forked from Github_Repos/cvw
Merge branch 'main' of github.com:davidharrishmc/riscv-wally into main
This commit is contained in:
commit
8d57e488c8
@ -110,7 +110,7 @@
|
||||
|
||||
// division constants
|
||||
`define RADIX 32'h4
|
||||
`define DIVCOPIES 32'h3
|
||||
`define DIVCOPIES 32'h2
|
||||
`define DIVLEN ((`NF < `XLEN) ? (`XLEN) : `NF+3)
|
||||
// `define DIVN (`NF < `XLEN ? `XLEN : `NF+1) // length of input
|
||||
`define DIVN (`NF<`XLEN ? `XLEN : (`NF + 3)) // length of input
|
||||
@ -118,12 +118,17 @@
|
||||
`define EXTRAINTBITS ((`NF < `XLEN) ? 0 : (`NF - `XLEN + 3))
|
||||
`define DIVRESLEN ((`NF>`XLEN) ? (`NF + 4) : `XLEN)
|
||||
`define LOGR ((`RADIX==2) ? 32'h1 : 32'h2)
|
||||
// FPDUR = ceil(DIVRESLEN/(LOGR*DIVCOPIES))
|
||||
`define RK (`DIVCOPIES*`LOGR) // r*k used for intdiv preproc
|
||||
`define LOGK ($clog2(`DIVCOPIES))
|
||||
`define LOGRK ($clog2(`RK))
|
||||
// FPDUR = ceil(DIVRESLEN/(LOGR*DIVCOPIES))
|
||||
// one iteration is required for the integer bit for minimally redundent radix-4
|
||||
`define FPDUR ((`DIVN+2+(`LOGR*`DIVCOPIES)-1)/(`LOGR*`DIVCOPIES)+(`RADIX/4))
|
||||
`define DURLEN ($clog2(`FPDUR+1))
|
||||
`define QLEN (`FPDUR*`LOGR*`DIVCOPIES)
|
||||
`define DIVb (`QLEN-1)
|
||||
`define DIVa (`DIVb+4-`XLEN)
|
||||
`define DIVBLEN ($clog2(`DIVb+1)-1)
|
||||
|
||||
|
||||
`define USE_SRAM 0
|
||||
|
@ -64,10 +64,12 @@ module fdivsqrt(
|
||||
logic Firstun;
|
||||
logic WZero;
|
||||
logic SpecialCaseM;
|
||||
logic [`DIVBLEN:0] n, p, m;
|
||||
logic OTFCSwap;
|
||||
|
||||
fdivsqrtpreproc fdivsqrtpreproc(
|
||||
.clk, .DivStartE, .Xm(XmE), .QeM, .Xe(XeE), .Fmt(FmtE), .Ye(YeE),
|
||||
.Sqrt(SqrtE), .Ym(YmE), .XZero(XZeroE), .X, .Dpreproc,
|
||||
.Sqrt(SqrtE), .Ym(YmE), .XZero(XZeroE), .X, .Dpreproc, .n, .p, .m, .OTFCSwap,
|
||||
.ForwardedSrcAE, .ForwardedSrcBE, .Funct3E, .Funct3M, .MDUE, .W64E);
|
||||
fdivsqrtfsm fdivsqrtfsm(
|
||||
.clk, .reset, .FmtE, .XsE, .SqrtE,
|
||||
@ -77,10 +79,11 @@ module fdivsqrt(
|
||||
fdivsqrtiter fdivsqrtiter(
|
||||
.clk, .Firstun, .D, .FirstU, .FirstUM, .FirstC, .SqrtE, .SqrtM,
|
||||
.X,.Dpreproc, .FirstWS(WS), .FirstWC(WC),
|
||||
.DivStartE, .Xe(XeE), .Ye(YeE), .XZeroE, .YZeroE,
|
||||
.DivStartE, .Xe(XeE), .Ye(YeE), .XZeroE, .YZeroE, .OTFCSwap,
|
||||
.DivBusy);
|
||||
fdivsqrtpostproc fdivsqrtpostproc(
|
||||
.WS, .WC, .D, .FirstU, .FirstUM, .FirstC, .Firstun,
|
||||
.SqrtM, .SpecialCaseM, .RemOp(Funct3E[1]),
|
||||
.n, .p, .m,
|
||||
.QmM, .WZero, .DivSM);
|
||||
endmodule
|
@ -38,6 +38,7 @@ module fdivsqrtiter(
|
||||
input logic XZeroE, YZeroE,
|
||||
input logic SqrtE,
|
||||
input logic SqrtM,
|
||||
input logic OTFCSwap,
|
||||
input logic [`DIVb+3:0] X,
|
||||
input logic [`DIVN-2:0] Dpreproc,
|
||||
output logic [`DIVN-2:0] D, // U0.N-1
|
||||
|
@ -39,6 +39,7 @@ module fdivsqrtpostproc(
|
||||
input logic SqrtM,
|
||||
input logic SpecialCaseM,
|
||||
input logic RemOp,
|
||||
input logic [`DIVBLEN:0] n, p, m,
|
||||
output logic [`DIVb:0] QmM,
|
||||
output logic WZero,
|
||||
output logic DivSM
|
||||
|
@ -41,7 +41,9 @@ module fdivsqrtpreproc (
|
||||
input logic [`XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE, // *** these are the src outputs before the mux choosing between them and PCE to put in srcA/B
|
||||
input logic [2:0] Funct3E, Funct3M,
|
||||
input logic MDUE, W64E,
|
||||
output logic [`NE+1:0] QeM,
|
||||
output logic [`DIVBLEN:0] n, p, m,
|
||||
output logic OTFCSwap,
|
||||
output logic [`NE+1:0] QeM,
|
||||
output logic [`DIVb+3:0] X,
|
||||
output logic [`DIVN-2:0] Dpreproc
|
||||
);
|
||||
@ -50,36 +52,56 @@ module fdivsqrtpreproc (
|
||||
logic [`NF-1:0] PreprocB, PreprocY;
|
||||
logic [`NF+1:0] SqrtX;
|
||||
logic [`DIVb+3:0] DivX;
|
||||
logic [$clog2(`NF+2)-1:0] XZeroCnt, YZeroCnt;
|
||||
logic [`DIVBLEN:0] L;
|
||||
logic [`NE+1:0] Qe;
|
||||
// Intdiv signals
|
||||
logic [`DIVN-1:0] ZeroBufX, ZeroBufY;
|
||||
logic [`DIVb-1:0] ZeroBufX, ZeroBufY;
|
||||
logic [`XLEN-1:0] PosA, PosB;
|
||||
logic Signed, Aneg, Bneg;
|
||||
logic As, Bs, OTFCSwapTemp;
|
||||
logic [`XLEN-1:0] A64, B64;
|
||||
logic [`DIVBLEN:0] ZeroDiff, IntBits, RightShiftX;
|
||||
logic [`DIVBLEN:0] pPlusr, pPrCeil;
|
||||
logic [`LOGRK-1:0] pPrTrunc;
|
||||
logic [`DIVb+3:0] PreShiftX;
|
||||
|
||||
// ***can probably merge X LZC with conversion
|
||||
// cout the number of leading zeros
|
||||
// Muxes needed for Int; add after Cedar Commit
|
||||
assign ZeroBufX = MDUE ? {ForwardedSrcAE, {`DIVN-`XLEN{1'b0}}} : {Xm, {`DIVN-`NF-1{1'b0}}};
|
||||
assign ZeroBufY = MDUE ? {ForwardedSrcBE, {`DIVN-`XLEN{1'b0}}} : {Ym, {`DIVN-`NF-1{1'b0}}};
|
||||
lzc #(`NF+1) lzcX (Xm, XZeroCnt);
|
||||
lzc #(`NF+1) lzcY (Ym, YZeroCnt);
|
||||
|
||||
assign Signed = Funct3E[0];
|
||||
assign Aneg = ForwardedSrcAE[`XLEN-1] & Signed;
|
||||
assign Bneg = ForwardedSrcBE[`XLEN-1] & Signed;
|
||||
assign PosA = Aneg ? -ForwardedSrcAE : ForwardedSrcAE;
|
||||
assign PosB = Bneg ? -ForwardedSrcBE : ForwardedSrcBE;
|
||||
assign As = ForwardedSrcAE[`XLEN-1] & Funct3E[0];
|
||||
assign Bs = ForwardedSrcBE[`XLEN-1] & Funct3E[0];
|
||||
assign A64 = W64E ? {{(`XLEN-32){As}}, ForwardedSrcAE[31:0]} : ForwardedSrcAE;
|
||||
assign B64 = W64E ? {{(`XLEN-32){Bs}}, ForwardedSrcBE[31:0]} : ForwardedSrcBE;
|
||||
|
||||
assign PreprocX = Xm[`NF-1:0]<<XZeroCnt;
|
||||
assign PreprocY = Ym[`NF-1:0]<<YZeroCnt;
|
||||
assign OTFCSwapTemp = (As ^ Bs) & MDUE;
|
||||
|
||||
assign PosA = As ? -A64 : A64;
|
||||
assign PosB = Bs ? -B64 : B64;
|
||||
|
||||
assign SqrtX = Xe[0]^XZeroCnt[0] ? {1'b0, ~XZero, PreprocX} : {~XZero, PreprocX, 1'b0};
|
||||
assign ZeroBufX = MDUE ? {PosA, {`DIVb-`XLEN{1'b0}}} : {Xm, {`DIVb-`NF-1{1'b0}}};
|
||||
assign ZeroBufY = MDUE ? {PosB, {`DIVb-`XLEN{1'b0}}} : {Ym, {`DIVb-`NF-1{1'b0}}};
|
||||
lzc #(`DIVb) lzcX (ZeroBufX, L);
|
||||
lzc #(`DIVb) lzcY (ZeroBufY, m);
|
||||
|
||||
assign PreprocX = Xm[`NF-1:0]<<L;
|
||||
assign PreprocY = Ym[`NF-1:0]<<m;
|
||||
|
||||
assign ZeroDiff = m - L;
|
||||
assign p = ZeroDiff[`DIVBLEN] ? '0 : ZeroDiff;
|
||||
|
||||
assign pPlusr = (`DIVBLEN)'(`LOGR) + p;
|
||||
assign pPrTrunc = pPlusr[`LOGRK-1:0];
|
||||
assign pPrCeil = (pPlusr >> `LOGRK) + {{`DIVBLEN-1{1'b0}}, |(pPrTrunc)};
|
||||
assign n = (pPrCeil << `LOGK) - 1;
|
||||
assign IntBits = (`DIVBLEN)'(`RK) + p;
|
||||
assign RightShiftX = (`DIVBLEN)'(`RK) - {{(`DIVBLEN-`RK){1'b0}}, IntBits[`RK-1:0]};
|
||||
|
||||
assign SqrtX = Xe[0]^L[0] ? {1'b0, ~XZero, PreprocX} : {~XZero, PreprocX, 1'b0};
|
||||
assign DivX = {3'b000, ~XZero, PreprocX, {`DIVb-`NF{1'b0}}};
|
||||
|
||||
// *** explain why X is shifted between radices (initial assignment of WS=RX)
|
||||
if (`RADIX == 2) assign X = Sqrt ? {3'b111, SqrtX, {`DIVb-1-`NF{1'b0}}} : DivX;
|
||||
else assign X = Sqrt ? {2'b11, SqrtX, {`DIVb-1-`NF{1'b0}}, 1'b0} : DivX;
|
||||
if (`RADIX == 2) assign PreShiftX = Sqrt ? {3'b111, SqrtX, {`DIVb-1-`NF{1'b0}}} : DivX;
|
||||
else assign PreShiftX = Sqrt ? {2'b11, SqrtX, {`DIVb-1-`NF{1'b0}}, 1'b0} : DivX;
|
||||
assign X = MDUE ? PreShiftX >> RightShiftX : PreShiftX;
|
||||
assign Dpreproc = {PreprocY, {`DIVN-1-`NF{1'b0}}};
|
||||
|
||||
// radix 2 radix 4
|
||||
@ -92,17 +114,18 @@ module fdivsqrtpreproc (
|
||||
// r = 1 or 2
|
||||
// DIVRESLEN/(r*`DIVCOPIES)
|
||||
flopen #(`NE+2) expflop(clk, DivStartE, Qe, QeM);
|
||||
expcalc expcalc(.Fmt, .Xe, .Ye, .Sqrt, .XZero, .XZeroCnt, .YZeroCnt, .Qe);
|
||||
flopen #(1) swapflop(clk, DivStartE, OTFCSwapTemp, OTFCSwap);
|
||||
expcalc expcalc(.Fmt, .Xe, .Ye, .Sqrt, .XZero, .L, .m, .Qe);
|
||||
|
||||
endmodule
|
||||
|
||||
module expcalc(
|
||||
input logic [`FMTBITS-1:0] Fmt,
|
||||
input logic [`FMTBITS-1:0] Fmt,
|
||||
input logic [`NE-1:0] Xe, Ye,
|
||||
input logic Sqrt,
|
||||
input logic XZero,
|
||||
input logic [$clog2(`NF+2)-1:0] XZeroCnt, YZeroCnt,
|
||||
output logic [`NE+1:0] Qe
|
||||
input logic Sqrt,
|
||||
input logic XZero,
|
||||
input logic [`DIVBLEN:0] L, m,
|
||||
output logic [`NE+1:0] Qe
|
||||
);
|
||||
logic [`NE-2:0] Bias;
|
||||
logic [`NE+1:0] SXExp;
|
||||
@ -133,10 +156,10 @@ module expcalc(
|
||||
2'h2: Bias = (`NE-1)'(`H_BIAS);
|
||||
endcase
|
||||
end
|
||||
assign SXExp = {2'b0, Xe} - {{`NE+1-$unsigned($clog2(`NF+2)){1'b0}}, XZeroCnt} - (`NE+1)'(`BIAS);
|
||||
assign SXExp = {2'b0, Xe} - {{(`NE+1-`DIVBLEN){1'b0}}, L} - (`NE+2)'(`BIAS);
|
||||
assign SExp = {SXExp[`NE+1], SXExp[`NE+1:1]} + {2'b0, Bias};
|
||||
// correct exponent for denormalized input's normalization shifts
|
||||
assign DExp = ({2'b0, Xe} - {{`NE+1-$unsigned($clog2(`NF+2)){1'b0}}, XZeroCnt} - {2'b0, Ye} + {{`NE+1-$unsigned($clog2(`NF+2)){1'b0}}, YZeroCnt} + {3'b0, Bias})&{`NE+2{~XZero}};
|
||||
assign DExp = ({2'b0, Xe} - {{(`NE+1-`DIVBLEN){1'b0}}, L} - {2'b0, Ye} + {{(`NE+1-`DIVBLEN){1'b0}}, m} + {3'b0, Bias}) & {`NE+2{~XZero}};
|
||||
|
||||
assign Qe = Sqrt ? SExp : DExp;
|
||||
endmodule
|
@ -61,7 +61,7 @@ module fdivsqrtstage2 (
|
||||
// 0001 = -2
|
||||
fdivsqrtqsel2 qsel2(WS[`DIVb+3:`DIVb], WC[`DIVb+3:`DIVb], up, uz, un);
|
||||
|
||||
// Sqrt F generatin
|
||||
// Sqrt F generation
|
||||
fdivsqrtfgen2 fgen2(.up, .uz, .C(CNext), .U, .UM, .F);
|
||||
|
||||
// Divisor multiple
|
||||
|
@ -42,7 +42,7 @@ module hptw
|
||||
input logic [1:0] STATUS_MPP,
|
||||
input logic [1:0] PrivilegeModeW,
|
||||
(* mark_debug = "true" *) input logic ITLBMissOrDAFaultNoTrapF, DTLBMissOrDAFaultNoTrapM, // TLB Miss
|
||||
input logic [`XLEN-1:0] HPTWReadPTE, // page table entry from LSU
|
||||
input logic [`XLEN-1:0] HPTWReadPTE, // page table entry from LSU *** change to ReadDataM
|
||||
input logic DCacheStallM, // stall from LSU
|
||||
output logic [`XLEN-1:0] PTE, // page table entry to TLBs
|
||||
output logic [1:0] PageType, // page type to TLBs
|
||||
@ -106,7 +106,6 @@ module hptw
|
||||
|
||||
if(`HPTW_WRITES_SUPPORTED) begin : hptwwrites
|
||||
|
||||
logic SV39Mode;
|
||||
logic ReadAccess, WriteAccess;
|
||||
logic InvalidRead, InvalidWrite;
|
||||
logic UpperBitsUnequalPageFault;
|
||||
@ -136,19 +135,9 @@ module hptw
|
||||
assign ImproperPrivilege = ((EffectivePrivilegeMode == `U_MODE) & ~PTE_U) |
|
||||
((EffectivePrivilegeMode == `S_MODE) & PTE_U & (~STATUS_SUM & DTLBWalk));
|
||||
|
||||
// *** turn into module common with code in tlbcontrol.
|
||||
if (`XLEN==64) begin:rv64
|
||||
assign SV39Mode = (SATP_REGW[`XLEN-1:`XLEN-`SVMODE_BITS] == `SV39);
|
||||
// page fault if upper bits aren't all the same
|
||||
logic UpperEqual39, UpperEqual48;
|
||||
assign UpperEqual39 = &(TranslationVAdr[63:38]) | ~|(TranslationVAdr[63:38]);
|
||||
assign UpperEqual48 = &(TranslationVAdr[63:47]) | ~|(TranslationVAdr[63:47]);
|
||||
assign UpperBitsUnequalPageFault = SV39Mode ? ~UpperEqual39 : ~UpperEqual48;
|
||||
end else begin
|
||||
assign SV39Mode = 0;
|
||||
assign UpperBitsUnequalPageFault = 0;
|
||||
end
|
||||
|
||||
// Check for page faults
|
||||
vm64check vm64check(.SATP_MODE(SATP_REGW[`XLEN-1:`XLEN-`SVMODE_BITS]), .VAdr(TranslationVAdr),
|
||||
.SV39Mode(), .UpperBitsUnequalPageFault);
|
||||
assign InvalidRead = ReadAccess & ~Readable & (~STATUS_MXR | ~Executable);
|
||||
assign InvalidWrite = WriteAccess & ~Writable;
|
||||
assign OtherPageFault = DTLBWalk? ImproperPrivilege | InvalidRead | InvalidWrite | UpperBitsUnequalPageFault | Misaligned | ~Valid :
|
||||
@ -190,26 +179,26 @@ module hptw
|
||||
|
||||
// HPTWAdr muxing
|
||||
if (`XLEN==32) begin // RV32
|
||||
logic [9:0] VPN;
|
||||
logic [`PPN_BITS-1:0] PPN;
|
||||
assign VPN = ((WalkerState == L1_ADR) | (WalkerState == L1_RD)) ? TranslationVAdr[31:22] : TranslationVAdr[21:12]; // select VPN field based on HPTW state
|
||||
assign PPN = ((WalkerState == L1_ADR) | (WalkerState == L1_RD)) ? BasePageTablePPN : CurrentPPN;
|
||||
assign HPTWReadAdr = {PPN, VPN, 2'b00};
|
||||
assign HPTWSize = 3'b010;
|
||||
logic [9:0] VPN;
|
||||
logic [`PPN_BITS-1:0] PPN;
|
||||
assign VPN = ((WalkerState == L1_ADR) | (WalkerState == L1_RD)) ? TranslationVAdr[31:22] : TranslationVAdr[21:12]; // select VPN field based on HPTW state
|
||||
assign PPN = ((WalkerState == L1_ADR) | (WalkerState == L1_RD)) ? BasePageTablePPN : CurrentPPN;
|
||||
assign HPTWReadAdr = {PPN, VPN, 2'b00};
|
||||
assign HPTWSize = 3'b010;
|
||||
end else begin // RV64
|
||||
logic [8:0] VPN;
|
||||
logic [`PPN_BITS-1:0] PPN;
|
||||
always_comb
|
||||
case (WalkerState) // select VPN field based on HPTW state
|
||||
L3_ADR, L3_RD: VPN = TranslationVAdr[47:39];
|
||||
L2_ADR, L2_RD: VPN = TranslationVAdr[38:30];
|
||||
L1_ADR, L1_RD: VPN = TranslationVAdr[29:21];
|
||||
default: VPN = TranslationVAdr[20:12];
|
||||
endcase
|
||||
assign PPN = ((WalkerState == L3_ADR) | (WalkerState == L3_RD) |
|
||||
(SvMode != `SV48 & ((WalkerState == L2_ADR) | (WalkerState == L2_RD)))) ? BasePageTablePPN : CurrentPPN;
|
||||
assign HPTWReadAdr = {PPN, VPN, 3'b000};
|
||||
assign HPTWSize = 3'b011;
|
||||
logic [8:0] VPN;
|
||||
logic [`PPN_BITS-1:0] PPN;
|
||||
always_comb
|
||||
case (WalkerState) // select VPN field based on HPTW state
|
||||
L3_ADR, L3_RD: VPN = TranslationVAdr[47:39];
|
||||
L2_ADR, L2_RD: VPN = TranslationVAdr[38:30];
|
||||
L1_ADR, L1_RD: VPN = TranslationVAdr[29:21];
|
||||
default: VPN = TranslationVAdr[20:12];
|
||||
endcase
|
||||
assign PPN = ((WalkerState == L3_ADR) | (WalkerState == L3_RD) |
|
||||
(SvMode != `SV48 & ((WalkerState == L2_ADR) | (WalkerState == L2_RD)))) ? BasePageTablePPN : CurrentPPN;
|
||||
assign HPTWReadAdr = {PPN, VPN, 3'b000};
|
||||
assign HPTWSize = 3'b011;
|
||||
end
|
||||
|
||||
// Initial state and misalignment for RV32/64
|
||||
@ -228,44 +217,33 @@ module hptw
|
||||
end
|
||||
|
||||
// Page Table Walker FSM
|
||||
// If the setup time on the D$ RAM is short, it should be possible to merge the LEVELx_READ and LEVELx states
|
||||
// to decrease the latency of the HPTW. However, if the D$ is a cycle limiter, it's better to leave the
|
||||
// HPTW as shown below to keep the D$ setup time out of the critical path.
|
||||
// *** Is this really true. Talk with Ross. Seems like it's the next state logic on critical path instead.
|
||||
// *** address TYPE(statetype)
|
||||
flopenl #(.TYPE(statetype)) WalkerStateReg(clk, reset, 1'b1, NextWalkerState, IDLE, WalkerState);
|
||||
always_comb
|
||||
case (WalkerState)
|
||||
IDLE: if (TLBMiss) NextWalkerState = InitialWalkerState;
|
||||
else NextWalkerState = IDLE;
|
||||
L3_ADR: NextWalkerState = L3_RD; // first access in SV48
|
||||
L3_RD: if (DCacheStallM) NextWalkerState = L3_RD;
|
||||
else NextWalkerState = L2_ADR;
|
||||
L2_ADR: if (InitialWalkerState == L2_ADR) NextWalkerState = L2_RD; // first access in SV39
|
||||
else if (ValidLeafPTE & ~Misaligned) NextWalkerState = LEAF; // could shortcut this by a cyle for all Lx_ADR superpages
|
||||
else if (ValidNonLeafPTE) NextWalkerState = L2_RD;
|
||||
else NextWalkerState = LEAF;
|
||||
L2_RD: if (DCacheStallM) NextWalkerState = L2_RD;
|
||||
else NextWalkerState = L1_ADR;
|
||||
L1_ADR: if (InitialWalkerState == L1_ADR) NextWalkerState = L1_RD; // first access in SV32
|
||||
else if (ValidLeafPTE & ~Misaligned) NextWalkerState = LEAF; // could shortcut this by a cyle for all Lx_ADR superpages
|
||||
else if (ValidNonLeafPTE) NextWalkerState = L1_RD;
|
||||
else NextWalkerState = LEAF;
|
||||
L1_RD: if (DCacheStallM) NextWalkerState = L1_RD;
|
||||
else NextWalkerState = L0_ADR;
|
||||
L0_ADR: if (ValidLeafPTE & ~Misaligned) NextWalkerState = LEAF; // could shortcut this by a cyle for all Lx_ADR superpages
|
||||
else if (ValidNonLeafPTE) NextWalkerState = L0_RD;
|
||||
else NextWalkerState = LEAF;
|
||||
L0_RD: if (DCacheStallM) NextWalkerState = L0_RD;
|
||||
else NextWalkerState = LEAF;
|
||||
LEAF: if (DAPageFault) NextWalkerState = UPDATE_PTE;
|
||||
else NextWalkerState = IDLE;
|
||||
UPDATE_PTE: if(`HPTW_WRITES_SUPPORTED & DCacheStallM) NextWalkerState = UPDATE_PTE;
|
||||
else NextWalkerState = LEAF;
|
||||
default: begin
|
||||
NextWalkerState = IDLE; // should never be reached
|
||||
end
|
||||
endcase // case (WalkerState)
|
||||
case (WalkerState)
|
||||
IDLE: if (TLBMiss) NextWalkerState = InitialWalkerState;
|
||||
else NextWalkerState = IDLE;
|
||||
L3_ADR: NextWalkerState = L3_RD; // first access in SV48
|
||||
L3_RD: if (DCacheStallM) NextWalkerState = L3_RD;
|
||||
else NextWalkerState = L2_ADR;
|
||||
L2_ADR: if (InitialWalkerState == L2_ADR | ValidNonLeafPTE) NextWalkerState = L2_RD; // first access in SV39
|
||||
else NextWalkerState = LEAF;
|
||||
L2_RD: if (DCacheStallM) NextWalkerState = L2_RD;
|
||||
else NextWalkerState = L1_ADR;
|
||||
L1_ADR: if (InitialWalkerState == L1_ADR | ValidNonLeafPTE) NextWalkerState = L1_RD; // first access in SV32
|
||||
else if (ValidNonLeafPTE) NextWalkerState = L1_RD;
|
||||
else NextWalkerState = LEAF;
|
||||
L1_RD: if (DCacheStallM) NextWalkerState = L1_RD;
|
||||
else NextWalkerState = L0_ADR;
|
||||
L0_ADR: if (ValidNonLeafPTE) NextWalkerState = L0_RD;
|
||||
else NextWalkerState = LEAF;
|
||||
L0_RD: if (DCacheStallM) NextWalkerState = L0_RD;
|
||||
else NextWalkerState = LEAF;
|
||||
LEAF: if (DAPageFault) NextWalkerState = UPDATE_PTE;
|
||||
else NextWalkerState = IDLE;
|
||||
UPDATE_PTE: if(`HPTW_WRITES_SUPPORTED & DCacheStallM) NextWalkerState = UPDATE_PTE;
|
||||
else NextWalkerState = LEAF;
|
||||
default: NextWalkerState = IDLE; // should never be reached
|
||||
endcase // case (WalkerState)
|
||||
|
||||
assign IgnoreRequestTLB = WalkerState == IDLE & TLBMiss;
|
||||
assign SelHPTW = WalkerState != IDLE;
|
||||
|
@ -116,16 +116,16 @@ module tlb #(parameter TLB_ENTRIES = 8,
|
||||
// we cache Misaligned along with the PTE? This only has to be computed once
|
||||
// in the hptw as it is always the same regardless of the VPN.
|
||||
if(`XLEN == 32) begin
|
||||
assign MegapageMisaligned = |(PPN[9:0]); // must have zero PPN0
|
||||
assign Misaligned = (HitPageType == 2'b01) & MegapageMisaligned;
|
||||
assign MegapageMisaligned = |(PPN[9:0]); // must have zero PPN0
|
||||
assign Misaligned = (HitPageType == 2'b01) & MegapageMisaligned;
|
||||
end else begin
|
||||
logic GigapageMisaligned, TerapageMisaligned;
|
||||
assign TerapageMisaligned = |(PPN[26:0]); // must have zero PPN2, PPN1, PPN0
|
||||
assign GigapageMisaligned = |(PPN[17:0]); // must have zero PPN1 and PPN0
|
||||
assign MegapageMisaligned = |(PPN[8:0]); // must have zero PPN0
|
||||
assign Misaligned = ((HitPageType == 2'b11) & TerapageMisaligned) |
|
||||
((HitPageType == 2'b10) & GigapageMisaligned) |
|
||||
((HitPageType == 2'b01) & MegapageMisaligned);
|
||||
logic GigapageMisaligned, TerapageMisaligned;
|
||||
assign TerapageMisaligned = |(PPN[26:0]); // must have zero PPN2, PPN1, PPN0
|
||||
assign GigapageMisaligned = |(PPN[17:0]); // must have zero PPN1 and PPN0
|
||||
assign MegapageMisaligned = |(PPN[8:0]); // must have zero PPN0
|
||||
assign Misaligned = ((HitPageType == 2'b11) & TerapageMisaligned) |
|
||||
((HitPageType == 2'b10) & GigapageMisaligned) |
|
||||
((HitPageType == 2'b01) & MegapageMisaligned);
|
||||
end
|
||||
|
||||
assign VPN = VAdr[`VPN_BITS+11:12];
|
||||
@ -137,7 +137,7 @@ module tlb #(parameter TLB_ENTRIES = 8,
|
||||
|
||||
tlblru #(TLB_ENTRIES) lru(.clk, .reset, .TLBWrite, .TLBFlush, .Matches, .CAMHit, .WriteEnables);
|
||||
tlbcam #(TLB_ENTRIES, `VPN_BITS + `ASID_BITS, `VPN_SEGMENT_BITS)
|
||||
tlbcam(.clk, .reset, .VPN, .PageTypeWriteVal, .SV39Mode, .TLBFlush, .WriteEnables, .PTE_Gs,
|
||||
tlbcam(.clk, .reset, .VPN, .PageTypeWriteVal, .SV39Mode, .TLBFlush, .WriteEnables, .PTE_Gs,
|
||||
.SATP_ASID, .Matches, .HitPageType, .CAMHit);
|
||||
tlbram #(TLB_ENTRIES) tlbram(.clk, .reset, .PTE, .Matches, .WriteEnables, .PPN, .PTEAccessBits, .PTE_Gs);
|
||||
|
||||
|
@ -68,22 +68,12 @@ module tlbcontrol #(parameter ITLB = 0) (
|
||||
// Grab the sv mode from SATP and determine whether translation should occur
|
||||
assign EffectivePrivilegeMode = (ITLB == 1) ? PrivilegeModeW : (STATUS_MPRV ? STATUS_MPP : PrivilegeModeW); // DTLB uses MPP mode when MPRV is 1
|
||||
assign Translate = (SATP_MODE != `NO_TRANSLATE) & (EffectivePrivilegeMode != `M_MODE) & ~DisableTranslation;
|
||||
if (`XLEN==64) begin:rv64
|
||||
assign SV39Mode = (SATP_MODE == `SV39);
|
||||
// page fault if upper bits aren't all the same
|
||||
logic UpperEqual39, UpperEqual48;
|
||||
assign UpperEqual39 = &(VAdr[63:38]) | ~|(VAdr[63:38]);
|
||||
assign UpperEqual48 = &(VAdr[63:47]) | ~|(VAdr[63:47]);
|
||||
assign UpperBitsUnequalPageFault = SV39Mode ? ~UpperEqual39 : ~UpperEqual48;
|
||||
end else begin
|
||||
assign SV39Mode = 0;
|
||||
assign UpperBitsUnequalPageFault = 0;
|
||||
end
|
||||
|
||||
// Determine whether TLB is being used
|
||||
assign TLBAccess = ReadAccess | WriteAccess;
|
||||
|
||||
// Check whether upper bits of virtual addresss are all equal
|
||||
vm64check vm64check(.SATP_MODE, .VAdr, .SV39Mode, .UpperBitsUnequalPageFault);
|
||||
|
||||
// unswizzle useful PTE bits
|
||||
assign {PTE_D, PTE_A} = PTEAccessBits[7:6];
|
||||
@ -99,7 +89,7 @@ module tlbcontrol #(parameter ITLB = 0) (
|
||||
assign DAPageFault = Translate & TLBHit & ~PTE_A & ~TLBPageFault;
|
||||
assign TLBPageFault = (Translate & TLBHit & (ImproperPrivilege | ~PTE_X | UpperBitsUnequalPageFault | Misaligned | ~PTE_V));
|
||||
end else begin
|
||||
// fault for software handling if access bit is off
|
||||
// fault for software handling if access bit is off
|
||||
assign DAPageFault = ~PTE_A;
|
||||
assign TLBPageFault = (Translate & TLBHit & (ImproperPrivilege | ~PTE_X | DAPageFault | UpperBitsUnequalPageFault | Misaligned | ~PTE_V));
|
||||
end
|
||||
|
50
pipelined/src/mmu/vm64check.sv
Normal file
50
pipelined/src/mmu/vm64check.sv
Normal file
@ -0,0 +1,50 @@
|
||||
///////////////////////////////////////////
|
||||
// vm64check.sv
|
||||
//
|
||||
// Written: David_Harris@hmc.edu 4 November 2022
|
||||
// Modified:
|
||||
//
|
||||
// Purpose: Check for good upper address bits in RV64 mode
|
||||
//
|
||||
// A component of the Wally configurable RISC-V project.
|
||||
//
|
||||
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
|
||||
//
|
||||
// MIT LICENSE
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
|
||||
// software and associated documentation files (the "Software"), to deal in the Software
|
||||
// without restriction, including without limitation the rights to use, copy, modify, merge,
|
||||
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
|
||||
// to whom the Software is furnished to do so, subject to the following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be included in all copies or
|
||||
// substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
|
||||
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
|
||||
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
||||
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
||||
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
|
||||
// OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
`include "wally-config.vh"
|
||||
|
||||
module vm64check (
|
||||
input logic [`SVMODE_BITS-1:0] SATP_MODE,
|
||||
input logic [`XLEN-1:0] VAdr,
|
||||
output logic SV39Mode, UpperBitsUnequalPageFault
|
||||
);
|
||||
|
||||
if (`XLEN==64) begin:rv64
|
||||
assign SV39Mode = (SATP_MODE == `SV39);
|
||||
// page fault if upper bits aren't all the same
|
||||
logic UpperEqual39, UpperEqual48;
|
||||
assign UpperEqual39 = &(VAdr[63:38]) | ~|(VAdr[63:38]);
|
||||
assign UpperEqual48 = &(VAdr[63:47]) | ~|(VAdr[63:47]);
|
||||
assign UpperBitsUnequalPageFault = SV39Mode ? ~UpperEqual39 : ~UpperEqual48;
|
||||
end else begin
|
||||
assign SV39Mode = 0;
|
||||
assign UpperBitsUnequalPageFault = 0;
|
||||
end
|
||||
endmodule
|
@ -718,6 +718,7 @@ module testbenchfp;
|
||||
if (TEST === "div" | TEST === "sqrt" | TEST === "all") begin: fdivsqrt
|
||||
fdivsqrt fdivsqrt(.clk, .reset, .XsE(Xs), .FmtE(ModFmt), .XmE(Xm), .YmE(Ym), .XeE(Xe), .YeE(Ye), .SqrtE(OpCtrlVal[0]), .SqrtM(OpCtrlVal[0]),
|
||||
.XInfE(XInf), .YInfE(YInf), .XZeroE(XZero), .YZeroE(YZero), .XNaNE(XNaN), .YNaNE(YNaN), .DivStartE(DivStart),
|
||||
.MDUE(1'b0), .W64E(1'b0),
|
||||
.StallE(1'b0), .StallM(1'b0), .DivSM(DivSticky), .DivBusy, .QeM(DivCalcExp),
|
||||
.QmM(Quot), .DivDone);
|
||||
end
|
||||
|
@ -55,9 +55,9 @@ string tvpaths[] = '{
|
||||
"bd_speedopt_speed/src/matmult-int/matmult-int",
|
||||
// "bd_speedopt_speed/src/md5sum/md5sum", //commenting out tests from embench 2.0. When embench 2.0 launches stabilty, add these tests back
|
||||
"bd_speedopt_speed/src/minver/minver",
|
||||
"bd_speedopt_speed/src/nbody/nbody",
|
||||
"bd_speedopt_speed/src/nettle-aes/nettle-aes",
|
||||
"bd_speedopt_speed/src/nettle-sha256/nettle-sha256",
|
||||
"bd_speedopt_speed/src/nbody/nbody",
|
||||
"bd_speedopt_speed/src/nsichneu/nsichneu",
|
||||
"bd_speedopt_speed/src/picojpeg/picojpeg",
|
||||
// "bd_speedopt_speed/src/primecount/primecount",
|
||||
|
@ -1072,9 +1072,9 @@ uart_data_wait:
|
||||
li t3, 0x10000002 // IIR
|
||||
li a4, 0x61
|
||||
uart_read_LSR_IIR:
|
||||
lb t4, 0(t3) // save IIR before reading LSR mgith clear it
|
||||
lbu t4, 0(t3) // save IIR before reading LSR might clear it
|
||||
// check if IIR is the rxfifotimeout interrupt. if it is, then read the fifo then go back and repeat this.
|
||||
li t5, 6
|
||||
li t5, 0xCC // Value in IIR for Fifo Enabled, with timeout interrupt pending
|
||||
beq t4, t5, uart_rxfifo_timout
|
||||
lb t5, 0(t2) // read LSR
|
||||
andi t6, t5, 0x61 // wait until all transmissions are done and data is ready
|
||||
@ -1083,7 +1083,6 @@ uart_read_LSR_IIR:
|
||||
uart_rxfifo_timout:
|
||||
li t4, 0x10000000 // read from the fifo
|
||||
lb t5, 0(t4)
|
||||
lb t5, 0(t4)
|
||||
//read the fifo until empty
|
||||
j uart_read_LSR_IIR
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user