Merge branch 'main' of github.com:davidharrishmc/riscv-wally into main

This commit is contained in:
Ross Thompson 2021-12-30 15:26:41 -06:00
commit 9136b1fd73
4 changed files with 267 additions and 379 deletions

View File

@ -121,73 +121,73 @@ module lsu
assign IEUAdrExtM = {2'b00, IEUAdrM};
generate
if(`MEM_VIRTMEM) begin : MEM_VIRTMEM
logic AnyCPUReqM;
logic [`PA_BITS-1:0] HPTWAdr;
logic HPTWRead;
logic [2:0] HPTWSize;
logic SelReplayCPURequest;
if(`MEM_VIRTMEM) begin : MEM_VIRTMEM
logic AnyCPUReqM;
logic [`PA_BITS-1:0] HPTWAdr;
logic HPTWRead;
logic [2:0] HPTWSize;
logic SelReplayCPURequest;
assign AnyCPUReqM = (|MemRWM) | (|AtomicM);
assign AnyCPUReqM = (|MemRWM) | (|AtomicM);
interlockfsm interlockfsm (.clk, .reset, .AnyCPUReqM, .ITLBMissF, .ITLBWriteF,
.DTLBMissM, .DTLBWriteM, .ExceptionM, .PendingInterruptM, .DCacheStall,
.InterlockStall, .SelReplayCPURequest, .SelHPTW,
.IgnoreRequest);
hptw hptw(.clk, .reset, .SATP_REGW, .PCF, .IEUAdrM,
.ITLBMissF(ITLBMissF & ~PendingInterruptM),
.DTLBMissM(DTLBMissM & ~PendingInterruptM),
.MemRWM, .PTE, .PageType, .ITLBWriteF, .DTLBWriteM,
.HPTWReadPTE(ReadDataM),
.DCacheStall, .HPTWAdr, .HPTWRead, .HPTWSize, .AnyCPUReqM);
interlockfsm interlockfsm (.clk, .reset, .AnyCPUReqM, .ITLBMissF, .ITLBWriteF,
.DTLBMissM, .DTLBWriteM, .ExceptionM, .PendingInterruptM, .DCacheStall,
.InterlockStall, .SelReplayCPURequest, .SelHPTW,
.IgnoreRequest);
hptw hptw(.clk, .reset, .SATP_REGW, .PCF, .IEUAdrM,
.ITLBMissF(ITLBMissF & ~PendingInterruptM),
.DTLBMissM(DTLBMissM & ~PendingInterruptM),
.MemRWM, .PTE, .PageType, .ITLBWriteF, .DTLBWriteM,
.HPTWReadPTE(ReadDataM),
.DCacheStall, .HPTWAdr, .HPTWRead, .HPTWSize, .AnyCPUReqM);
// arbiter between IEU and hptw
// multiplex the outputs to LSU
mux2 #(2) rwmux(MemRWM, {HPTWRead, 1'b0}, SelHPTW, PreLsuRWM);
mux2 #(3) sizemux(Funct3M, HPTWSize, SelHPTW, LsuFunct3M);
mux2 #(2) atomicmux(AtomicM, 2'b00, SelHPTW, LsuAtomicM);
mux2 #(12) adremux(IEUAdrE[11:0], HPTWAdr[11:0], SelHPTW, PreLsuAdrE);
mux2 #(`PA_BITS) lsupadrmux(IEUAdrExtM[`PA_BITS-1:0], HPTWAdr, SelHPTW, PreLsuPAdrM);
// arbiter between IEU and hptw
// multiplex the outputs to LSU
mux2 #(2) rwmux(MemRWM, {HPTWRead, 1'b0}, SelHPTW, PreLsuRWM);
mux2 #(3) sizemux(Funct3M, HPTWSize, SelHPTW, LsuFunct3M);
mux2 #(2) atomicmux(AtomicM, 2'b00, SelHPTW, LsuAtomicM);
mux2 #(12) adremux(IEUAdrE[11:0], HPTWAdr[11:0], SelHPTW, PreLsuAdrE);
mux2 #(`PA_BITS) lsupadrmux(IEUAdrExtM[`PA_BITS-1:0], HPTWAdr, SelHPTW, PreLsuPAdrM);
// always block interrupts when using the hardware page table walker.
assign CPUBusy = StallW & ~SelHPTW;
// It is not possible to pipeline hptw as the following load will depend on the previous load's
// data. Therefore we don't need a pipeline register
//flop #(`PA_BITS) HPTWAdrMReg(clk, HPTWAdr, HPTWAdrM); // delay HPTWAdrM by a cycle
// always block interrupts when using the hardware page table walker.
assign CPUBusy = StallW & ~SelHPTW;
// It is not possible to pipeline hptw as the following load will depend on the previous load's
// data. Therefore we don't need a pipeline register
//flop #(`PA_BITS) HPTWAdrMReg(clk, HPTWAdr, HPTWAdrM); // delay HPTWAdrM by a cycle
// Specify which type of page fault is occurring
assign DTLBLoadPageFaultM = DTLBPageFaultM & PreLsuRWM[1];
assign DTLBStorePageFaultM = DTLBPageFaultM & PreLsuRWM[0];
// Specify which type of page fault is occurring
assign DTLBLoadPageFaultM = DTLBPageFaultM & PreLsuRWM[1];
assign DTLBStorePageFaultM = DTLBPageFaultM & PreLsuRWM[0];
// When replaying CPU memory request after PTW select the IEUAdrM for correct address.
assign LsuAdrE = SelReplayCPURequest ? IEUAdrM[11:0] : PreLsuAdrE;
// When replaying CPU memory request after PTW select the IEUAdrM for correct address.
assign LsuAdrE = SelReplayCPURequest ? IEUAdrM[11:0] : PreLsuAdrE;
end // if (`MEM_VIRTMEM)
else begin
assign InterlockStall = 1'b0;
assign LsuAdrE = PreLsuAdrE;
assign SelHPTW = 1'b0;
assign IgnoreRequest = 1'b0;
end // if (`MEM_VIRTMEM)
else begin
assign InterlockStall = 1'b0;
assign LsuAdrE = PreLsuAdrE;
assign SelHPTW = 1'b0;
assign IgnoreRequest = 1'b0;
assign PTE = '0;
assign PageType = '0;
assign DTLBWriteM = 1'b0;
assign ITLBWriteF = 1'b0;
assign PreLsuRWM = MemRWM;
assign LsuFunct3M = Funct3M;
assign LsuAtomicM = AtomicM;
assign PreLsuAdrE = IEUAdrE[11:0];
assign PreLsuPAdrM = IEUAdrExtM;
assign CPUBusy = StallW;
assign DTLBLoadPageFaultM = 1'b0;
assign DTLBStorePageFaultM = 1'b0;
end
assign PTE = '0;
assign PageType = '0;
assign DTLBWriteM = 1'b0;
assign ITLBWriteF = 1'b0;
assign PreLsuRWM = MemRWM;
assign LsuFunct3M = Funct3M;
assign LsuAtomicM = AtomicM;
assign PreLsuAdrE = IEUAdrE[11:0];
assign PreLsuPAdrM = IEUAdrExtM;
assign CPUBusy = StallW;
assign DTLBLoadPageFaultM = 1'b0;
assign DTLBStorePageFaultM = 1'b0;
end
endgenerate
// **** look into this confusing signal.
@ -201,54 +201,54 @@ module lsu
assign CommittedM = SelHPTW | DCacheCommittedM | BusCommittedM;
generate
if(`ZICSR_SUPPORTED == 1) begin : dmmu
logic DataMisalignedM;
if(`ZICSR_SUPPORTED == 1) begin : dmmu
logic DataMisalignedM;
mmu #(.TLB_ENTRIES(`DTLB_ENTRIES), .IMMU(0))
dmmu(.clk, .reset, .SATP_REGW, .STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_MPP,
.PrivilegeModeW, .DisableTranslation(SelHPTW),
.PAdr(PreLsuPAdrM),
.VAdr(IEUAdrM),
.Size(LsuFunct3M[1:0]),
.PTE,
.PageTypeWriteVal(PageType),
.TLBWrite(DTLBWriteM),
.TLBFlush(DTLBFlushM),
.PhysicalAddress(LsuPAdrM),
.TLBMiss(DTLBMissM),
.Cacheable(CacheableM),
.Idempotent(), .AtomicAllowed(),
.TLBPageFault(DTLBPageFaultM),
.InstrAccessFaultF(), .LoadAccessFaultM, .StoreAccessFaultM,
.AtomicAccessM(1'b0), .ExecuteAccessF(1'b0), /// atomicaccessm is probably a bug
.WriteAccessM(PreLsuRWM[0]), .ReadAccessM(PreLsuRWM[1]),
.PMPCFG_ARRAY_REGW, .PMPADDR_ARRAY_REGW
); // *** the pma/pmp instruction access faults don't really matter here. is it possible to parameterize which outputs exist?
mmu #(.TLB_ENTRIES(`DTLB_ENTRIES), .IMMU(0))
dmmu(.clk, .reset, .SATP_REGW, .STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_MPP,
.PrivilegeModeW, .DisableTranslation(SelHPTW),
.PAdr(PreLsuPAdrM),
.VAdr(IEUAdrM),
.Size(LsuFunct3M[1:0]),
.PTE,
.PageTypeWriteVal(PageType),
.TLBWrite(DTLBWriteM),
.TLBFlush(DTLBFlushM),
.PhysicalAddress(LsuPAdrM),
.TLBMiss(DTLBMissM),
.Cacheable(CacheableM),
.Idempotent(), .AtomicAllowed(),
.TLBPageFault(DTLBPageFaultM),
.InstrAccessFaultF(), .LoadAccessFaultM, .StoreAccessFaultM,
.AtomicAccessM(1'b0), .ExecuteAccessF(1'b0), /// atomicaccessm is probably a bug
.WriteAccessM(PreLsuRWM[0]), .ReadAccessM(PreLsuRWM[1]),
.PMPCFG_ARRAY_REGW, .PMPADDR_ARRAY_REGW
); // *** the pma/pmp instruction access faults don't really matter here. is it possible to parameterize which outputs exist?
// Determine if an Unaligned access is taking place
// hptw guarantees alignment, only check inputs from IEU.
always_comb
case(Funct3M[1:0])
2'b00: DataMisalignedM = 0; // lb, sb, lbu
2'b01: DataMisalignedM = IEUAdrM[0]; // lh, sh, lhu
2'b10: DataMisalignedM = IEUAdrM[1] | IEUAdrM[0]; // lw, sw, flw, fsw, lwu
2'b11: DataMisalignedM = |IEUAdrM[2:0]; // ld, sd, fld, fsd
endcase
// Determine if an Unaligned access is taking place
// hptw guarantees alignment, only check inputs from IEU.
always_comb
case(Funct3M[1:0])
2'b00: DataMisalignedM = 0; // lb, sb, lbu
2'b01: DataMisalignedM = IEUAdrM[0]; // lh, sh, lhu
2'b10: DataMisalignedM = IEUAdrM[1] | IEUAdrM[0]; // lw, sw, flw, fsw, lwu
2'b11: DataMisalignedM = |IEUAdrM[2:0]; // ld, sd, fld, fsd
endcase
// If the CPU's (not HPTW's) request is a page fault.
assign LoadMisalignedFaultM = DataMisalignedM & MemRWM[1];
assign StoreMisalignedFaultM = DataMisalignedM & MemRWM[0];
end else begin
assign LsuPAdrM = PreLsuPAdrM;
assign DTLBMissM = 0;
assign CacheableM = 1;
assign DTLBPageFaultM = 0;
assign LoadAccessFaultM = 0;
assign StoreAccessFaultM = 0;
assign LoadMisalignedFaultM = 0;
assign StoreMisalignedFaultM = 0;
end
// If the CPU's (not HPTW's) request is a page fault.
assign LoadMisalignedFaultM = DataMisalignedM & MemRWM[1];
assign StoreMisalignedFaultM = DataMisalignedM & MemRWM[0];
end else begin
assign LsuPAdrM = PreLsuPAdrM;
assign DTLBMissM = 0;
assign CacheableM = 1;
assign DTLBPageFaultM = 0;
assign LoadAccessFaultM = 0;
assign StoreAccessFaultM = 0;
assign LoadMisalignedFaultM = 0;
assign StoreMisalignedFaultM = 0;
end
endgenerate
assign LSUStall = DCacheStall | InterlockStall | BusStall;
@ -257,18 +257,17 @@ module lsu
// Move generate from lrsc to outside this module.
// use PreLsu as prefix for lrsc
generate
if (`A_SUPPORTED) begin:lrsc
assign MemReadM = PreLsuRWM[1] & ~(IgnoreRequest) & ~DTLBMissM;
lrsc lrsc(.clk, .reset, .FlushW, .CPUBusy, .MemReadM, .PreLsuRWM, .LsuAtomicM, .LsuPAdrM,
.SquashSCW, .LsuRWM);
end else begin:lrsc
assign SquashSCW = 0;
assign LsuRWM = PreLsuRWM;
end
if (`A_SUPPORTED) begin:lrsc
assign MemReadM = PreLsuRWM[1] & ~(IgnoreRequest) & ~DTLBMissM;
lrsc lrsc(.clk, .reset, .FlushW, .CPUBusy, .MemReadM, .PreLsuRWM, .LsuAtomicM, .LsuPAdrM,
.SquashSCW, .LsuRWM);
end else begin:lrsc
assign SquashSCW = 0;
assign LsuRWM = PreLsuRWM;
end
endgenerate
// conditional
// 1. ram // controlled by `MEM_DTIM
// 2. cache `MEM_DCACHE
@ -306,25 +305,25 @@ module lsu
logic SelUncachedAdr;
generate
if(`MEM_DCACHE) begin : dcache
dcache dcache(.clk, .reset, .CPUBusy,
.LsuRWM, .FlushDCacheM, .LsuAtomicM, .LsuAdrE, .LsuPAdrM,
.FinalWriteDataM, .ReadDataWordM, .DCacheStall,
.DCacheMiss, .DCacheAccess,
.IgnoreRequest, .CacheableM, .DCacheCommittedM,
.DCacheBusAdr, .ReadDataBlockSetsM, .DCacheMemWriteData,
.DCacheFetchLine, .DCacheWriteLine,.DCacheBusAck);
end else begin : passthrough
assign ReadDataWordM = 0;
assign DCacheStall = 0;
assign DCacheMiss = 1;
assign DCacheAccess = CacheableM;
assign DCacheCommittedM = 0;
assign DCacheWriteLine = 0;
assign DCacheFetchLine = 0;
assign DCacheBusAdr = 0;
assign ReadDataBlockSetsM[0] = 0;
end
if(`MEM_DCACHE) begin : dcache
dcache dcache(.clk, .reset, .CPUBusy,
.LsuRWM, .FlushDCacheM, .LsuAtomicM, .LsuAdrE, .LsuPAdrM,
.FinalWriteDataM, .ReadDataWordM, .DCacheStall,
.DCacheMiss, .DCacheAccess,
.IgnoreRequest, .CacheableM, .DCacheCommittedM,
.DCacheBusAdr, .ReadDataBlockSetsM, .DCacheMemWriteData,
.DCacheFetchLine, .DCacheWriteLine,.DCacheBusAck);
end else begin : passthrough
assign ReadDataWordM = 0;
assign DCacheStall = 0;
assign DCacheMiss = 1;
assign DCacheAccess = CacheableM;
assign DCacheCommittedM = 0;
assign DCacheWriteLine = 0;
assign DCacheFetchLine = 0;
assign DCacheBusAdr = 0;
assign ReadDataBlockSetsM[0] = 0;
end
endgenerate

View File

@ -48,162 +48,154 @@ module hptw
output logic [2:0] HPTWSize // 32 or 64 bit access.
);
typedef enum {L0_ADR, L0_RD,
L1_ADR, L1_RD,
L2_ADR, L2_RD,
L3_ADR, L3_RD,
LEAF, IDLE} statetype; // *** placed outside generate statement to remove synthesis errors
typedef enum {L0_ADR, L0_RD,
L1_ADR, L1_RD,
L2_ADR, L2_RD,
L3_ADR, L3_RD,
LEAF, IDLE} statetype; // *** placed outside generate statement to remove synthesis errors
generate
if (`MEM_VIRTMEM) begin:virtmem
logic DTLBWalk; // register TLBs translation miss requests
logic [`PPN_BITS-1:0] BasePageTablePPN;
logic [`PPN_BITS-1:0] CurrentPPN;
logic MemWrite;
logic Executable, Writable, Readable, Valid;
logic Misaligned, MegapageMisaligned;
logic ValidPTE, LeafPTE, ValidLeafPTE, ValidNonLeafPTE;
logic StartWalk;
logic TLBMiss;
logic PRegEn;
logic [1:0] NextPageType;
logic [`SVMODE_BITS-1:0] SvMode;
logic [`XLEN-1:0] TranslationVAdr;
(* mark_debug = "true" *) statetype WalkerState, NextWalkerState, InitialWalkerState;
logic DTLBWalk; // register TLBs translation miss requests
logic [`PPN_BITS-1:0] BasePageTablePPN;
logic [`PPN_BITS-1:0] CurrentPPN;
logic MemWrite;
logic Executable, Writable, Readable, Valid;
logic Misaligned, MegapageMisaligned;
logic ValidPTE, LeafPTE, ValidLeafPTE, ValidNonLeafPTE;
logic StartWalk;
logic TLBMiss;
logic PRegEn;
logic [1:0] NextPageType;
logic [`SVMODE_BITS-1:0] SvMode;
logic [`XLEN-1:0] TranslationVAdr;
// Extract bits from CSRs and inputs
assign SvMode = SATP_REGW[`XLEN-1:`XLEN-`SVMODE_BITS];
assign BasePageTablePPN = SATP_REGW[`PPN_BITS-1:0];
assign MemWrite = MemRWM[0];
assign TLBMiss = (DTLBMissM | ITLBMissF);
(* mark_debug = "true" *) statetype WalkerState, NextWalkerState, InitialWalkerState;
// Determine which address to translate
assign TranslationVAdr = DTLBWalk ? IEUAdrM : PCF;
assign CurrentPPN = PTE[`PPN_BITS+9:10];
// Extract bits from CSRs and inputs
assign SvMode = SATP_REGW[`XLEN-1:`XLEN-`SVMODE_BITS];
assign BasePageTablePPN = SATP_REGW[`PPN_BITS-1:0];
assign MemWrite = MemRWM[0];
assign TLBMiss = (DTLBMissM | ITLBMissF);
// State flops
flopenr #(1) TLBMissMReg(clk, reset, StartWalk, DTLBMissM, DTLBWalk); // when walk begins, record whether it was for DTLB (or record 0 for ITLB)
assign PRegEn = HPTWRead & ~DCacheStall;
flopenr #(`XLEN) PTEReg(clk, reset, PRegEn, HPTWReadPTE, PTE); // Capture page table entry from data cache
// Assign PTE descriptors common across all XLEN values
// For non-leaf PTEs, D, A, U bits are reserved and ignored. They do not cause faults while walking the page table
assign {Executable, Writable, Readable, Valid} = PTE[3:0];
assign LeafPTE = Executable | Writable | Readable;
assign ValidPTE = Valid && ~(Writable && ~Readable);
assign ValidLeafPTE = ValidPTE & LeafPTE;
assign ValidNonLeafPTE = ValidPTE & ~LeafPTE;
// Enable and select signals based on states
assign StartWalk = (WalkerState == IDLE) & TLBMiss;
assign HPTWRead = (WalkerState == L3_RD) | (WalkerState == L2_RD) | (WalkerState == L1_RD) | (WalkerState == L0_RD);
assign DTLBWriteM = (WalkerState == LEAF) & DTLBWalk;
assign ITLBWriteF = (WalkerState == LEAF) & ~DTLBWalk;
// Determine which address to translate
assign TranslationVAdr = DTLBWalk ? IEUAdrM : PCF;
assign CurrentPPN = PTE[`PPN_BITS+9:10];
// FSM to track PageType based on the levels of the page table traversed
flopr #(2) PageTypeReg(clk, reset, NextPageType, PageType);
always_comb
case (WalkerState)
L3_RD: NextPageType = 2'b11; // terapage
L2_RD: NextPageType = 2'b10; // gigapage
L1_RD: NextPageType = 2'b01; // megapage
L0_RD: NextPageType = 2'b00; // kilopage
default: NextPageType = PageType;
// State flops
flopenr #(1) TLBMissMReg(clk, reset, StartWalk, DTLBMissM, DTLBWalk); // when walk begins, record whether it was for DTLB (or record 0 for ITLB)
assign PRegEn = HPTWRead & ~DCacheStall;
flopenr #(`XLEN) PTEReg(clk, reset, PRegEn, HPTWReadPTE, PTE); // Capture page table entry from data cache
// Assign PTE descriptors common across all XLEN values
// For non-leaf PTEs, D, A, U bits are reserved and ignored. They do not cause faults while walking the page table
assign {Executable, Writable, Readable, Valid} = PTE[3:0];
assign LeafPTE = Executable | Writable | Readable;
assign ValidPTE = Valid && ~(Writable && ~Readable);
assign ValidLeafPTE = ValidPTE & LeafPTE;
assign ValidNonLeafPTE = ValidPTE & ~LeafPTE;
// Enable and select signals based on states
assign StartWalk = (WalkerState == IDLE) & TLBMiss;
assign HPTWRead = (WalkerState == L3_RD) | (WalkerState == L2_RD) | (WalkerState == L1_RD) | (WalkerState == L0_RD);
assign DTLBWriteM = (WalkerState == LEAF) & DTLBWalk;
assign ITLBWriteF = (WalkerState == LEAF) & ~DTLBWalk;
// FSM to track PageType based on the levels of the page table traversed
flopr #(2) PageTypeReg(clk, reset, NextPageType, PageType);
always_comb
case (WalkerState)
L3_RD: NextPageType = 2'b11; // terapage
L2_RD: NextPageType = 2'b10; // gigapage
L1_RD: NextPageType = 2'b01; // megapage
L0_RD: NextPageType = 2'b00; // kilopage
default: NextPageType = PageType;
endcase
// HPTWAdr muxing
if (`XLEN==32) begin // RV32
logic [9:0] VPN;
logic [`PPN_BITS-1:0] PPN;
assign VPN = ((WalkerState == L1_ADR) | (WalkerState == L1_RD)) ? TranslationVAdr[31:22] : TranslationVAdr[21:12]; // select VPN field based on HPTW state
assign PPN = ((WalkerState == L1_ADR) | (WalkerState == L1_RD)) ? BasePageTablePPN : CurrentPPN;
assign HPTWAdr = {PPN, VPN, 2'b00};
assign HPTWSize = 3'b010;
end else begin // RV64
logic [8:0] VPN;
logic [`PPN_BITS-1:0] PPN;
always_comb
case (WalkerState) // select VPN field based on HPTW state
L3_ADR, L3_RD: VPN = TranslationVAdr[47:39];
L2_ADR, L2_RD: VPN = TranslationVAdr[38:30];
L1_ADR, L1_RD: VPN = TranslationVAdr[29:21];
default: VPN = TranslationVAdr[20:12];
endcase
assign PPN = ((WalkerState == L3_ADR) | (WalkerState == L3_RD) |
(SvMode != `SV48 & ((WalkerState == L2_ADR) | (WalkerState == L2_RD)))) ? BasePageTablePPN : CurrentPPN;
assign HPTWAdr = {PPN, VPN, 3'b000};
assign HPTWSize = 3'b011;
end
// HPTWAdr muxing
if (`XLEN==32) begin // RV32
logic [9:0] VPN;
logic [`PPN_BITS-1:0] PPN;
assign VPN = ((WalkerState == L1_ADR) | (WalkerState == L1_RD)) ? TranslationVAdr[31:22] : TranslationVAdr[21:12]; // select VPN field based on HPTW state
assign PPN = ((WalkerState == L1_ADR) | (WalkerState == L1_RD)) ? BasePageTablePPN : CurrentPPN;
assign HPTWAdr = {PPN, VPN, 2'b00};
assign HPTWSize = 3'b010;
end else begin // RV64
logic [8:0] VPN;
logic [`PPN_BITS-1:0] PPN;
always_comb
case (WalkerState) // select VPN field based on HPTW state
L3_ADR, L3_RD: VPN = TranslationVAdr[47:39];
L2_ADR, L2_RD: VPN = TranslationVAdr[38:30];
L1_ADR, L1_RD: VPN = TranslationVAdr[29:21];
default: VPN = TranslationVAdr[20:12];
endcase
assign PPN = ((WalkerState == L3_ADR) | (WalkerState == L3_RD) |
(SvMode != `SV48 & ((WalkerState == L2_ADR) | (WalkerState == L2_RD)))) ? BasePageTablePPN : CurrentPPN;
assign HPTWAdr = {PPN, VPN, 3'b000};
assign HPTWSize = 3'b011;
end
// Initial state and misalignment for RV32/64
if (`XLEN == 32) begin
assign InitialWalkerState = L1_ADR;
assign MegapageMisaligned = |(CurrentPPN[9:0]); // must have zero PPN0
// *** Possible bug - should be L1_ADR?
assign Misaligned = ((WalkerState == L0_ADR) & MegapageMisaligned);
end else begin
logic GigapageMisaligned, TerapageMisaligned;
assign InitialWalkerState = (SvMode == `SV48) ? L3_ADR : L2_ADR;
assign TerapageMisaligned = |(CurrentPPN[26:0]); // must have zero PPN2, PPN1, PPN0
assign GigapageMisaligned = |(CurrentPPN[17:0]); // must have zero PPN1 and PPN0
assign MegapageMisaligned = |(CurrentPPN[8:0]); // must have zero PPN0
assign Misaligned = ((WalkerState == L2_ADR) & TerapageMisaligned) | ((WalkerState == L1_ADR) & GigapageMisaligned) | ((WalkerState == L0_ADR) & MegapageMisaligned);
end
// Initial state and misalignment for RV32/64
if (`XLEN == 32) begin
assign InitialWalkerState = L1_ADR;
assign MegapageMisaligned = |(CurrentPPN[9:0]); // must have zero PPN0
// *** Possible bug - should be L1_ADR?
assign Misaligned = ((WalkerState == L0_ADR) & MegapageMisaligned);
end else begin
logic GigapageMisaligned, TerapageMisaligned;
assign InitialWalkerState = (SvMode == `SV48) ? L3_ADR : L2_ADR;
assign TerapageMisaligned = |(CurrentPPN[26:0]); // must have zero PPN2, PPN1, PPN0
assign GigapageMisaligned = |(CurrentPPN[17:0]); // must have zero PPN1 and PPN0
assign MegapageMisaligned = |(CurrentPPN[8:0]); // must have zero PPN0
assign Misaligned = ((WalkerState == L2_ADR) & TerapageMisaligned) | ((WalkerState == L1_ADR) & GigapageMisaligned) | ((WalkerState == L0_ADR) & MegapageMisaligned);
end
// Page Table Walker FSM
// Page Table Walker FSM
// If the setup time on the D$ RAM is short, it should be possible to merge the LEVELx_READ and LEVELx states
// to decrease the latency of the HPTW. However, if the D$ is a cycle limiter, it's better to leave the
// HPTW as shown below to keep the D$ setup time out of the critical path.
// *** Is this really true. Talk with Ross. Seems like it's the next state logic on critical path instead.
flopenl #(.TYPE(statetype)) WalkerStateReg(clk, reset, 1'b1, NextWalkerState, IDLE, WalkerState);
always_comb
case (WalkerState)
IDLE: if (TLBMiss) NextWalkerState = InitialWalkerState;
else NextWalkerState = IDLE;
L3_ADR: NextWalkerState = L3_RD; // first access in SV48
L3_RD: if (DCacheStall) NextWalkerState = L3_RD;
else NextWalkerState = L2_ADR;
// LEVEL3: if (ValidLeafPTE && ~Misaligned) NextWalkerState = LEAF;
// else if (ValidNonLeafPTE) NextWalkerState = L2_ADR;
// else NextWalkerState = FAULT;
L2_ADR: if (InitialWalkerState == L2_ADR) NextWalkerState = L2_RD; // first access in SV39
else if (ValidLeafPTE && ~Misaligned) NextWalkerState = LEAF; // could shortcut this by a cyle for all Lx_ADR superpages
else if (ValidNonLeafPTE) NextWalkerState = L2_RD;
else NextWalkerState = LEAF;
L2_RD: if (DCacheStall) NextWalkerState = L2_RD;
else NextWalkerState = L1_ADR;
// LEVEL2: if (ValidLeafPTE && ~Misaligned) NextWalkerState = LEAF;
// else if (ValidNonLeafPTE) NextWalkerState = L1_ADR;
// else NextWalkerState = FAULT;
L1_ADR: if (InitialWalkerState == L1_ADR) NextWalkerState = L1_RD; // first access in SV32
else if (ValidLeafPTE && ~Misaligned) NextWalkerState = LEAF; // could shortcut this by a cyle for all Lx_ADR superpages
else if (ValidNonLeafPTE) NextWalkerState = L1_RD;
else NextWalkerState = LEAF;
L1_RD: if (DCacheStall) NextWalkerState = L1_RD;
else NextWalkerState = L0_ADR;
// LEVEL1: if (ValidLeafPTE && ~Misaligned) NextWalkerState = LEAF;
// else if (ValidNonLeafPTE) NextWalkerState = L0_ADR;
// else NextWalkerState = FAULT;
L0_ADR: if (ValidLeafPTE && ~Misaligned) NextWalkerState = LEAF; // could shortcut this by a cyle for all Lx_ADR superpages
else if (ValidNonLeafPTE) NextWalkerState = L0_RD;
else NextWalkerState = LEAF;
L0_RD: if (DCacheStall) NextWalkerState = L0_RD;
else NextWalkerState = LEAF;
// LEVEL0: if (ValidLeafPTE) NextWalkerState = LEAF;
// else NextWalkerState = FAULT;
LEAF: NextWalkerState = IDLE; // updates TLB
default: begin
// synthesis translate_off
$error("Default state in HPTW should be unreachable");
// synthesis translate_on
NextWalkerState = IDLE; // should never be reached
end
endcase
end else begin // No Virtual memory supported; tie HPTW outputs to 0
assign HPTWRead = 0;
assign HPTWAdr = 0;
assign HPTWSize = 3'b000;
end
endgenerate
case (WalkerState)
IDLE: if (TLBMiss) NextWalkerState = InitialWalkerState;
else NextWalkerState = IDLE;
L3_ADR: NextWalkerState = L3_RD; // first access in SV48
L3_RD: if (DCacheStall) NextWalkerState = L3_RD;
else NextWalkerState = L2_ADR;
// LEVEL3: if (ValidLeafPTE && ~Misaligned) NextWalkerState = LEAF;
// else if (ValidNonLeafPTE) NextWalkerState = L2_ADR;
// else NextWalkerState = FAULT;
L2_ADR: if (InitialWalkerState == L2_ADR) NextWalkerState = L2_RD; // first access in SV39
else if (ValidLeafPTE && ~Misaligned) NextWalkerState = LEAF; // could shortcut this by a cyle for all Lx_ADR superpages
else if (ValidNonLeafPTE) NextWalkerState = L2_RD;
else NextWalkerState = LEAF;
L2_RD: if (DCacheStall) NextWalkerState = L2_RD;
else NextWalkerState = L1_ADR;
// LEVEL2: if (ValidLeafPTE && ~Misaligned) NextWalkerState = LEAF;
// else if (ValidNonLeafPTE) NextWalkerState = L1_ADR;
// else NextWalkerState = FAULT;
L1_ADR: if (InitialWalkerState == L1_ADR) NextWalkerState = L1_RD; // first access in SV32
else if (ValidLeafPTE && ~Misaligned) NextWalkerState = LEAF; // could shortcut this by a cyle for all Lx_ADR superpages
else if (ValidNonLeafPTE) NextWalkerState = L1_RD;
else NextWalkerState = LEAF;
L1_RD: if (DCacheStall) NextWalkerState = L1_RD;
else NextWalkerState = L0_ADR;
// LEVEL1: if (ValidLeafPTE && ~Misaligned) NextWalkerState = LEAF;
// else if (ValidNonLeafPTE) NextWalkerState = L0_ADR;
// else NextWalkerState = FAULT;
L0_ADR: if (ValidLeafPTE && ~Misaligned) NextWalkerState = LEAF; // could shortcut this by a cyle for all Lx_ADR superpages
else if (ValidNonLeafPTE) NextWalkerState = L0_RD;
else NextWalkerState = LEAF;
L0_RD: if (DCacheStall) NextWalkerState = L0_RD;
else NextWalkerState = LEAF;
// LEVEL0: if (ValidLeafPTE) NextWalkerState = LEAF;
// else NextWalkerState = FAULT;
LEAF: NextWalkerState = IDLE; // updates TLB
default: begin
// synthesis translate_off
$error("Default state in HPTW should be unreachable");
// synthesis translate_on
NextWalkerState = IDLE; // should never be reached
end
endcase
endmodule

View File

@ -1,101 +0,0 @@
///////////////////////////////////////////
// mul_cs.sv
//
// Written: james.stine@okstate.edu 17 October 2021
// Modified:
//
// Purpose: Carry/Save Multiplier output with Wallace Reduction
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
module mult_cs #(parameter WIDTH = 8)
(a, b, tc, sum, carry);
input logic [WIDTH-1:0] a;
input logic [WIDTH-1:0] b;
input logic tc;
output logic [2*WIDTH-1:0] sum;
output logic [2*WIDTH-1:0] carry;
// PP array
logic [2*WIDTH-1:0] pp_array [0:WIDTH-1];
logic [2*WIDTH-1:0] next_pp_array [0:WIDTH-1];
logic [2*WIDTH-1:0] tmp_sum, tmp_carry;
logic [2*WIDTH-1:0] temp_pp;
logic [2*WIDTH-1:0] tmp_pp_carry;
logic [WIDTH-1:0] temp_b;
logic temp_bitgroup;
integer bit_pair, height, i;
always_comb
begin
// For each multiplicand PP generation
for (bit_pair=0; bit_pair < WIDTH; bit_pair=bit_pair+1)
begin
// Shift to the right via P&H
temp_b = (b >> (bit_pair));
temp_bitgroup = temp_b[0];
// PP generation
case (temp_bitgroup)
1'b0 : temp_pp = {2*WIDTH-1{1'b0}};
1'b1 : temp_pp = a;
default : temp_pp = {2*WIDTH-1{1'b0}};
endcase
// Shift to the left via P&H
temp_pp = temp_pp << (bit_pair);
pp_array[bit_pair] = temp_pp;
end
// Height is multiplier
height = WIDTH;
// Wallace Tree PP reduction
while (height > 2)
begin
for (i=0; i < (height/3); i=i+1)
begin
next_pp_array[i*2] = pp_array[i*3]^pp_array[i*3+1]^pp_array[i*3+2];
tmp_pp_carry = (pp_array[i*3] & pp_array[i*3+1]) |
(pp_array[i*3+1] & pp_array[i*3+2]) |
(pp_array[i*3] & pp_array[i*3+2]);
next_pp_array[i*2+1] = tmp_pp_carry << 1;
end
// Reasssign not divisible by 3 rows to next_pp_array
if ((height % 3) > 0)
begin
for (i=0; i < (height % 3); i=i+1)
next_pp_array[2 * (height/3) + i] = pp_array[3 * (height/3) + i];
end
// Put back values in pp_array to start again
for (i=0; i < WIDTH; i=i+1)
pp_array[i] = next_pp_array[i];
// Reduce height
height = height - (height/3);
end
// Sum is first row in reduced array
tmp_sum = pp_array[0];
// Carry is second row in reduced array
tmp_carry = pp_array[1];
end
assign sum = tmp_sum;
assign carry = tmp_carry;
endmodule // mult_cs

View File

@ -47,8 +47,6 @@ module redundantmul #(parameter WIDTH =8)(
DW02_multp #(WIDTH, WIDTH, 2*WIDTH+2) mul(.a, .b, .tc(1'b0), .out0(tmp_out0), .out1(tmp_out1));
assign out0 = tmp_out0[2*WIDTH-1:0];
assign out1 = tmp_out1[2*WIDTH-1:0];
end else if (`DESIGN_COMPILER == 2) begin:mul // *** need to remove this
mult_cs #(WIDTH) mul(.a, .b, .tc(1'b0), .sum(out0), .carry(out1));
end else begin:mul // force a nonredunant multipler. This will simulate properly and also is appropriate for FPGAs.
assign out0 = a * b;
assign out1 = 0;