Merge pull request #266 from davidharrishmc/dev

FDivSqrt cleanup
This commit is contained in:
Ross Thompson 2023-04-21 20:23:23 -05:00 committed by GitHub
commit 884c3c22d5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 85 additions and 57 deletions

View File

@ -138,10 +138,10 @@ module fctrl (
endcase
7'b11100??: if (Funct3D == 3'b001 & Rs2D == 5'b00000)
ControlsD = `FCTRLW'b0_1_10_00_000_0_0_0; // fclass
else if (Funct3D == 3'b000 & Rs2D == 5'b00000)
ControlsD = `FCTRLW'b0_1_11_00_000_0_0_0; // fmv.x.w / fmv.x.d to int register
7'b111100?: if (Funct3D == 3'b000 & Rs2D == 5'b00000)
ControlsD = `FCTRLW'b1_0_00_00_011_0_0_0; // fmv.w.x / fmv.d.x to fp reg
else if (Funct3D == 3'b000 & Rs2D == 5'b00000 & SupportedFmt)
ControlsD = `FCTRLW'b0_1_11_00_000_0_0_0; // fmv.x.w/d/h/q fp to int register
7'b111100?: if (Funct3D == 3'b000 & Rs2D == 5'b00000 & SupportedFmt)
ControlsD = `FCTRLW'b1_0_00_00_011_0_0_0; // fmv.w/d/h/q.x int to fp reg
7'b0100000: if (Rs2D[4:2] == 3'b000 & SupportedFmt2 & Rs2D[1:0] != 2'b00)
ControlsD = `FCTRLW'b1_0_01_00_000_0_0_0; // fcvt.s.(d/q/h)
7'b0100001: if (Rs2D[4:2] == 3'b000 & SupportedFmt2 & Rs2D[1:0] != 2'b01)

View File

@ -62,7 +62,7 @@ module fdivsqrt(
logic [`DIVb+1:0] FirstC; // Step tracker
logic Firstun; // Quotient selection
logic WZeroE; // Early termination flag
logic [`DURLEN-1:0] cycles; // FSM cycles
logic [`DURLEN-1:0] CyclesE; // FSM cycles
logic SpecialCaseM; // Divide by zero, square root of negative, etc.
logic DivStartE; // Enable signal for flops during stall
@ -76,7 +76,7 @@ module fdivsqrt(
fdivsqrtpreproc fdivsqrtpreproc( // Preprocessor
.clk, .IFDivStartE, .Xm(XmE), .Ym(YmE), .Xe(XeE), .Ye(YeE),
.FmtE, .SqrtE, .XZeroE, .Funct3E, .QeM, .X, .D, .cycles,
.FmtE, .SqrtE, .XZeroE, .Funct3E, .QeM, .X, .D, .CyclesE,
// Int-specific
.ForwardedSrcAE, .ForwardedSrcBE, .IntDivE, .W64E, .ISpecialCaseE,
.BZeroM, .nM, .mM, .AM,
@ -85,7 +85,7 @@ module fdivsqrt(
fdivsqrtfsm fdivsqrtfsm( // FSM
.clk, .reset, .XInfE, .YInfE, .XZeroE, .YZeroE, .XNaNE, .YNaNE,
.FDivStartE, .XsE, .SqrtE, .WZeroE, .FlushE, .StallM,
.FDivBusyE, .IFDivStartE, .FDivDoneE, .SpecialCaseM, .cycles,
.FDivBusyE, .IFDivStartE, .FDivDoneE, .SpecialCaseM, .CyclesE,
// Int-specific
.IDivStartE, .ISpecialCaseE, .IntDivE);

View File

@ -1,10 +1,10 @@
///////////////////////////////////////////
// fdivsqrt.sv
// fdivsqrtcycles.sv
//
// Written: David_Harris@hmc.edu, me@KatherineParry.com, cturek@hmc.edu, amaiuolo@hmc.edu
// Modified: 18 April 2022
//
// Purpose: Combined Divide and Square Root Floating Point and Integer Unit
// Purpose: Determine number of cycles for divsqrt
//
// Documentation: RISC-V System on Chip Design Chapter 13
//
@ -33,7 +33,7 @@ module fdivsqrtcycles(
input logic SqrtE,
input logic IntDivE,
input logic [`DIVBLEN:0] nE,
output logic [`DURLEN-1:0] cycles
output logic [`DURLEN-1:0] CyclesE
);
logic [`DURLEN+1:0] Nf, fbits; // number of fractional bits
// DIVN = `NF+3
@ -68,8 +68,8 @@ module fdivsqrtcycles(
always_comb begin
if (SqrtE) fbits = Nf + 2 + 2; // Nf + two fractional bits for round/guard + 2 for right shift by up to 2
else fbits = Nf + 2 + `LOGR; // Nf + two fractional bits for round/guard + integer bits - try this when placing results in msbs
if (`IDIV_ON_FPU) cycles = IntDivE ? ((nE + 1)/`DIVCOPIES) : (fbits + (`LOGR*`DIVCOPIES)-1)/(`LOGR*`DIVCOPIES);
else cycles = (fbits + (`LOGR*`DIVCOPIES)-1)/(`LOGR*`DIVCOPIES);
if (`IDIV_ON_FPU) CyclesE = IntDivE ? ((nE + 1)/`DIVCOPIES) : (fbits + (`LOGR*`DIVCOPIES)-1)/(`LOGR*`DIVCOPIES);
else CyclesE = (fbits + (`LOGR*`DIVCOPIES)-1)/(`LOGR*`DIVCOPIES);
end
/* verilator lint_on WIDTH */

View File

@ -39,7 +39,7 @@ module fdivsqrtfsm(
input logic StallM, FlushE,
input logic IntDivE,
input logic ISpecialCaseE,
input logic [`DURLEN-1:0] cycles,
input logic [`DURLEN-1:0] CyclesE,
output logic IFDivStartE,
output logic FDivBusyE, FDivDoneE,
output logic SpecialCaseM
@ -67,7 +67,7 @@ module fdivsqrtfsm(
state <= #1 IDLE;
end else if (IFDivStartE) begin // IFDivStartE implies stat is IDLE
// end else if ((state == IDLE) & IFDivStartE) begin // IFDivStartE implies stat is IDLE
step <= cycles;
step <= CyclesE;
if (SpecialCaseE) state <= #1 DONE;
else state <= #1 BUSY;
end else if (state == BUSY) begin

View File

@ -43,44 +43,49 @@ module fdivsqrtpreproc (
input logic [`XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE, // *** these are the src outputs before the mux choosing between them and PCE to put in srcA/B
input logic IntDivE, W64E,
output logic ISpecialCaseE,
output logic [`DURLEN-1:0] cycles,
output logic [`DURLEN-1:0] CyclesE,
output logic [`DIVBLEN:0] nM, mM,
output logic NegQuotM, ALTBM, IntDivM, W64M,
output logic AsM, BZeroM,
output logic [`XLEN-1:0] AM
);
logic [`DIVb-1:0] XPreproc, DPreproc;
logic [`DIVb-1:0] Xfract, Dfract;
logic [`DIVb:0] PreSqrtX;
logic [`DIVb+3:0] DivX, DivXShifted, SqrtX, PreShiftX; // Variations of dividend, to be muxed
logic [`NE+1:0] QeE; // Quotient Exponent (FP only)
logic [`DIVb-1:0] IFX, IFD; // Correctly-sized inputs for iterator, selected from int or fp input
logic [`DIVBLEN:0] mE, nE, ell; // Leading zeros of inputs
logic [`DIVBLEN:0] mE, nE, ell; // Leading zeros of inputs
logic NumerZeroE; // Numerator is zero (X or A)
logic AZeroE, BZeroE; // A or B is Zero for integer division
logic signedDiv; // signed division
logic SignedDivE; // signed division
logic NegQuotE; // Integer quotient is negative
logic AsE, BsE; // Signs of integer inputs
logic [`XLEN-1:0] AE; // input A after W64 adjustment
logic ALTBE;
//////////////////////////////////////////////////////
// Integer Preprocessing
//////////////////////////////////////////////////////
if (`IDIV_ON_FPU) begin:intpreproc // Int Supported
logic [`XLEN-1:0] BE, PosA, PosB;
// Extract inputs, signs, zero, depending on W64 mode if applicable
assign signedDiv = ~Funct3E[0];
assign SignedDivE = ~Funct3E[0];
// Source handling
if (`XLEN==64) begin // 64-bit, supports W64
mux2 #(64) amux(ForwardedSrcAE, {{32{ForwardedSrcAE[31] & signedDiv}}, ForwardedSrcAE[31:0]}, W64E, AE);
mux2 #(64) bmux(ForwardedSrcBE, {{32{ForwardedSrcBE[31] & signedDiv}}, ForwardedSrcBE[31:0]}, W64E, BE);
mux2 #(64) amux(ForwardedSrcAE, {{32{ForwardedSrcAE[31] & SignedDivE}}, ForwardedSrcAE[31:0]}, W64E, AE);
mux2 #(64) bmux(ForwardedSrcBE, {{32{ForwardedSrcBE[31] & SignedDivE}}, ForwardedSrcBE[31:0]}, W64E, BE);
end else begin // 32 bits only
assign AE = ForwardedSrcAE;
assign BE = ForwardedSrcBE;
end
assign AZeroE = ~(|AE);
assign BZeroE = ~(|BE);
assign AsE = AE[`XLEN-1] & signedDiv;
assign BsE = BE[`XLEN-1] & signedDiv;
assign AsE = AE[`XLEN-1] & SignedDivE;
assign BsE = BE[`XLEN-1] & SignedDivE;
assign NegQuotE = AsE ^ BsE; // Integer Quotient is negative
// Force integer inputs to be postiive
@ -90,35 +95,35 @@ module fdivsqrtpreproc (
// Select integer or floating point inputs
mux2 #(`DIVb) ifxmux({Xm, {(`DIVb-`NF-1){1'b0}}}, {PosA, {(`DIVb-`XLEN){1'b0}}}, IntDivE, IFX);
mux2 #(`DIVb) ifdmux({Ym, {(`DIVb-`NF-1){1'b0}}}, {PosB, {(`DIVb-`XLEN){1'b0}}}, IntDivE, IFD);
mux2 #(1) numzmux(XZeroE, AZeroE, IntDivE, NumerZeroE);
end else begin // Int not supported
assign IFX = {Xm, {(`DIVb-`NF-1){1'b0}}};
assign IFD = {Ym, {(`DIVb-`NF-1){1'b0}}};
assign NumerZeroE = XZeroE;
end
//////////////////////////////////////////////////////
// Integer & FP leading zero and normalization shift
//////////////////////////////////////////////////////
// count leading zeros for Subnorm FP and to normalize integer inputs
lzc #(`DIVb) lzcX (IFX, ell);
lzc #(`DIVb) lzcY (IFD, mE);
// Normalization shift: shift off leading one
assign XPreproc = (IFX << ell) << 1;
assign DPreproc = (IFD << mE) << 1;
assign Xfract = (IFX << ell) << 1;
assign Dfract = (IFD << mE) << 1;
// append leading 1 (for nonzero inputs)
// shift square root to be in range [1/4, 1)
// Normalized numbers are shifted right by 1 if the exponent is odd
// Denormalized numbers have Xe = 0 and an unbiased exponent of 1-BIAS. They are shifted right if the number of leading zeros is odd.
mux2 #(`DIVb+1) sqrtxmux({~XZeroE, XPreproc}, {1'b0, ~XZeroE, XPreproc[`DIVb-1:1]}, (Xe[0] ^ ell[0]), PreSqrtX);
assign DivX = {3'b000, ~NumerZeroE, XPreproc};
// *** CT: move to fdivsqrtintpreshift
// Divisior register
flopen #(`DIVb+4) dreg(clk, IFDivStartE, {4'b0001, DPreproc}, D);
//////////////////////////////////////////////////////
// Integer Right Shift to digit boundary
// Determine DivXShifted (X shifted to digit boundary)
// and nE (number of fractional digits)
//////////////////////////////////////////////////////
// ***CT: factor out fdivsqrtcycles
if (`IDIV_ON_FPU) begin:intrightshift // Int Supported
logic [`DIVBLEN:0] ZeroDiff, p;
logic ALTBE;
// calculate number of fractional bits p
assign ZeroDiff = mE - ell; // Difference in number of leading zeros
@ -128,31 +133,68 @@ module fdivsqrtpreproc (
// Integer special cases (terminate immediately)
assign ISpecialCaseE = BZeroE | ALTBE;
/* verilator lint_off WIDTH */
// calculate number of fractional digits nE and right shift amount RightShiftX to complete in discrete number of steps
if (`LOGRK > 0) begin // more than 1 bit per cycle
logic [`LOGRK-1:0] IntTrunc, RightShiftX;
logic [`DIVBLEN:0] TotalIntBits, IntSteps;
/* verilator lint_off WIDTH */
assign TotalIntBits = `LOGR + p; // Total number of result bits (r integer bits plus p fractional bits)
assign IntTrunc = TotalIntBits % `RK; // Truncation check for ceiling operator
assign IntSteps = (TotalIntBits >> `LOGRK) + |IntTrunc; // Number of steps for int div
assign nE = (IntSteps * `DIVCOPIES) - 1; // Fractional digits
assign RightShiftX = `RK - 1 - ((TotalIntBits - 1) % `RK); // Right shift amount
assign DivXShifted = DivX >> RightShiftX; // shift X by up to R*K-1 to complete in nE steps
/* verilator lint_on WIDTH */
end else begin // radix 2 1 copy doesn't require shifting
assign nE = p;
assign DivXShifted = DivX;
end
/* verilator lint_on WIDTH */
end else begin
assign ISpecialCaseE = 0;
end
// Selet integer or floating-point operands
mux2 #(1) numzmux(XZeroE, AZeroE, IntDivE, NumerZeroE);
// CT *** fdivsqrtfplead1
//////////////////////////////////////////////////////
// Floating-Point Preprocessing
// append leading 1 (for nonzero inputs)
// shift square root to be in range [1/4, 1)
// Normalized numbers are shifted right by 1 if the exponent is odd
// Denormalized numbers have Xe = 0 and an unbiased exponent of 1-BIAS. They are shifted right if the number of leading zeros is odd.
//////////////////////////////////////////////////////
assign DivX = {3'b000, ~NumerZeroE, Xfract};
// Sqrt is initialized on step one as R(X-1), so depends on Radix
mux2 #(`DIVb+1) sqrtxmux({~XZeroE, Xfract}, {1'b0, ~XZeroE, Xfract[`DIVb-1:1]}, (Xe[0] ^ ell[0]), PreSqrtX);
if (`RADIX == 2) assign SqrtX = {3'b111, PreSqrtX};
else assign SqrtX = {2'b11, PreSqrtX, 1'b0};
mux2 #(`DIVb+4) prexmux(DivX, SqrtX, SqrtE, PreShiftX);
//////////////////////////////////////////////////////
// Selet integer or floating-point operands
//////////////////////////////////////////////////////
if (`IDIV_ON_FPU) begin
mux2 #(`DIVb+4) xmux(PreShiftX, DivXShifted, IntDivE, X);
end else begin
assign X = PreShiftX;
end
// Divisior register
flopen #(`DIVb+4) dreg(clk, IFDivStartE, {4'b0001, Dfract}, D);
// Floating-point exponent
fdivsqrtexpcalc expcalc(.Fmt(FmtE), .Xe, .Ye, .Sqrt(SqrtE), .XZero(XZeroE), .ell, .m(mE), .Qe(QeE));
flopen #(`NE+2) expreg(clk, IFDivStartE, QeE, QeM);
// Number of FSM cycles (to FSM)
fdivsqrtcycles cyclecalc(.FmtE, .SqrtE, .IntDivE, .nE, .CyclesE);
if (`IDIV_ON_FPU) begin:intpipelineregs
// pipeline registers
flopen #(1) mdureg(clk, IFDivStartE, IntDivE, IntDivM);
flopen #(1) mdureg(clk, IFDivStartE, IntDivE, IntDivM);
flopen #(1) altbreg(clk, IFDivStartE, ALTBE, ALTBM);
flopen #(1) negquotreg(clk, IFDivStartE, NegQuotE, NegQuotM);
flopen #(1) bzeroreg(clk, IFDivStartE, BZeroE, BZeroM);
@ -162,21 +204,7 @@ module fdivsqrtpreproc (
flopen #(`XLEN) srcareg(clk, IFDivStartE, AE, AM);
if (`XLEN==64)
flopen #(1) w64reg(clk, IFDivStartE, W64E, W64M);
end else begin
assign NumerZeroE = XZeroE;
assign X = PreShiftX;
end
// Sqrt is initialized on step one as R(X-1), so depends on Radix
if (`RADIX == 2) assign SqrtX = {3'b111, PreSqrtX};
else assign SqrtX = {2'b11, PreSqrtX, 1'b0};
mux2 #(`DIVb+4) prexmux(DivX, SqrtX, SqrtE, PreShiftX);
// Floating-point exponent
fdivsqrtexpcalc expcalc(.Fmt(FmtE), .Xe, .Ye, .Sqrt(SqrtE), .XZero(XZeroE), .ell, .m(mE), .Qe(QeE));
flopen #(`NE+2) expreg(clk, IFDivStartE, QeE, QeM);
// Number of FSM cycles (to FSM)
fdivsqrtcycles cyclecalc(.FmtE, .SqrtE, .IntDivE, .nE, .cycles);
endmodule