdr = SelHPTW & ~DTLBWriteM;
// multiplex the outputs to LSU
if(`XLEN+2-`PA_BITS > 0) begin
logic [(`XLEN+2-`PA_BITS)-1:0] zeros;
assign zeros = '0;
assign HPTWAdrExt = {zeros, HPTWAdr};
end else assign HPTWAdrExt = HPTWAdr;
mux2 #(2) rwmux(MemRWM, HPTWRW, SelHPTW, PreLSURWM);
mux2 #(3) sizemux(Funct3M, HPTWSize, SelHPTW, LSUFunct3M);
mux2 #(7) funct7mux(Funct7M, 7'b0, SelHPTW, LSUFunct7M);
mux2 #(2) atomicmux(AtomicM, 2'b00, SelHPTW, LSUAtomicM);
mux2 #(12) adremux(IEUAdrE[11:0], HPTWAdr[11:0], SelHPTW, PreLSUAdrE);
mux2 #(`PA_BITS) lsupadrmux(IEUAdrExtM[`PA_BITS-1:0], HPTWAdr, SelHPTW, PreLSUPAdrM);
mux2 #(`XLEN+2) lsupadrmux(IEUAdrExtM, HPTWAdrExt, SelHPTWAdr, PreLSUPAdrM);
if(`HPTW_WRITES_SUPPORTED)
mux2 #(`XLEN) lsuwritedatamux(WriteDataM, PTE, SelHPTW, LSUWriteDataM);
else assign LSUWriteDataM = WriteDataM;

View File

@ -49,16 +49,10 @@ module mmu #(parameter TLB_ENTRIES = 8, // number of TLB Entries
// 11 - TLB is accessed for both read and write
input logic DisableTranslation,
// VAdr goes to the TLB only. Virtual if the TLB is active.
// PAdr goes to address mux bypassing the TLB. PAdr used when there is no translation.
// Comes from either the program address (instruction address or load/store address)
// or from the hardware pagetable walker.
// PAdr is intended to used as a phsycial address. Discarded by the address mux when translation is
// performed.
// VAdr is the virtual/physical address from IEU or physical address from HPTW.
// PhysicalAddress is selected to be PAdr when no translation or the translated VAdr (TLBPAdr)
// when there is translation.
input logic [`PA_BITS-1:0] PAdr, // *** consider renaming this.
input logic [`XLEN-1:0] VAdr,
input logic [`XLEN+1:0] VAdr,
input logic [1:0] Size, // 00 = 8 bits, 01 = 16 bits, 10 = 32 bits , 11 = 64 bits
// Controls for writing a new entry to the TLB
@ -106,7 +100,7 @@ module mmu #(parameter TLB_ENTRIES = 8, // number of TLB Entries
tlb(.clk, .reset,
.SATP_MODE(SATP_REGW[`XLEN-1:`XLEN-`SVMODE_BITS]),
.SATP_ASID(SATP_REGW[`ASID_BASE+`ASID_BITS-1:`ASID_BASE]),
.VAdr, .STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_MPP,
.VAdr(VAdr[`XLEN-1:0]), .STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_MPP,
.PrivilegeModeW, .ReadAccess, .WriteAccess,
.DisableTranslation, .PTE, .PageTypeWriteVal,
.TLBWrite, .TLBFlush, .TLBPAdr, .TLBMiss, .TLBHit,
@ -122,8 +116,8 @@ module mmu #(parameter TLB_ENTRIES = 8, // number of TLB Entries
// the lower 12 bits are the page offset. These are never changed from the orginal
// non translated address.
//mux2 #(`PA_BITS) addressmux(PAdr, TLBPAdr, Translate, PhysicalAddress);
mux2 #(`PA_BITS-12) addressmux(PAdr[`PA_BITS-1:12], TLBPAdr[`PA_BITS-1:12], Translate, PhysicalAddress[`PA_BITS-1:12]);
assign PhysicalAddress[11:0] = PAdr[11:0];
mux2 #(`PA_BITS-12) addressmux(VAdr[`PA_BITS-1:12], TLBPAdr[`PA_BITS-1:12], Translate, PhysicalAddress[`PA_BITS-1:12]);
assign PhysicalAddress[11:0] = VAdr[11:0];
///////////////////////////////////////////

View File

@ -43,78 +43,22 @@ module ram #(parameter BASE=0, RANGE = 65535) (
output logic HRESPRam, HREADYRam
);
localparam MemStartAddr = BASE>>(1+`XLEN/32);
localparam MemEndAddr = (RANGE+BASE)>>1+(`XLEN/32);
logic [`XLEN/8-1:0] ByteMaskM;
logic [31:0] HWADDR, A;
logic prevHREADYRam, risingHREADYRam;
logic initTrans;
logic memwrite;
logic [3:0] busycount;
logic [`XLEN-1:0] RAM[BASE>>(1+`XLEN/32):(RANGE+BASE)>>1+(`XLEN/32)];
logic [31:0] HWADDR, A;
swbytemask swbytemask(.HSIZED, .HADDRD(HWADDR[2:0]), .ByteMask(ByteMaskM));
logic prevHREADYRam, risingHREADYRam;
logic initTrans;
logic memwrite;
logic [3:0] busycount;
logic [`XLEN/8-1:0] ByteMaskM;
if(`FPGA) begin:ram
initial begin
// *** need to address this preload for fpga. It should work as a preload file
// but for some reason vivado is not synthesizing the preload.
//$readmemh(PRELOAD, RAM);
RAM[0] = 64'h94e1819300002197;
RAM[1] = 64'h4281420141014081;
RAM[2] = 64'h4481440143814301;
RAM[3] = 64'h4681460145814501;
RAM[4] = 64'h4881480147814701;
RAM[5] = 64'h4a814a0149814901;
RAM[6] = 64'h4c814c014b814b01;
RAM[7] = 64'h4e814e014d814d01;
RAM[8] = 64'h0110011b4f814f01;
RAM[9] = 64'h059b45011161016e;
RAM[10] = 64'h0004063705fe0010;
RAM[11] = 64'h05a000ef8006061b;
RAM[12] = 64'h0ff003930000100f;
RAM[13] = 64'h4e952e3110060e37;
RAM[14] = 64'hc602829b0053f2b7;
RAM[15] = 64'h2023fe02dfe312fd;
RAM[16] = 64'h829b0053f2b7007e;
RAM[17] = 64'hfe02dfe312fdc602;
RAM[18] = 64'h4de31efd000e2023;
RAM[19] = 64'h059bf1402573fdd0;
RAM[20] = 64'h0000061705e20870;
RAM[21] = 64'h0010029b01260613;
RAM[22] = 64'h11010002806702fe;
RAM[23] = 64'h84b2842ae426e822;
RAM[24] = 64'h892ee04aec064505;
RAM[25] = 64'h06e000ef07e000ef;
RAM[26] = 64'h979334fd02905563;
RAM[27] = 64'h07930177d4930204;
RAM[28] = 64'h4089093394be2004;
RAM[29] = 64'h04138522008905b3;
RAM[30] = 64'h19e3014000ef2004;
RAM[31] = 64'h64a2644260e2fe94;
RAM[32] = 64'h6749808261056902;
RAM[33] = 64'hdfed8b8510472783;
RAM[34] = 64'h2423479110a73823;
RAM[35] = 64'h10472783674910f7;
RAM[36] = 64'h20058693ffed8b89;
RAM[37] = 64'h05a1118737836749;
RAM[38] = 64'hfed59be3fef5bc23;
RAM[39] = 64'h1047278367498082;
RAM[40] = 64'h67c98082dfed8b85;
RAM[41] = 64'h0000808210a7a023;
end // initial begin
end // if (FPGA)
swbytemask swbytemask(.HSIZED, .HADDRD(A[2:0]), .ByteMask(ByteMaskM));
assign initTrans = HREADY & HSELRam & (HTRANS != 2'b00);
// *** this seems like a weird way to use reset
flopenr #(1) memwritereg(HCLK, 1'b0, initTrans | ~HRESETn, HSELRam & HWRITE, memwrite);
flopenr #(32) haddrreg(HCLK, 1'b0, initTrans | ~HRESETn, HADDR, A);
// busy FSM to extend READY signal
always_ff @(posedge HCLK, negedge HRESETn)
always @(posedge HCLK, negedge HRESETn)
if (~HRESETn) begin
busycount <= 0;
HREADYRam <= #1 0;
@ -131,47 +75,26 @@ module ram #(parameter BASE=0, RANGE = 65535) (
end
end
assign HRESPRam = 0; // OK
localparam ADDR_WDITH = $clog2(RANGE/8);
localparam OFFSET = $clog2(`XLEN/8);
// Rising HREADY edge detector
// Indicates when ram is finishing up
// Needed because HREADY may go high for other reasons,
// and we only want to write data when finishing up.
flopr #(1) prevhreadyRamreg(HCLK,~HRESETn,HREADYRam,prevHREADYRam);
flopenr #(1) prevhreadyRamreg(HCLK,~HRESETn, 1'b1, HREADYRam,prevHREADYRam);
assign risingHREADYRam = HREADYRam & ~prevHREADYRam;
// Model memory read and write
/* -----\/----- EXCLUDED -----\/-----
integer index;
initial begin
for(index = MemStartAddr; index < MemEndAddr; index = index + 1) begin
RAM[index] <= {`XLEN{1'b0}};
end
end
-----/\----- EXCLUDED -----/\----- */
/* verilator lint_off WIDTH */
genvar index;
always_ff @(posedge HCLK)
always @(posedge HCLK)
HWADDR <= #1 A;
if (`XLEN == 64) begin:ramrw
always_ff @(posedge HCLK)
HREADRam <= #1 RAM[A[31:3]];
for(index = 0; index < `XLEN/8; index++) begin
always_ff @(posedge HCLK) begin
if (memwrite & risingHREADYRam & ByteMaskM[index]) RAM[HWADDR[31:3]][8*(index+1)-1:8*index] <= #1 HWDATA[8*(index+1)-1:8*index];
end
end
end else begin
always_ff @(posedge HCLK)
HREADRam <= #1 RAM[A[31:2]];
for(index = 0; index < `XLEN/8; index++) begin
always_ff @(posedge HCLK) begin:ramrw
if (memwrite & risingHREADYRam & ByteMaskM[index]) RAM[HWADDR[31:2]][8*(index+1)-1:8*index] <= #1 HWDATA[8*(index+1)-1:8*index];
end
end
end
/* verilator lint_on WIDTH */
bram2p1r1w #(`XLEN/8, 8, ADDR_WDITH, `FPGA)
memory(.clk(HCLK), .enaA(1'b1),
.addrA(A[ADDR_WDITH+OFFSET-1:OFFSET]), .doutA(HREADRam),
.enaB(memwrite & risingHREADYRam), .weB(ByteMaskM),
.addrB(HWADDR[ADDR_WDITH+OFFSET-1:OFFSET]), .dinB(HWDATA));
endmodule

View File

@ -368,14 +368,14 @@ module testbench;
ProgramLabelMapFile = {linuxImageDir,"disassembly/vmlinux.objdump.lab"};
// initialize bootrom
memFile = $fopen({testvectorDir,"bootmem.bin"}, "rb");
readResult = $fread(dut.uncore.bootrom.bootrom.RAM,memFile);
readResult = $fread(dut.uncore.bootrom.bootrom.memory.RAM,memFile);
$fclose(memFile);
// initialize RAM
if (CHECKPOINT==0)
memFile = $fopen({testvectorDir,"ram.bin"}, "rb");
else
memFile = $fopen({checkpointDir,"ram.bin"}, "rb");
readResult = $fread(dut.uncore.ram.ram.RAM,memFile);
readResult = $fread(dut.uncore.ram.ram.memory.RAM,memFile);
$fclose(memFile);
if (CHECKPOINT==0) begin // normal
traceFileM = $fopen({testvectorDir,"all.txt"}, "r");
@ -383,7 +383,7 @@ module testbench;
InstrCountW = '0;
AttemptedInstructionCount = '0;
end else begin // checkpoint
//$readmemh({checkpointDir,"ram.txt"}, dut.uncore.ram.ram.RAM);
//$readmemh({checkpointDir,"ram.txt"}, dut.uncore.ram.ram.memory.RAM);
traceFileE = $fopen({checkpointDir,"all.txt"}, "r");
traceFileM = $fopen({checkpointDir,"all.txt"}, "r");
InstrCountW = CHECKPOINT;
@ -791,9 +791,9 @@ module testbench;
BaseAdr = SATP[43:0] << 12;
for (i = 2; i >= 0; i--) begin
PAdr = BaseAdr + (VPN[i] << 3);
// ram.RAM is 64-bit addressed. PAdr specifies a byte. We right shift
// ram.memory.RAM is 64-bit addressed. PAdr specifies a byte. We right shift
// by 3 (the PTE size) to get the requested 64-bit PTE.
PTE = dut.uncore.ram.ram.RAM[PAdr >> 3];
PTE = dut.uncore.ram.ram.memory.RAM[PAdr >> 3];
PTE_R = PTE[1];
PTE_X = PTE[3];
if (PTE_R | PTE_X) begin

View File

@ -44,7 +44,7 @@ module testbench;
int test, i, errors, totalerrors;
logic [31:0] sig32[0:SIGNATURESIZE];
logic [`XLEN-1:0] signature[0:SIGNATURESIZE];
logic [`XLEN-1:0] testadr;
logic [`XLEN-1:0] testadr, testadrNoBase;
string InstrFName, InstrDName, InstrEName, InstrMName, InstrWName;
logic [31:0] InstrW;
@ -170,6 +170,7 @@ logic [3:0] dummy;
test = 1;
totalerrors = 0;
testadr = 0;
testadrNoBase = 0;
// fill memory with defined values to reduce Xs in simulation
// Quick note the memory will need to be initialized. The C library does not
// guarantee the initialized reads. For example a strcmp can read 6 byte
@ -178,7 +179,7 @@ logic [3:0] dummy;
// the design.
if (TEST == "coremark")
for (i=MemStartAddr; i<MemEndAddr; i = i+1)
dut.uncore.ram.ram.RAM[i] = 64'h0;
dut.uncore.ram.ram.memory.RAM[i] = 64'h0;
// read test vectors into memory
pathname = tvpaths[tests[0].atoi()];
@ -186,9 +187,9 @@ logic [3:0] dummy;
pathname = tvpaths[0];
else pathname = tvpaths[1]; */
memfilename = {pathname, tests[test], ".elf.memfile"};
if (`IMEM == `MEM_TIM) $readmemh(memfilename, dut.core.ifu.irom.irom.ram.RAM);
else $readmemh(memfilename, dut.uncore.ram.ram.RAM);
if (`DMEM == `MEM_TIM) $readmemh(memfilename, dut.core.lsu.dtim.dtim.ram.RAM);
if (`IMEM == `MEM_TIM) $readmemh(memfilename, dut.core.ifu.irom.irom.ram.memory.RAM);
else $readmemh(memfilename, dut.uncore.ram.ram.memory.RAM);
if (`DMEM == `MEM_TIM) $readmemh(memfilename, dut.core.lsu.dtim.dtim.ram.memory.RAM);
ProgramAddrMapFile = {pathname, tests[test], ".elf.objdump.addr"};
ProgramLabelMapFile = {pathname, tests[test], ".elf.objdump.lab"};
@ -243,14 +244,15 @@ logic [3:0] dummy;
errors = (i == SIGNATURESIZE+1); // error if file is empty
i = 0;
testadr = (`RAM_BASE+tests[test+1].atohex())/(`XLEN/8);
testadrNoBase = (tests[test+1].atohex())/(`XLEN/8);
/* verilator lint_off INFINITELOOP */
while (signature[i] !== 'bx) begin
logic [`XLEN-1:0] sig;
if (`DMEM == `MEM_TIM) sig = dut.core.lsu.dtim.dtim.ram.RAM[testadr+i];
else sig = dut.uncore.ram.ram.RAM[testadr+i];
// $display("signature[%h] = %h sig = %h", i, signature[i], sig);
if (`DMEM == `MEM_TIM) sig = dut.core.lsu.dtim.dtim.ram.memory.RAM[testadrNoBase+i];
else sig = dut.uncore.ram.ram.memory.RAM[testadrNoBase+i];
//$display("signature[%h] = %h sig = %h", i, signature[i], sig);
if (signature[i] !== sig &
//if (signature[i] !== dut.core.lsu.dtim.ram.RAM[testadr+i] &
//if (signature[i] !== dut.core.lsu.dtim.ram.memory.RAM[testadr+i] &
(signature[i] !== DCacheFlushFSM.ShadowRAM[testadr+i])) begin // ***i+1?
if ((signature[i] !== '0 | signature[i+4] !== 'x)) begin
// if (signature[i+4] !== 'bx | (signature[i] !== 32'hFFFFFFFF & signature[i] !== 32'h00000000)) begin
@ -260,7 +262,7 @@ logic [3:0] dummy;
errors = errors+1;
$display(" Error on test %s result %d: adr = %h sim (D$) %h sim (DMEM) = %h, signature = %h",
tests[test], i, (testadr+i)*(`XLEN/8), DCacheFlushFSM.ShadowRAM[testadr+i], sig, signature[i]);
// tests[test], i, (testadr+i)*(`XLEN/8), DCacheFlushFSM.ShadowRAM[testadr+i], dut.core.lsu.dtim.ram.RAM[testadr+i], signature[i]);
// tests[test], i, (testadr+i)*(`XLEN/8), DCacheFlushFSM.ShadowRAM[testadr+i], dut.core.lsu.dtim.ram.memory.RAM[testadr+i], signature[i]);
$stop;//***debug
end
end
@ -283,10 +285,10 @@ logic [3:0] dummy;
else begin
//pathname = tvpaths[tests[0]];
memfilename = {pathname, tests[test], ".elf.memfile"};
//$readmemh(memfilename, dut.uncore.ram.ram.RAM);
if (`IMEM == `MEM_TIM) $readmemh(memfilename, dut.core.ifu.irom.irom.ram.RAM);
else $readmemh(memfilename, dut.uncore.ram.ram.RAM);
if (`DMEM == `MEM_TIM) $readmemh(memfilename, dut.core.lsu.dtim.dtim.ram.RAM);
//$readmemh(memfilename, dut.uncore.ram.ram.memory.RAM);
if (`IMEM == `MEM_TIM) $readmemh(memfilename, dut.core.ifu.irom.irom.ram.memory.RAM);
else $readmemh(memfilename, dut.uncore.ram.ram.memory.RAM);
if (`DMEM == `MEM_TIM) $readmemh(memfilename, dut.core.lsu.dtim.dtim.ram.memory.RAM);
ProgramAddrMapFile = {pathname, tests[test], ".elf.objdump.addr"};
ProgramLabelMapFile = {pathname, tests[test], ".elf.objdump.lab"};