This commit is contained in:
Kip Macsai-Goren 2021-07-06 10:16:34 -04:00
commit 7e9961cac4
18 changed files with 742 additions and 583 deletions

View File

@ -46,7 +46,7 @@
`define MEM_DCACHE 0
`define MEM_DTIM 1
`define MEM_ICACHE 0
`define MEM_VIRTMEM 0
`define MEM_VIRTMEM 1
`define VECTORED_INTERRUPTS_SUPPORTED 1 // Domenico Ottolia 4/15: Support for vectored interrupts in _tvec csrs. Just implemented in src/privileged/trap.sv around line 75. Pretty sure this should be 1.
`define ITLB_ENTRIES 32

View File

@ -47,7 +47,7 @@
`define MEM_DCACHE 0
`define MEM_DTIM 1
`define MEM_ICACHE 0
`define MEM_VIRTMEM 0
`define MEM_VIRTMEM 1
`define VECTORED_INTERRUPTS_SUPPORTED 1 // Domenico Ottolia 4/15: Support for vectored interrupts in _tvec csrs. Just implemented in src/privileged/trap.sv around line 75. Pretty sure this should be 1.
`define ITLB_ENTRIES 32

View File

@ -46,7 +46,7 @@
`define MEM_DCACHE 0
`define MEM_DTIM 1
`define MEM_ICACHE 0
`define MEM_VIRTMEM 1
`define MEM_VIRTMEM 0\1
`define VECTORED_INTERRUPTS_SUPPORTED 1
`define ITLB_ENTRIES 32

View File

@ -45,7 +45,7 @@
`define MEM_DCACHE 0
`define MEM_DTIM 1
`define MEM_ICACHE 0
`define MEM_VIRTMEM 0
`define MEM_VIRTMEM 1
`define VECTORED_INTERRUPTS_SUPPORTED 1
`define ITLB_ENTRIES 32

View File

@ -7,19 +7,19 @@ add wave -noupdate -expand -group {Execution Stage} /testbench/FunctionName/Func
add wave -noupdate -expand -group {Execution Stage} /testbench/dut/hart/ifu/PCE
add wave -noupdate -expand -group {Execution Stage} /testbench/InstrEName
add wave -noupdate -expand -group {Execution Stage} /testbench/dut/hart/ifu/InstrE
add wave -noupdate -expand -group HDU -group traps /testbench/dut/hart/priv/trap/InstrMisalignedFaultM
add wave -noupdate -expand -group HDU -group traps /testbench/dut/hart/priv/trap/InstrAccessFaultM
add wave -noupdate -expand -group HDU -group traps /testbench/dut/hart/priv/trap/IllegalInstrFaultM
add wave -noupdate -expand -group HDU -group traps /testbench/dut/hart/priv/trap/BreakpointFaultM
add wave -noupdate -expand -group HDU -group traps /testbench/dut/hart/priv/trap/LoadMisalignedFaultM
add wave -noupdate -expand -group HDU -group traps /testbench/dut/hart/priv/trap/StoreMisalignedFaultM
add wave -noupdate -expand -group HDU -group traps /testbench/dut/hart/priv/trap/LoadAccessFaultM
add wave -noupdate -expand -group HDU -group traps /testbench/dut/hart/priv/trap/StoreAccessFaultM
add wave -noupdate -expand -group HDU -group traps /testbench/dut/hart/priv/trap/EcallFaultM
add wave -noupdate -expand -group HDU -group traps /testbench/dut/hart/priv/trap/InstrPageFaultM
add wave -noupdate -expand -group HDU -group traps /testbench/dut/hart/priv/trap/LoadPageFaultM
add wave -noupdate -expand -group HDU -group traps /testbench/dut/hart/priv/trap/StorePageFaultM
add wave -noupdate -expand -group HDU -group traps /testbench/dut/hart/priv/trap/InterruptM
add wave -noupdate -expand -group HDU -expand -group traps /testbench/dut/hart/priv/trap/InstrMisalignedFaultM
add wave -noupdate -expand -group HDU -expand -group traps /testbench/dut/hart/priv/trap/InstrAccessFaultM
add wave -noupdate -expand -group HDU -expand -group traps /testbench/dut/hart/priv/trap/IllegalInstrFaultM
add wave -noupdate -expand -group HDU -expand -group traps /testbench/dut/hart/priv/trap/BreakpointFaultM
add wave -noupdate -expand -group HDU -expand -group traps /testbench/dut/hart/priv/trap/LoadMisalignedFaultM
add wave -noupdate -expand -group HDU -expand -group traps /testbench/dut/hart/priv/trap/StoreMisalignedFaultM
add wave -noupdate -expand -group HDU -expand -group traps /testbench/dut/hart/priv/trap/LoadAccessFaultM
add wave -noupdate -expand -group HDU -expand -group traps /testbench/dut/hart/priv/trap/StoreAccessFaultM
add wave -noupdate -expand -group HDU -expand -group traps /testbench/dut/hart/priv/trap/EcallFaultM
add wave -noupdate -expand -group HDU -expand -group traps /testbench/dut/hart/priv/trap/InstrPageFaultM
add wave -noupdate -expand -group HDU -expand -group traps /testbench/dut/hart/priv/trap/LoadPageFaultM
add wave -noupdate -expand -group HDU -expand -group traps /testbench/dut/hart/priv/trap/StorePageFaultM
add wave -noupdate -expand -group HDU -expand -group traps /testbench/dut/hart/priv/trap/InterruptM
add wave -noupdate -expand -group HDU -expand -group hazards /testbench/dut/hart/hzu/BPPredWrongE
add wave -noupdate -expand -group HDU -expand -group hazards /testbench/dut/hart/hzu/CSRWritePendingDEM
add wave -noupdate -expand -group HDU -expand -group hazards /testbench/dut/hart/hzu/RetM
@ -118,18 +118,18 @@ add wave -noupdate -group RegFile -group {write regfile mux} /testbench/dut/hart
add wave -noupdate -group RegFile -group {write regfile mux} /testbench/dut/hart/ieu/dp/CSRReadValW
add wave -noupdate -group RegFile -group {write regfile mux} /testbench/dut/hart/ieu/dp/ResultSrcW
add wave -noupdate -group RegFile -group {write regfile mux} /testbench/dut/hart/ieu/dp/ResultW
add wave -noupdate -group alu /testbench/dut/hart/ieu/dp/alu/a
add wave -noupdate -group alu /testbench/dut/hart/ieu/dp/alu/b
add wave -noupdate -group alu /testbench/dut/hart/ieu/dp/alu/alucontrol
add wave -noupdate -group alu /testbench/dut/hart/ieu/dp/alu/result
add wave -noupdate -group alu /testbench/dut/hart/ieu/dp/alu/flags
add wave -noupdate -group alu -divider internals
add wave -noupdate -group alu /testbench/dut/hart/ieu/dp/alu/overflow
add wave -noupdate -group alu /testbench/dut/hart/ieu/dp/alu/carry
add wave -noupdate -group alu /testbench/dut/hart/ieu/dp/alu/zero
add wave -noupdate -group alu /testbench/dut/hart/ieu/dp/alu/neg
add wave -noupdate -group alu /testbench/dut/hart/ieu/dp/alu/lt
add wave -noupdate -group alu /testbench/dut/hart/ieu/dp/alu/ltu
add wave -noupdate -expand -group alu /testbench/dut/hart/ieu/dp/alu/a
add wave -noupdate -expand -group alu /testbench/dut/hart/ieu/dp/alu/b
add wave -noupdate -expand -group alu /testbench/dut/hart/ieu/dp/alu/alucontrol
add wave -noupdate -expand -group alu /testbench/dut/hart/ieu/dp/alu/result
add wave -noupdate -expand -group alu /testbench/dut/hart/ieu/dp/alu/flags
add wave -noupdate -expand -group alu -divider internals
add wave -noupdate -expand -group alu /testbench/dut/hart/ieu/dp/alu/overflow
add wave -noupdate -expand -group alu /testbench/dut/hart/ieu/dp/alu/carry
add wave -noupdate -expand -group alu /testbench/dut/hart/ieu/dp/alu/zero
add wave -noupdate -expand -group alu /testbench/dut/hart/ieu/dp/alu/neg
add wave -noupdate -expand -group alu /testbench/dut/hart/ieu/dp/alu/lt
add wave -noupdate -expand -group alu /testbench/dut/hart/ieu/dp/alu/ltu
add wave -noupdate -group Forward /testbench/dut/hart/ieu/fw/Rs1D
add wave -noupdate -group Forward /testbench/dut/hart/ieu/fw/Rs2D
add wave -noupdate -group Forward /testbench/dut/hart/ieu/fw/Rs1E
@ -243,6 +243,7 @@ add wave -noupdate -group AHB /testbench/dut/hart/ebu/StallW
add wave -noupdate -expand -group lsu -color Gold /testbench/dut/hart/lsu/CurrState
add wave -noupdate -expand -group lsu /testbench/dut/hart/lsu/DisableTranslation
add wave -noupdate -expand -group lsu /testbench/dut/hart/lsu/MemRWM
add wave -noupdate -expand -group lsu /testbench/dut/hart/lsu/DataStall
add wave -noupdate -expand -group lsu /testbench/dut/hart/lsu/MemAdrM
add wave -noupdate -expand -group lsu /testbench/dut/hart/lsu/MemPAdrM
add wave -noupdate -expand -group lsu /testbench/dut/hart/lsu/ReadDataW
@ -293,7 +294,42 @@ add wave -noupdate -group CLINT /testbench/dut/uncore/genblk1/clint/MTIME
add wave -noupdate -group CLINT /testbench/dut/uncore/genblk1/clint/MTIMECMP
add wave -noupdate -group CLINT /testbench/dut/uncore/genblk1/clint/TimerIntM
add wave -noupdate -group CLINT /testbench/dut/uncore/genblk1/clint/SwIntM
add wave -noupdate -expand -group ptwalker /testbench/dut/hart/pagetablewalker/MMUTranslate
add wave -noupdate -expand -group ptwalker -color Gold /testbench/dut/hart/pagetablewalker/WalkerState
add wave -noupdate -expand -group ptwalker -color Salmon /testbench/dut/hart/pagetablewalker/HPTWStall
add wave -noupdate -expand -group ptwalker /testbench/dut/hart/pagetablewalker/HPTWRead
add wave -noupdate -expand -group ptwalker /testbench/dut/hart/pagetablewalker/MMUPAdr
add wave -noupdate -expand -group ptwalker /testbench/dut/hart/pagetablewalker/MMUStall
add wave -noupdate -expand -group ptwalker /testbench/dut/hart/pagetablewalker/EndWalk
add wave -noupdate -expand -group ptwalker -expand -group pte /testbench/dut/hart/pagetablewalker/MMUReadPTE
add wave -noupdate -expand -group ptwalker -expand -group pte /testbench/dut/hart/pagetablewalker/PRegEn
add wave -noupdate -expand -group ptwalker -expand -group pte /testbench/dut/hart/pagetablewalker/CurrentPTE
add wave -noupdate -expand -group ptwalker -divider data
add wave -noupdate -expand -group ptwalker /testbench/dut/hart/pagetablewalker/TranslationPAdr
add wave -noupdate -expand -group ptwalker /testbench/dut/hart/pagetablewalker/ValidPTE
add wave -noupdate -expand -group ptwalker /testbench/dut/hart/pagetablewalker/LeafPTE
add wave -noupdate -expand -group ptwalker /testbench/dut/hart/pagetablewalker/MMUStall
add wave -noupdate -expand -group ptwalker -group {fsm outputs} /testbench/dut/hart/pagetablewalker/TranslationPAdr
add wave -noupdate -expand -group ptwalker -group {fsm outputs} /testbench/dut/hart/pagetablewalker/PageTableEntry
add wave -noupdate -expand -group ptwalker -group {fsm outputs} /testbench/dut/hart/pagetablewalker/PageType
add wave -noupdate -expand -group ptwalker -group {fsm outputs} /testbench/dut/hart/pagetablewalker/ITLBWriteF
add wave -noupdate -expand -group ptwalker -group {fsm outputs} /testbench/dut/hart/pagetablewalker/DTLBWriteM
add wave -noupdate -expand -group ptwalker -group {fsm outputs} /testbench/dut/hart/pagetablewalker/WalkerInstrPageFaultF
add wave -noupdate -expand -group ptwalker -group {fsm outputs} /testbench/dut/hart/pagetablewalker/WalkerLoadPageFaultM
add wave -noupdate -expand -group ptwalker -group {fsm outputs} /testbench/dut/hart/pagetablewalker/WalkerStorePageFaultM
add wave -noupdate -expand -group ptwalker -group {fsm outputs} /testbench/dut/hart/pagetablewalker/MMUStall
add wave -noupdate -expand -group ptwalker -group {fsm outputs} /testbench/dut/hart/pagetablewalker/EndWalk
add wave -noupdate -expand -group ptwalker /testbench/dut/hart/pagetablewalker/MMUPAdr
add wave -noupdate -expand -group {LSU ARB} -color Gold /testbench/dut/hart/arbiter/CurrState
add wave -noupdate -expand -group {LSU ARB} -color {Medium Orchid} /testbench/dut/hart/arbiter/SelPTW
add wave -noupdate -expand -group {LSU ARB} /testbench/dut/hart/pagetablewalker/MMUStall
add wave -noupdate -expand -group {LSU ARB} -expand -group hptw /testbench/dut/hart/arbiter/HPTWTranslate
add wave -noupdate -expand -group {LSU ARB} -expand -group hptw /testbench/dut/hart/arbiter/HPTWRead
add wave -noupdate -expand -group {LSU ARB} -expand -group hptw /testbench/dut/hart/arbiter/HPTWPAdr
add wave -noupdate -expand -group {LSU ARB} -expand -group hptw /testbench/dut/hart/arbiter/HPTWReadPTE
add wave -noupdate -expand -group {LSU ARB} -expand -group hptw /testbench/dut/hart/arbiter/HPTWReady
add wave -noupdate -expand -group {LSU ARB} -group toLSU /testbench/dut/hart/arbiter/MemAdrMtoLSU
add wave -noupdate /testbench/dut/hart/lsu/DataStall
add wave -noupdate -group csr /testbench/dut/hart/priv/csr/MIP_REGW
add wave -noupdate -group uart /testbench/dut/uncore/genblk4/uart/HCLK
add wave -noupdate -group uart /testbench/dut/uncore/genblk4/uart/HRESETn
@ -320,6 +356,7 @@ add wave -noupdate -group uart -expand -group outputs /testbench/dut/uncore/genb
add wave -noupdate -group dtlb /testbench/dut/hart/lsu/dmmu/TLBMiss
add wave -noupdate -group dtlb /testbench/dut/hart/lsu/dmmu/tlb/TLBWrite
add wave -noupdate -group itlb /testbench/dut/hart/ifu/ITLBMissF
add wave -noupdate /testbench/dut/hart/pagetablewalker/StartWalk
add wave -noupdate /testbench/dut/hart/lsu/dmmu/tlb/DisableTranslation
add wave -noupdate -group tlbread /testbench/dut/hart/lsu/dmmu/tlb/VirtualAddress
add wave -noupdate -group tlbread /testbench/dut/hart/lsu/dmmu/tlb/tlbcam/CAMHit
@ -330,8 +367,8 @@ add wave -noupdate -group tlbwrite /testbench/dut/hart/lsu/dmmu/tlb/tlbcam/TLBWr
add wave -noupdate -group tlbwrite /testbench/dut/hart/lsu/dmmu/tlb/PTEWriteVal
add wave -noupdate -group tlbwrite /testbench/dut/hart/lsu/dmmu/tlb/tlbcam/WriteLines
TreeUpdate [SetDefaultTree]
WaveRestoreCursors {{Cursor 8} {4545 ns} 0} {{Cursor 3} {2540 ns} 0} {{Cursor 4} {681 ns} 0}
quietly wave cursor active 2
WaveRestoreCursors {{Cursor 8} {4545 ns} 0} {{Cursor 3} {3377 ns} 0} {{Cursor 4} {3215 ns} 0}
quietly wave cursor active 1
configure wave -namecolwidth 250
configure wave -valuecolwidth 189
configure wave -justifyvalue left
@ -346,4 +383,4 @@ configure wave -griddelta 40
configure wave -timeline 0
configure wave -timelineunits ns
update
WaveRestoreZoom {2313 ns} {2789 ns}
WaveRestoreZoom {4209 ns} {4657 ns}

View File

@ -117,10 +117,9 @@ module ifu (
endgenerate
mmu #(.TLB_ENTRIES(`ITLB_ENTRIES), .IMMU(1))
itlb(.TLBAccessType(2'b10),
.VirtualAddress(PCF),
itlb(.VirtualAddress(PCF),
.Size(2'b10),
.PTEWriteVal(PageTableEntryF),
.PTE(PageTableEntryF),
.PageTypeWriteVal(PageTypeF),
.TLBWrite(ITLBWriteF),
.TLBFlush(ITLBFlushF),

View File

@ -218,10 +218,9 @@ module lsu (
mmu #(.TLB_ENTRIES(`DTLB_ENTRIES), .IMMU(0))
dmmu(.TLBAccessType(MemRWMtoLSU),
.VirtualAddress(MemAdrMtoLSU),
dmmu(.VirtualAddress(MemAdrMtoLSU),
.Size(SizeToLSU[1:0]),
.PTEWriteVal(PageTableEntryM),
.PTE(PageTableEntryM),
.PageTypeWriteVal(PageTypeM),
.TLBWrite(DTLBWriteM),
.TLBFlush(DTLBFlushM),

View File

@ -35,8 +35,8 @@ module adrdecs (
// Determine which region of physical memory (if any) is being accessed
// *** eventually uncomment Access signals
adrdec boottimdec(PhysicalAddress, `BOOTTIM_BASE, `BOOTTIM_RANGE, `BOOTTIM_SUPPORTED, 1'b1/*AccessRX*/, Size, 4'b1111, SelRegions[5]);
adrdec timdec(PhysicalAddress, `TIM_BASE, `TIM_RANGE, `TIM_SUPPORTED, 1'b1/*AccessRWX*/, Size, 4'b1111, SelRegions[4]);
adrdec boottimdec(PhysicalAddress, `BOOTTIM_BASE, `BOOTTIM_RANGE, `BOOTTIM_SUPPORTED, /*1'b1*/AccessRX, Size, 4'b1111, SelRegions[5]);
adrdec timdec(PhysicalAddress, `TIM_BASE, `TIM_RANGE, `TIM_SUPPORTED, /*1'b1*/AccessRWX, Size, 4'b1111, SelRegions[4]);
adrdec clintdec(PhysicalAddress, `CLINT_BASE, `CLINT_RANGE, `CLINT_SUPPORTED, AccessRW, Size, 4'b1111, SelRegions[3]);
adrdec gpiodec(PhysicalAddress, `GPIO_BASE, `GPIO_RANGE, `GPIO_SUPPORTED, AccessRW, Size, 4'b0100, SelRegions[2]);
adrdec uartdec(PhysicalAddress, `UART_BASE, `UART_RANGE, `UART_SUPPORTED, AccessRW, Size, 4'b0001, SelRegions[1]);

View File

@ -42,7 +42,6 @@ module mmu #(parameter TLB_ENTRIES = 8, // nuber of TLB Entries
// 1x - TLB is accessed for a read (or an instruction)
// x1 - TLB is accessed for a write
// 11 - TLB is accessed for both read and write
input logic [1:0] TLBAccessType,
input logic DisableTranslation,
// Virtual address input
@ -50,7 +49,7 @@ module mmu #(parameter TLB_ENTRIES = 8, // nuber of TLB Entries
input logic [1:0] Size, // 00 = 8 bits, 01 = 16 bits, 10 = 32 bits , 11 = 64 bits
// Controls for writing a new entry to the TLB
input logic [`XLEN-1:0] PTEWriteVal,
input logic [`XLEN-1:0] PTE,
input logic [1:0] PageTypeWriteVal,
input logic TLBWrite,
@ -81,8 +80,23 @@ module mmu #(parameter TLB_ENTRIES = 8, // nuber of TLB Entries
logic Cacheable, Idempotent, AtomicAllowed; // *** here so that the pmachecker has somewhere to put these outputs. *** I'm leaving them as outputs to pma checker, but I'm stopping them here.
// Translation lookaside buffer
tlb #(.TLB_ENTRIES(TLB_ENTRIES), .ITLB(IMMU)) tlb(.*);
// only instantiate TLB if Virtual Memory is supported
generate
if (`MEM_VIRTMEM) begin
logic ReadAccess, WriteAccess;
assign ReadAccess = ExecuteAccessF | ReadAccessM; // execute also acts as a TLB read. Execute and Read are never active for the same MMU, so safe to mix pipestages
assign WriteAccess = WriteAccessM;
tlb #(.TLB_ENTRIES(TLB_ENTRIES), .ITLB(IMMU)) tlb(.*);
end else begin // just pass address through as physical
logic [`XLEN+1:0] VAExt;
assign VAExt = {2'b00, VirtualAddress}; // extend length of virtual address if necessary for RV32
assign PhysicalAddress = VAExt[`PA_BITS-1:0];
assign TLBMiss = 0;
assign TLBHit = 1;
assign TLBPageFault = 0;
end
endgenerate
///////////////////////////////////////////
// Check physical memory accesses
///////////////////////////////////////////

View File

@ -70,468 +70,495 @@ module pagetablewalker
output logic WalkerStorePageFaultM
);
// Internal signals
// register TLBs translation miss requests
logic [`XLEN-1:0] TranslationVAdrQ;
logic ITLBMissFQ, DTLBMissMQ;
logic [`PPN_BITS-1:0] BasePageTablePPN;
logic [`XLEN-1:0] TranslationVAdr;
logic [`XLEN-1:0] SavedPTE, CurrentPTE;
logic [`PA_BITS-1:0] TranslationPAdr;
logic [`PPN_BITS-1:0] CurrentPPN;
logic [`SVMODE_BITS-1:0] SvMode;
logic MemStore;
// PTE Control Bits
logic Dirty, Accessed, Global, User,
Executable, Writable, Readable, Valid;
// PTE descriptions
logic ValidPTE, AccessAlert, MegapageMisaligned, BadMegapage, LeafPTE;
// Outputs of walker
logic [`XLEN-1:0] PageTableEntry;
logic [1:0] PageType;
logic StartWalk;
logic EndWalk;
typedef enum {LEVEL0_WDV,
LEVEL0,
LEVEL1_WDV,
LEVEL1,
LEVEL2_WDV,
LEVEL2,
LEVEL3_WDV,
LEVEL3,
LEAF,
IDLE,
FAULT} statetype;
statetype WalkerState, NextWalkerState;
logic PRegEn;
assign SvMode = SATP_REGW[`XLEN-1:`XLEN-`SVMODE_BITS];
assign BasePageTablePPN = SATP_REGW[`PPN_BITS-1:0];
assign MemStore = MemRWM[0];
// Prefer data address translations over instruction address translations
assign TranslationVAdr = (DTLBMissM) ? MemAdrM : PCF; // *** need to register TranslationVAdr
flopenr #(`XLEN)
TranslationVAdrReg(.clk(clk),
.reset(reset),
.en(StartWalk), // *** use enable later to save power
.d(TranslationVAdr),
.q(TranslationVAdrQ));
flopenrc #(1)
DTLBMissMReg(.clk(clk),
.reset(reset),
.en(StartWalk | EndWalk),
.clear(EndWalk),
.d(DTLBMissM),
.q(DTLBMissMQ));
flopenrc #(1)
ITLBMissMReg(.clk(clk),
.reset(reset),
.en(StartWalk | EndWalk),
.clear(EndWalk),
.d(ITLBMissF),
.q(ITLBMissFQ));
assign StartWalk = WalkerState == IDLE && (DTLBMissM | ITLBMissF);
assign EndWalk = WalkerState == LEAF ||
//(WalkerState == LEVEL0 && ValidPTE && LeafPTE && ~AccessAlert) ||
(WalkerState == LEVEL1 && ValidPTE && LeafPTE && ~AccessAlert) ||
(WalkerState == LEVEL2 && ValidPTE && LeafPTE && ~AccessAlert) ||
(WalkerState == LEVEL3 && ValidPTE && LeafPTE && ~AccessAlert) ||
(WalkerState == FAULT);
assign MMUTranslate = (DTLBMissMQ | ITLBMissFQ) & ~EndWalk;
//assign MMUTranslate = DTLBMissM | ITLBMissF;
// unswizzle PTE bits
assign {Dirty, Accessed, Global, User,
Executable, Writable, Readable, Valid} = CurrentPTE[7:0];
// Assign PTE descriptors common across all XLEN values
assign LeafPTE = Executable | Writable | Readable;
assign ValidPTE = Valid && ~(Writable && ~Readable);
assign AccessAlert = ~Accessed | (MemStore & ~Dirty);
// Assign specific outputs to general outputs
assign PageTableEntryF = PageTableEntry;
assign PageTableEntryM = PageTableEntry;
assign PageTypeF = PageType;
assign PageTypeM = PageType;
generate
if (`XLEN == 32) begin
logic [9:0] VPN1, VPN0;
if (`MEM_VIRTMEM) begin
// Internal signals
// register TLBs translation miss requests
logic [`XLEN-1:0] TranslationVAdrQ;
logic ITLBMissFQ, DTLBMissMQ;
logic [`PPN_BITS-1:0] BasePageTablePPN;
logic [`XLEN-1:0] TranslationVAdr;
logic [`XLEN-1:0] SavedPTE, CurrentPTE;
logic [`PA_BITS-1:0] TranslationPAdr;
logic [`PPN_BITS-1:0] CurrentPPN;
logic [`SVMODE_BITS-1:0] SvMode;
logic MemStore;
flopenl #(.TYPE(statetype)) mmureg(clk, reset, 1'b1, NextWalkerState, IDLE, WalkerState);
// PTE Control Bits
logic Dirty, Accessed, Global, User,
Executable, Writable, Readable, Valid;
// PTE descriptions
logic ValidPTE, AccessAlert, MegapageMisaligned, BadMegapage, LeafPTE;
/* -----\/----- EXCLUDED -----\/-----
assign PRegEn = (WalkerState == LEVEL1_WDV || WalkerState == LEVEL0_WDV) && ~HPTWStall;
-----/\----- EXCLUDED -----/\----- */
// Outputs of walker
logic [`XLEN-1:0] PageTableEntry;
logic [1:0] PageType;
logic StartWalk;
logic EndWalk;
typedef enum {LEVEL0_WDV,
LEVEL0,
LEVEL1_WDV,
LEVEL1,
LEVEL2_WDV,
LEVEL2,
LEVEL3_WDV,
LEVEL3,
LEAF,
IDLE,
START,
FAULT} statetype;
// State transition logic
always_comb begin
PRegEn = 1'b0;
TranslationPAdr = '0;
HPTWRead = 1'b0;
PageTableEntry = '0;
PageType = '0;
DTLBWriteM = '0;
ITLBWriteF = '0;
WalkerInstrPageFaultF = 1'b0;
WalkerLoadPageFaultM = 1'b0;
WalkerStorePageFaultM = 1'b0;
statetype WalkerState, NextWalkerState;
case (WalkerState)
IDLE: begin
if (MMUTranslate && SvMode == `SV32) begin // *** Added SvMode
NextWalkerState = LEVEL1_WDV;
TranslationPAdr = {BasePageTablePPN, VPN1, 2'b00};
HPTWRead = 1'b1;
end else begin
NextWalkerState = IDLE;
TranslationPAdr = '0;
end
end
LEVEL1_WDV: begin
TranslationPAdr = {BasePageTablePPN, VPN1, 2'b00};
if (HPTWStall) begin
NextWalkerState = LEVEL1_WDV;
end else begin
NextWalkerState = LEVEL1;
PRegEn = 1'b1;
end
end
LEVEL1: begin
// *** <FUTURE WORK> According to the architecture, we should
// fault upon finding a superpage that is misaligned or has 0
// access bit. The following commented line of code is
// supposed to perform that check. However, it is untested.
if (ValidPTE && LeafPTE && ~BadMegapage) begin
NextWalkerState = LEAF;
PageTableEntry = CurrentPTE;
PageType = (WalkerState == LEVEL1) ? 2'b01 : 2'b00; // *** not sure about this mux?
DTLBWriteM = DTLBMissMQ;
ITLBWriteF = ~DTLBMissMQ; // Prefer data over instructions
TranslationPAdr = {2'b00, TranslationVAdrQ[31:0]};
end
// else if (ValidPTE && LeafPTE) NextWalkerState = LEAF; // *** Once the above line is properly tested, delete this line.
else if (ValidPTE && ~LeafPTE) begin
NextWalkerState = LEVEL0_WDV;
TranslationPAdr = {CurrentPPN, VPN0, 2'b00};
HPTWRead = 1'b1;
end else begin
NextWalkerState = FAULT;
end
end
LEVEL0_WDV: begin
TranslationPAdr = {CurrentPPN, VPN0, 2'b00};
if (HPTWStall) begin
NextWalkerState = LEVEL0_WDV;
end else begin
NextWalkerState = LEVEL0;
PRegEn = 1'b1;
end
end
logic PRegEn;
logic SelDataTranslation;
assign SvMode = SATP_REGW[`XLEN-1:`XLEN-`SVMODE_BITS];
LEVEL0: begin
if (ValidPTE & LeafPTE & ~AccessAlert) begin
NextWalkerState = LEAF;
PageTableEntry = CurrentPTE;
PageType = (WalkerState == LEVEL1) ? 2'b01 : 2'b00;
DTLBWriteM = DTLBMissMQ;
ITLBWriteF = ~DTLBMissMQ; // Prefer data over instructions
TranslationPAdr = {2'b00, TranslationVAdrQ[31:0]};
end else begin
NextWalkerState = FAULT;
end
end
LEAF: begin
NextWalkerState = IDLE;
end
FAULT: begin
NextWalkerState = IDLE;
WalkerInstrPageFaultF = ~DTLBMissMQ;
WalkerLoadPageFaultM = DTLBMissMQ && ~MemStore;
WalkerStorePageFaultM = DTLBMissMQ && MemStore;
end
// Default case should never happen, but is included for linter.
default: NextWalkerState = IDLE;
endcase
end
assign BasePageTablePPN = SATP_REGW[`PPN_BITS-1:0];
// A megapage is a Level 1 leaf page. This page must have zero PPN[0].
assign MegapageMisaligned = |(CurrentPPN[9:0]);
assign BadMegapage = MegapageMisaligned || AccessAlert; // *** Implement better access/dirty scheme
assign MemStore = MemRWM[0];
assign VPN1 = TranslationVAdrQ[31:22];
assign VPN0 = TranslationVAdrQ[21:12];
// Prefer data address translations over instruction address translations
assign TranslationVAdr = (SelDataTranslation) ? MemAdrM : PCF; // *** need to register TranslationVAdr
assign SelDataTranslation = DTLBMissMQ | DTLBMissM;
flopenr #(`XLEN)
TranslationVAdrReg(.clk(clk),
.reset(reset),
.en(StartWalk),
.d(TranslationVAdr),
.q(TranslationVAdrQ));
flopenrc #(1)
DTLBMissMReg(.clk(clk),
.reset(reset),
.en(StartWalk | EndWalk),
.clear(EndWalk),
.d(DTLBMissM),
.q(DTLBMissMQ));
flopenrc #(1)
ITLBMissMReg(.clk(clk),
.reset(reset),
.en(StartWalk | EndWalk),
.clear(EndWalk),
.d(ITLBMissF),
.q(ITLBMissFQ));
// Capture page table entry from data cache
// *** may need to delay reading this value until the next clock cycle.
// The clk to q latency of the SRAM in the data cache will be long.
// I cannot see directly using this value. This is no different than
// a load delay hazard. This will require rewriting the walker fsm.
// also need a new signal to save. Should be a mealy output of the fsm
// request followed by ~stall.
flopenr #(32) ptereg(clk, reset, PRegEn, MMUReadPTE, SavedPTE);
//mux2 #(32) ptemux(SavedPTE, MMUReadPTE, PRegEn, CurrentPTE);
assign CurrentPTE = SavedPTE;
assign CurrentPPN = CurrentPTE[`PPN_BITS+9:10];
// Assign outputs to ahblite
// *** Currently truncate address to 32 bits. This must be changed if
// we support larger physical address spaces
assign MMUPAdr = TranslationPAdr[31:0];
end else begin
assign StartWalk = WalkerState == IDLE && (DTLBMissM | ITLBMissF);
assign EndWalk = WalkerState == LEAF ||
//(WalkerState == LEVEL0 && ValidPTE && LeafPTE && ~AccessAlert) ||
(WalkerState == LEVEL1 && ValidPTE && LeafPTE && ~AccessAlert) ||
(WalkerState == LEVEL2 && ValidPTE && LeafPTE && ~AccessAlert) ||
(WalkerState == LEVEL3 && ValidPTE && LeafPTE && ~AccessAlert) ||
(WalkerState == FAULT);
logic [8:0] VPN3, VPN2, VPN1, VPN0;
assign MMUTranslate = (DTLBMissMQ | ITLBMissFQ) & ~EndWalk;
//assign MMUTranslate = DTLBMissM | ITLBMissF;
logic TerapageMisaligned, GigapageMisaligned, BadTerapage, BadGigapage;
// unswizzle PTE bits
assign {Dirty, Accessed, Global, User,
Executable, Writable, Readable, Valid} = CurrentPTE[7:0];
flopenl #(.TYPE(statetype)) mmureg(clk, reset, 1'b1, NextWalkerState, IDLE, WalkerState);
// Assign PTE descriptors common across all XLEN values
assign LeafPTE = Executable | Writable | Readable;
assign ValidPTE = Valid && ~(Writable && ~Readable);
assign AccessAlert = ~Accessed | (MemStore & ~Dirty);
/* -----\/----- EXCLUDED -----\/-----
assign PRegEn = (WalkerState == LEVEL1_WDV || WalkerState == LEVEL0_WDV ||
WalkerState == LEVEL2_WDV || WalkerState == LEVEL3_WDV) && ~HPTWStall;
-----/\----- EXCLUDED -----/\----- */
// Assign specific outputs to general outputs
assign PageTableEntryF = PageTableEntry;
assign PageTableEntryM = PageTableEntry;
assign PageTypeF = PageType;
assign PageTypeM = PageType;
//assign HPTWRead = (WalkerState == IDLE && MMUTranslate) || WalkerState == LEVEL3 ||
// WalkerState == LEVEL2 || WalkerState == LEVEL1;
// generate
if (`XLEN == 32) begin
logic [9:0] VPN1, VPN0;
flopenl #(.TYPE(statetype)) mmureg(clk, reset, 1'b1, NextWalkerState, IDLE, WalkerState);
/* -----\/----- EXCLUDED -----\/-----
assign PRegEn = (WalkerState == LEVEL1_WDV || WalkerState == LEVEL0_WDV) && ~HPTWStall;
-----/\----- EXCLUDED -----/\----- */
// State transition logic
always_comb begin
PRegEn = 1'b0;
TranslationPAdr = '0;
HPTWRead = 1'b0;
PageTableEntry = '0;
PageType = '0;
DTLBWriteM = '0;
ITLBWriteF = '0;
WalkerInstrPageFaultF = 1'b0;
WalkerLoadPageFaultM = 1'b0;
WalkerStorePageFaultM = 1'b0;
always_comb begin
PRegEn = 1'b0;
TranslationPAdr = '0;
HPTWRead = 1'b0;
PageTableEntry = '0;
PageType = '0;
DTLBWriteM = '0;
ITLBWriteF = '0;
WalkerInstrPageFaultF = 1'b0;
WalkerLoadPageFaultM = 1'b0;
WalkerStorePageFaultM = 1'b0;
case (WalkerState)
IDLE: begin
if (MMUTranslate && SvMode == `SV32) begin // *** Added SvMode
NextWalkerState = START;
end else begin
NextWalkerState = IDLE;
end
end
case (WalkerState)
IDLE: begin
if (MMUTranslate && SvMode == `SV48) begin
NextWalkerState = LEVEL3_WDV;
TranslationPAdr = {BasePageTablePPN, VPN3, 3'b000};
HPTWRead = 1'b1;
end else if (MMUTranslate && SvMode == `SV39) begin
NextWalkerState = LEVEL2_WDV;
TranslationPAdr = {BasePageTablePPN, VPN2, 3'b000};
HPTWRead = 1'b1;
end else begin
NextWalkerState = IDLE;
TranslationPAdr = '0;
end
end
LEVEL3_WDV: begin
TranslationPAdr = {BasePageTablePPN, VPN3, 3'b000};
if (HPTWStall) begin
NextWalkerState = LEVEL3_WDV;
end else begin
NextWalkerState = LEVEL3;
PRegEn = 1'b1;
end
end
LEVEL3: begin
// *** <FUTURE WORK> According to the architecture, we should
// fault upon finding a superpage that is misaligned or has 0
// access bit. The following commented line of code is
// supposed to perform that check. However, it is untested.
if (ValidPTE && LeafPTE && ~BadTerapage) begin
NextWalkerState = LEAF;
PageTableEntry = CurrentPTE;
PageType = (WalkerState == LEVEL3) ? 2'b11 : // *** not sure about this mux?
((WalkerState == LEVEL2) ? 2'b10 :
((WalkerState == LEVEL1) ? 2'b01 : 2'b00));
DTLBWriteM = DTLBMissMQ;
ITLBWriteF = ~DTLBMissMQ; // Prefer data over instructions
TranslationPAdr = TranslationVAdrQ[`PA_BITS-1:0];
end
// else if (ValidPTE && LeafPTE) NextWalkerState = LEAF; // *** Once the above line is properly tested, delete this line.
else if (ValidPTE && ~LeafPTE) begin
NextWalkerState = LEVEL2_WDV;
TranslationPAdr = {(SvMode == `SV48) ? CurrentPPN : BasePageTablePPN, VPN2, 3'b000};
HPTWRead = 1'b1;
end else begin
NextWalkerState = FAULT;
end
START: begin
NextWalkerState = LEVEL1_WDV;
TranslationPAdr = {BasePageTablePPN, VPN1, 2'b00};
HPTWRead = 1'b1;
end
LEVEL1_WDV: begin
TranslationPAdr = {BasePageTablePPN, VPN1, 2'b00};
if (HPTWStall) begin
NextWalkerState = LEVEL1_WDV;
end else begin
NextWalkerState = LEVEL1;
PRegEn = 1'b1;
end
end
LEVEL1: begin
// *** <FUTURE WORK> According to the architecture, we should
// fault upon finding a superpage that is misaligned or has 0
// access bit. The following commented line of code is
// supposed to perform that check. However, it is untested.
if (ValidPTE && LeafPTE && ~BadMegapage) begin
NextWalkerState = LEAF;
PageTableEntry = CurrentPTE;
PageType = (WalkerState == LEVEL1) ? 2'b01 : 2'b00; // *** not sure about this mux?
DTLBWriteM = DTLBMissMQ;
ITLBWriteF = ~DTLBMissMQ; // Prefer data over instructions
TranslationPAdr = {2'b00, TranslationVAdrQ[31:0]};
end
// else if (ValidPTE && LeafPTE) NextWalkerState = LEAF; // *** Once the above line is properly tested, delete this line.
else if (ValidPTE && ~LeafPTE) begin
NextWalkerState = LEVEL0_WDV;
TranslationPAdr = {CurrentPPN, VPN0, 2'b00};
HPTWRead = 1'b1;
end else begin
NextWalkerState = FAULT;
end
end
LEVEL0_WDV: begin
TranslationPAdr = {CurrentPPN, VPN0, 2'b00};
if (HPTWStall) begin
NextWalkerState = LEVEL0_WDV;
end else begin
NextWalkerState = LEVEL0;
PRegEn = 1'b1;
end
end
LEVEL0: begin
if (ValidPTE & LeafPTE & ~AccessAlert) begin
NextWalkerState = LEAF;
PageTableEntry = CurrentPTE;
PageType = (WalkerState == LEVEL1) ? 2'b01 : 2'b00;
DTLBWriteM = DTLBMissMQ;
ITLBWriteF = ~DTLBMissMQ; // Prefer data over instructions
TranslationPAdr = {2'b00, TranslationVAdrQ[31:0]};
end else begin
NextWalkerState = FAULT;
end
end
LEAF: begin
NextWalkerState = IDLE;
end
FAULT: begin
NextWalkerState = IDLE;
WalkerInstrPageFaultF = ~DTLBMissMQ;
WalkerLoadPageFaultM = DTLBMissMQ && ~MemStore;
WalkerStorePageFaultM = DTLBMissMQ && MemStore;
end
// Default case should never happen, but is included for linter.
default: NextWalkerState = IDLE;
endcase
end
LEVEL2_WDV: begin
TranslationPAdr = {(SvMode == `SV48) ? CurrentPPN : BasePageTablePPN, VPN2, 3'b000};
//HPTWRead = 1'b1;
if (HPTWStall) begin
NextWalkerState = LEVEL2_WDV;
end else begin
NextWalkerState = LEVEL2;
PRegEn = 1'b1;
end
end
// A megapage is a Level 1 leaf page. This page must have zero PPN[0].
assign MegapageMisaligned = |(CurrentPPN[9:0]);
assign BadMegapage = MegapageMisaligned || AccessAlert; // *** Implement better access/dirty scheme
assign VPN1 = TranslationVAdrQ[31:22];
assign VPN0 = TranslationVAdrQ[21:12];
LEVEL2: begin
// *** <FUTURE WORK> According to the architecture, we should
// fault upon finding a superpage that is misaligned or has 0
// access bit. The following commented line of code is
// supposed to perform that check. However, it is untested.
if (ValidPTE && LeafPTE && ~BadGigapage) begin
NextWalkerState = LEAF;
PageTableEntry = CurrentPTE;
PageType = (WalkerState == LEVEL3) ? 2'b11 :
((WalkerState == LEVEL2) ? 2'b10 :
((WalkerState == LEVEL1) ? 2'b01 : 2'b00));
DTLBWriteM = DTLBMissMQ;
ITLBWriteF = ~DTLBMissMQ; // Prefer data over instructions
TranslationPAdr = TranslationVAdrQ[`PA_BITS-1:0];
end
// else if (ValidPTE && LeafPTE) NextWalkerState = LEAF; // *** Once the above line is properly tested, delete this line.
else if (ValidPTE && ~LeafPTE) begin
NextWalkerState = LEVEL1_WDV;
TranslationPAdr = {CurrentPPN, VPN1, 3'b000};
HPTWRead = 1'b1;
end else begin
NextWalkerState = FAULT;
end
// Capture page table entry from data cache
// *** may need to delay reading this value until the next clock cycle.
// The clk to q latency of the SRAM in the data cache will be long.
// I cannot see directly using this value. This is no different than
// a load delay hazard. This will require rewriting the walker fsm.
// also need a new signal to save. Should be a mealy output of the fsm
// request followed by ~stall.
flopenr #(32) ptereg(clk, reset, PRegEn, MMUReadPTE, SavedPTE);
//mux2 #(32) ptemux(SavedPTE, MMUReadPTE, PRegEn, CurrentPTE);
assign CurrentPTE = SavedPTE;
assign CurrentPPN = CurrentPTE[`PPN_BITS+9:10];
// Assign outputs to ahblite
// *** Currently truncate address to 32 bits. This must be changed if
// we support larger physical address spaces
assign MMUPAdr = TranslationPAdr[31:0];
end else begin
logic [8:0] VPN3, VPN2, VPN1, VPN0;
logic TerapageMisaligned, GigapageMisaligned, BadTerapage, BadGigapage;
flopenl #(.TYPE(statetype)) mmureg(clk, reset, 1'b1, NextWalkerState, IDLE, WalkerState);
/* -----\/----- EXCLUDED -----\/-----
assign PRegEn = (WalkerState == LEVEL1_WDV || WalkerState == LEVEL0_WDV ||
WalkerState == LEVEL2_WDV || WalkerState == LEVEL3_WDV) && ~HPTWStall;
-----/\----- EXCLUDED -----/\----- */
//assign HPTWRead = (WalkerState == IDLE && MMUTranslate) || WalkerState == LEVEL3 ||
// WalkerState == LEVEL2 || WalkerState == LEVEL1;
always_comb begin
PRegEn = 1'b0;
TranslationPAdr = '0;
HPTWRead = 1'b0;
PageTableEntry = '0;
PageType = '0;
DTLBWriteM = '0;
ITLBWriteF = '0;
WalkerInstrPageFaultF = 1'b0;
WalkerLoadPageFaultM = 1'b0;
WalkerStorePageFaultM = 1'b0;
case (WalkerState)
IDLE: begin
if (MMUTranslate && (SvMode == `SV48 || SvMode == `SV39)) begin
NextWalkerState = START;
end else begin
NextWalkerState = IDLE;
end
end
LEVEL1_WDV: begin
TranslationPAdr = {CurrentPPN, VPN1, 3'b000};
//HPTWRead = 1'b1;
if (HPTWStall) begin
NextWalkerState = LEVEL1_WDV;
end else begin
NextWalkerState = LEVEL1;
PRegEn = 1'b1;
end
START: begin
if (MMUTranslate && SvMode == `SV48) begin
NextWalkerState = LEVEL3_WDV;
TranslationPAdr = {BasePageTablePPN, VPN3, 3'b000};
HPTWRead = 1'b1;
end else if (MMUTranslate && SvMode == `SV39) begin
NextWalkerState = LEVEL2_WDV;
TranslationPAdr = {BasePageTablePPN, VPN2, 3'b000};
HPTWRead = 1'b1;
end else begin // *** should not get here
NextWalkerState = IDLE;
TranslationPAdr = '0;
end
end
LEVEL1: begin
// *** <FUTURE WORK> According to the architecture, we should
// fault upon finding a superpage that is misaligned or has 0
// access bit. The following commented line of code is
// supposed to perform that check. However, it is untested.
if (ValidPTE && LeafPTE && ~BadMegapage) begin
NextWalkerState = LEAF;
PageTableEntry = CurrentPTE;
PageType = (WalkerState == LEVEL3) ? 2'b11 :
((WalkerState == LEVEL2) ? 2'b10 :
((WalkerState == LEVEL1) ? 2'b01 : 2'b00));
DTLBWriteM = DTLBMissMQ;
ITLBWriteF = ~DTLBMissMQ; // Prefer data over instructions
TranslationPAdr = TranslationVAdrQ[`PA_BITS-1:0];
LEVEL3_WDV: begin
TranslationPAdr = {BasePageTablePPN, VPN3, 3'b000};
if (HPTWStall) begin
NextWalkerState = LEVEL3_WDV;
end else begin
NextWalkerState = LEVEL3;
PRegEn = 1'b1;
end
end
LEVEL3: begin
// *** <FUTURE WORK> According to the architecture, we should
// fault upon finding a superpage that is misaligned or has 0
// access bit. The following commented line of code is
// supposed to perform that check. However, it is untested.
if (ValidPTE && LeafPTE && ~BadTerapage) begin
NextWalkerState = LEAF;
PageTableEntry = CurrentPTE;
PageType = (WalkerState == LEVEL3) ? 2'b11 : // *** not sure about this mux?
((WalkerState == LEVEL2) ? 2'b10 :
((WalkerState == LEVEL1) ? 2'b01 : 2'b00));
DTLBWriteM = DTLBMissMQ;
ITLBWriteF = ~DTLBMissMQ; // Prefer data over instructions
TranslationPAdr = TranslationVAdrQ[`PA_BITS-1:0];
end
// else if (ValidPTE && LeafPTE) NextWalkerState = LEAF; // *** Once the above line is properly tested, delete this line.
else if (ValidPTE && ~LeafPTE) begin
NextWalkerState = LEVEL2_WDV;
TranslationPAdr = {(SvMode == `SV48) ? CurrentPPN : BasePageTablePPN, VPN2, 3'b000};
HPTWRead = 1'b1;
end else begin
NextWalkerState = FAULT;
end
end
LEVEL2_WDV: begin
TranslationPAdr = {(SvMode == `SV48) ? CurrentPPN : BasePageTablePPN, VPN2, 3'b000};
//HPTWRead = 1'b1;
if (HPTWStall) begin
NextWalkerState = LEVEL2_WDV;
end else begin
NextWalkerState = LEVEL2;
PRegEn = 1'b1;
end
end
end
// else if (ValidPTE && LeafPTE) NextWalkerState = LEAF; // *** Once the above line is properly tested, delete this line.
else if (ValidPTE && ~LeafPTE) begin
NextWalkerState = LEVEL0_WDV;
TranslationPAdr = {CurrentPPN, VPN0, 3'b000};
HPTWRead = 1'b1;
end else begin
NextWalkerState = FAULT;
end
LEVEL2: begin
// *** <FUTURE WORK> According to the architecture, we should
// fault upon finding a superpage that is misaligned or has 0
// access bit. The following commented line of code is
// supposed to perform that check. However, it is untested.
if (ValidPTE && LeafPTE && ~BadGigapage) begin
NextWalkerState = LEAF;
PageTableEntry = CurrentPTE;
PageType = (WalkerState == LEVEL3) ? 2'b11 :
((WalkerState == LEVEL2) ? 2'b10 :
((WalkerState == LEVEL1) ? 2'b01 : 2'b00));
DTLBWriteM = DTLBMissMQ;
ITLBWriteF = ~DTLBMissMQ; // Prefer data over instructions
TranslationPAdr = TranslationVAdrQ[`PA_BITS-1:0];
end
// else if (ValidPTE && LeafPTE) NextWalkerState = LEAF; // *** Once the above line is properly tested, delete this line.
else if (ValidPTE && ~LeafPTE) begin
NextWalkerState = LEVEL1_WDV;
TranslationPAdr = {CurrentPPN, VPN1, 3'b000};
HPTWRead = 1'b1;
end else begin
NextWalkerState = FAULT;
end
end
LEVEL1_WDV: begin
TranslationPAdr = {CurrentPPN, VPN1, 3'b000};
//HPTWRead = 1'b1;
if (HPTWStall) begin
NextWalkerState = LEVEL1_WDV;
end else begin
NextWalkerState = LEVEL1;
PRegEn = 1'b1;
end
end
LEVEL1: begin
// *** <FUTURE WORK> According to the architecture, we should
// fault upon finding a superpage that is misaligned or has 0
// access bit. The following commented line of code is
// supposed to perform that check. However, it is untested.
if (ValidPTE && LeafPTE && ~BadMegapage) begin
NextWalkerState = LEAF;
PageTableEntry = CurrentPTE;
PageType = (WalkerState == LEVEL3) ? 2'b11 :
((WalkerState == LEVEL2) ? 2'b10 :
((WalkerState == LEVEL1) ? 2'b01 : 2'b00));
DTLBWriteM = DTLBMissMQ;
ITLBWriteF = ~DTLBMissMQ; // Prefer data over instructions
TranslationPAdr = TranslationVAdrQ[`PA_BITS-1:0];
end
// else if (ValidPTE && LeafPTE) NextWalkerState = LEAF; // *** Once the above line is properly tested, delete this line.
else if (ValidPTE && ~LeafPTE) begin
NextWalkerState = LEVEL0_WDV;
TranslationPAdr = {CurrentPPN, VPN0, 3'b000};
HPTWRead = 1'b1;
end else begin
NextWalkerState = FAULT;
end
end
LEVEL0_WDV: begin
TranslationPAdr = {CurrentPPN, VPN0, 3'b000};
if (HPTWStall) begin
NextWalkerState = LEVEL0_WDV;
end else begin
NextWalkerState = LEVEL0;
PRegEn = 1'b1;
end
end
LEVEL0: begin
if (ValidPTE && LeafPTE && ~AccessAlert) begin
NextWalkerState = LEAF;
PageTableEntry = CurrentPTE;
PageType = (WalkerState == LEVEL3) ? 2'b11 :
((WalkerState == LEVEL2) ? 2'b10 :
((WalkerState == LEVEL1) ? 2'b01 : 2'b00));
DTLBWriteM = DTLBMissMQ;
ITLBWriteF = ~DTLBMissMQ; // Prefer data over instructions
TranslationPAdr = TranslationVAdrQ[`PA_BITS-1:0];
end else begin
NextWalkerState = FAULT;
end
end
LEAF: begin
NextWalkerState = IDLE;
end
FAULT: begin
NextWalkerState = IDLE;
WalkerInstrPageFaultF = ~DTLBMissMQ;
WalkerLoadPageFaultM = DTLBMissMQ && ~MemStore;
WalkerStorePageFaultM = DTLBMissMQ && MemStore;
end
// Default case should never happen
default: begin
NextWalkerState = IDLE;
end
endcase
end
LEVEL0_WDV: begin
TranslationPAdr = {CurrentPPN, VPN0, 3'b000};
if (HPTWStall) begin
NextWalkerState = LEVEL0_WDV;
end else begin
NextWalkerState = LEVEL0;
PRegEn = 1'b1;
end
end
// A terapage is a level 3 leaf page. This page must have zero PPN[2],
// zero PPN[1], and zero PPN[0]
assign TerapageMisaligned = |(CurrentPPN[26:0]);
// A gigapage is a Level 2 leaf page. This page must have zero PPN[1] and
// zero PPN[0]
assign GigapageMisaligned = |(CurrentPPN[17:0]);
// A megapage is a Level 1 leaf page. This page must have zero PPN[0].
assign MegapageMisaligned = |(CurrentPPN[8:0]);
LEVEL0: begin
if (ValidPTE && LeafPTE && ~AccessAlert) begin
NextWalkerState = LEAF;
PageTableEntry = CurrentPTE;
PageType = (WalkerState == LEVEL3) ? 2'b11 :
((WalkerState == LEVEL2) ? 2'b10 :
((WalkerState == LEVEL1) ? 2'b01 : 2'b00));
DTLBWriteM = DTLBMissMQ;
ITLBWriteF = ~DTLBMissMQ; // Prefer data over instructions
TranslationPAdr = TranslationVAdrQ[`PA_BITS-1:0];
end else begin
NextWalkerState = FAULT;
end
end
LEAF: begin
NextWalkerState = IDLE;
end
assign BadTerapage = TerapageMisaligned || AccessAlert; // *** Implement better access/dirty scheme
assign BadGigapage = GigapageMisaligned || AccessAlert; // *** Implement better access/dirty scheme
assign BadMegapage = MegapageMisaligned || AccessAlert; // *** Implement better access/dirty scheme
FAULT: begin
NextWalkerState = IDLE;
WalkerInstrPageFaultF = ~DTLBMissMQ;
WalkerLoadPageFaultM = DTLBMissMQ && ~MemStore;
WalkerStorePageFaultM = DTLBMissMQ && MemStore;
end
// Default case should never happen
default: begin
NextWalkerState = IDLE;
end
endcase
end
// A terapage is a level 3 leaf page. This page must have zero PPN[2],
// zero PPN[1], and zero PPN[0]
assign TerapageMisaligned = |(CurrentPPN[26:0]);
// A gigapage is a Level 2 leaf page. This page must have zero PPN[1] and
// zero PPN[0]
assign GigapageMisaligned = |(CurrentPPN[17:0]);
// A megapage is a Level 1 leaf page. This page must have zero PPN[0].
assign MegapageMisaligned = |(CurrentPPN[8:0]);
assign BadTerapage = TerapageMisaligned || AccessAlert; // *** Implement better access/dirty scheme
assign BadGigapage = GigapageMisaligned || AccessAlert; // *** Implement better access/dirty scheme
assign BadMegapage = MegapageMisaligned || AccessAlert; // *** Implement better access/dirty scheme
assign VPN3 = TranslationVAdrQ[47:39];
assign VPN2 = TranslationVAdrQ[38:30];
assign VPN1 = TranslationVAdrQ[29:21];
assign VPN0 = TranslationVAdrQ[20:12];
assign VPN3 = TranslationVAdrQ[47:39];
assign VPN2 = TranslationVAdrQ[38:30];
assign VPN1 = TranslationVAdrQ[29:21];
assign VPN0 = TranslationVAdrQ[20:12];
// Capture page table entry from ahblite
flopenr #(`XLEN) ptereg(clk, reset, PRegEn, MMUReadPTE, SavedPTE);
//mux2 #(`XLEN) ptemux(SavedPTE, MMUReadPTE, PRegEn, CurrentPTE);
assign CurrentPTE = SavedPTE;
assign CurrentPPN = CurrentPTE[`PPN_BITS+9:10];
// Capture page table entry from ahblite
flopenr #(`XLEN) ptereg(clk, reset, PRegEn, MMUReadPTE, SavedPTE);
//mux2 #(`XLEN) ptemux(SavedPTE, MMUReadPTE, PRegEn, CurrentPTE);
assign CurrentPTE = SavedPTE;
assign CurrentPPN = CurrentPTE[`PPN_BITS+9:10];
// Assign outputs to ahblite
// *** Currently truncate address to 32 bits. This must be changed if
// we support larger physical address spaces
assign MMUPAdr = {{(`XLEN-`PA_BITS){1'b0}}, TranslationPAdr[`PA_BITS-1:0]};
// Assign outputs to ahblite
// *** Currently truncate address to 32 bits. This must be changed if
// we support larger physical address spaces
assign MMUPAdr = {{(`XLEN-`PA_BITS){1'b0}}, TranslationPAdr[`PA_BITS-1:0]};
end
//endgenerate
end else begin
assign MMUPAdr = 0;
assign MMUTranslate = 0;
assign HPTWRead = 0;
assign WalkerInstrPageFaultF = 0;
assign WalkerLoadPageFaultM = 0;
assign WalkerStorePageFaultM = 0;
end
endgenerate

View File

@ -65,14 +65,14 @@ module tlb #(parameter TLB_ENTRIES = 8,
// 1x - TLB is accessed for a read (or an instruction)
// x1 - TLB is accessed for a write
// 11 - TLB is accessed for both read and write
input logic [1:0] TLBAccessType,
input logic ReadAccess, WriteAccess,
input logic DisableTranslation,
// Virtual address input
input logic [`XLEN-1:0] VirtualAddress,
// Controls for writing a new entry to the TLB
input logic [`XLEN-1:0] PTEWriteVal,
input logic [`XLEN-1:0] PTE,
input logic [1:0] PageTypeWriteVal,
input logic TLBWrite,
@ -89,7 +89,6 @@ module tlb #(parameter TLB_ENTRIES = 8,
);
logic Translate;
logic TLBAccess, ReadAccess, WriteAccess;
// Store current virtual memory mode (SV32, SV39, SV48, ect...)
logic [`SVMODE_BITS-1:0] SvMode;
@ -111,13 +110,9 @@ module tlb #(parameter TLB_ENTRIES = 8,
logic [1:0] HitPageType;
logic CAMHit;
logic [`ASID_BITS-1:0] ASID;
logic DAFault;
// Grab the sv mode from SATP and determine whether translation should occur
assign SvMode = SATP_REGW[`XLEN-1:`XLEN-`SVMODE_BITS];
assign ASID = SATP_REGW[`ASID_BASE+`ASID_BITS-1:`ASID_BASE];
assign EffectivePrivilegeMode = (ITLB == 1) ? PrivilegeModeW : (STATUS_MPRV ? STATUS_MPP : PrivilegeModeW); // DTLB uses MPP mode when MPRV is 1
assign Translate = (SvMode != `NO_TRANSLATE) & (EffectivePrivilegeMode != `M_MODE) & ~ DisableTranslation;
// Determine whether to write TLB
assign WriteEnables = WriteLines & {(TLB_ENTRIES){TLBWrite}};
@ -135,11 +130,7 @@ module tlb #(parameter TLB_ENTRIES = 8,
end
endgenerate
// Determine how the TLB is currently being used
// Note that we use ReadAccess for both loads and instruction fetches
assign ReadAccess = TLBAccessType[1];
assign WriteAccess = TLBAccessType[0];
assign TLBAccess = ReadAccess || WriteAccess;
tlbcontrol tlbcontrol(.*);
// TLB entries are evicted according to the LRU algorithm
tlblru #(TLB_ENTRIES) lru(.*);
@ -153,50 +144,10 @@ module tlb #(parameter TLB_ENTRIES = 8,
// For superpages, some segments are considered offsets into a larger page.
tlbphysicalpagemask PageMask(VirtualPageNumber, PhysicalPageNumber, HitPageType, PhysicalPageNumberMixed);
// unswizzle useful PTE bits
assign {PTE_D, PTE_A} = PTEAccessBits[7:6];
assign {PTE_U, PTE_X, PTE_W, PTE_R} = PTEAccessBits[4:1];
// Check whether the access is allowed, page faulting if not.
generate
if (ITLB == 1) begin
logic ImproperPrivilege;
// User mode may only execute user mode pages, and supervisor mode may
// only execute non-user mode pages.
assign ImproperPrivilege = ((EffectivePrivilegeMode == `U_MODE) && ~PTE_U) ||
((EffectivePrivilegeMode == `S_MODE) && PTE_U);
// fault for software handling if access bit is off
assign DAFault = ~PTE_A;
assign TLBPageFault = Translate && TLBHit && (ImproperPrivilege || ~PTE_X || DAFault);
end else begin
logic ImproperPrivilege, InvalidRead, InvalidWrite;
// User mode may only load/store from user mode pages, and supervisor mode
// may only access user mode pages when STATUS_SUM is low.
assign ImproperPrivilege = ((EffectivePrivilegeMode == `U_MODE) && ~PTE_U) ||
((EffectivePrivilegeMode == `S_MODE) && PTE_U && ~STATUS_SUM);
// Check for read error. Reads are invalid when the page is not readable
// (and executable pages are not readable) or when the page is neither
// readable nor executable (and executable pages are readable).
assign InvalidRead = ReadAccess && ~PTE_R && (~STATUS_MXR | ~PTE_X);
// Check for write error. Writes are invalid when the page's write bit is
// low.
assign InvalidWrite = WriteAccess && ~PTE_W;
// Fault for software handling if access bit is off or writing a page with dirty bit off
assign DAFault = ~PTE_A | WriteAccess & ~PTE_D;
assign TLBPageFault = Translate && TLBHit && (ImproperPrivilege || InvalidRead || InvalidWrite || DAFault);
end
endgenerate
// Output the hit physical address if translation is currently on.
// Provide physical address of zero if not TLBHits, to cause segmentation error if miss somehow percolated through signal
assign VAExt = {2'b00, VirtualAddress}; // extend length of virtual address if necessary for RV32
assign PageOffset = VirtualAddress[11:0];
assign PhysicalAddressFull = TLBHit ? {PhysicalPageNumberMixed, PageOffset} : '0;
assign PhysicalAddressFull = TLBHit ? {PhysicalPageNumberMixed, PageOffset} : '0; // *** in block diagram TLB just works on page numbers
mux2 #(`PA_BITS) addressmux(VAExt[`PA_BITS-1:0], PhysicalAddressFull, Translate, PhysicalAddress);
assign TLBHit = CAMHit & TLBAccess;
assign TLBMiss = ~TLBHit & ~TLBFlush & Translate & TLBAccess;
endmodule

View File

@ -0,0 +1,109 @@
///////////////////////////////////////////
// tlbcontrol.sv
//
// Written: David_Harris@hmc.edu 5 July 2021
// Modified:
//
// Purpose: Control signals for TLB
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-config.vh"
// The TLB will have 2**ENTRY_BITS total entries
module tlbcontrol #(parameter TLB_ENTRIES = 8,
parameter ITLB = 0) (
// input logic clk, reset,
// Current value of satp CSR (from privileged unit)
input logic [`XLEN-1:0] SATP_REGW,
input logic STATUS_MXR, STATUS_SUM, STATUS_MPRV,
input logic [1:0] STATUS_MPP,
input logic [1:0] PrivilegeModeW, // Current privilege level of the processeor
// 00 - TLB is not being accessed
// 1x - TLB is accessed for a read (or an instruction)
// x1 - TLB is accessed for a write
// 11 - TLB is accessed for both read and write
input logic ReadAccess, WriteAccess,
input logic DisableTranslation,
input logic TLBFlush, // Invalidate all TLB entries
input logic [7:0] PTEAccessBits,
input logic CAMHit,
output logic TLBMiss,
output logic TLBHit,
output logic TLBPageFault,
output logic [1:0] EffectivePrivilegeMode,
output logic [`SVMODE_BITS-1:0] SvMode,
output logic Translate
);
// Sections of the page table entry
logic [11:0] PageOffset;
logic PTE_D, PTE_A, PTE_U, PTE_X, PTE_W, PTE_R; // Useful PTE Control Bits
logic DAFault;
logic TLBAccess;
// Grab the sv mode from SATP and determine whether translation should occur
assign SvMode = SATP_REGW[`XLEN-1:`XLEN-`SVMODE_BITS];
assign EffectivePrivilegeMode = (ITLB == 1) ? PrivilegeModeW : (STATUS_MPRV ? STATUS_MPP : PrivilegeModeW); // DTLB uses MPP mode when MPRV is 1
assign Translate = (SvMode != `NO_TRANSLATE) & (EffectivePrivilegeMode != `M_MODE) & ~ DisableTranslation;
// Determine whether TLB is being used
assign TLBAccess = ReadAccess || WriteAccess;
// unswizzle useful PTE bits
assign {PTE_D, PTE_A} = PTEAccessBits[7:6];
assign {PTE_U, PTE_X, PTE_W, PTE_R} = PTEAccessBits[4:1];
// Check whether the access is allowed, page faulting if not.
generate
if (ITLB == 1) begin
logic ImproperPrivilege;
// User mode may only execute user mode pages, and supervisor mode may
// only execute non-user mode pages.
assign ImproperPrivilege = ((EffectivePrivilegeMode == `U_MODE) && ~PTE_U) ||
((EffectivePrivilegeMode == `S_MODE) && PTE_U);
// fault for software handling if access bit is off
assign DAFault = ~PTE_A;
assign TLBPageFault = Translate && TLBHit && (ImproperPrivilege || ~PTE_X || DAFault);
end else begin
logic ImproperPrivilege, InvalidRead, InvalidWrite;
// User mode may only load/store from user mode pages, and supervisor mode
// may only access user mode pages when STATUS_SUM is low.
assign ImproperPrivilege = ((EffectivePrivilegeMode == `U_MODE) && ~PTE_U) ||
((EffectivePrivilegeMode == `S_MODE) && PTE_U && ~STATUS_SUM);
// Check for read error. Reads are invalid when the page is not readable
// (and executable pages are not readable) or when the page is neither
// readable nor executable (and executable pages are readable).
assign InvalidRead = ReadAccess && ~PTE_R && (~STATUS_MXR | ~PTE_X);
// Check for write error. Writes are invalid when the page's write bit is
// low.
assign InvalidWrite = WriteAccess && ~PTE_W;
// Fault for software handling if access bit is off or writing a page with dirty bit off
assign DAFault = ~PTE_A | WriteAccess & ~PTE_D;
assign TLBPageFault = Translate && TLBHit && (ImproperPrivilege || InvalidRead || InvalidWrite || DAFault);
end
endgenerate
assign TLBHit = CAMHit & TLBAccess;
assign TLBMiss = ~TLBHit & ~TLBFlush & Translate & TLBAccess;
endmodule

View File

@ -29,7 +29,7 @@
module tlbram #(parameter TLB_ENTRIES = 8) (
input logic clk, reset,
input logic [`XLEN-1:0] PTEWriteVal,
input logic [`XLEN-1:0] PTE,
input logic [TLB_ENTRIES-1:0] ReadLines, WriteEnables,
output logic [`PPN_BITS-1:0] PhysicalPageNumber,
output logic [7:0] PTEAccessBits,
@ -40,7 +40,7 @@ module tlbram #(parameter TLB_ENTRIES = 8) (
logic [`XLEN-1:0] PageTableEntry;
// Generate a flop for every entry in the RAM
tlbramline #(`XLEN) tlblineram[TLB_ENTRIES-1:0](clk, reset, ReadLines, WriteEnables, PTEWriteVal, RamRead, PTE_G);
tlbramline #(`XLEN) tlblineram[TLB_ENTRIES-1:0](clk, reset, ReadLines, WriteEnables, PTE, RamRead, PTE_G);
assign PageTableEntry = RamRead.or; // OR each column of RAM read to read PTE
assign PTEAccessBits = PageTableEntry[7:0];

View File

@ -58,7 +58,7 @@ module csr #(parameter
output logic [`XLEN-1:0] SATP_REGW,
output logic [11:0] MIP_REGW, MIE_REGW, SIP_REGW, SIE_REGW,
output logic STATUS_MIE, STATUS_SIE,
output logic STATUS_MXR, STATUS_SUM, STATUS_MPRV,
output logic STATUS_MXR, STATUS_SUM, STATUS_MPRV, STATUS_TW,
output var logic [7:0] PMPCFG_ARRAY_REGW[`PMP_ENTRIES-1:0],
output var logic [`XLEN-1:0] PMPADDR_ARRAY_REGW [`PMP_ENTRIES-1:0],
input logic [4:0] SetFflagsM,
@ -76,6 +76,7 @@ module csr #(parameter
logic [31:0] MCOUNTINHIBIT_REGW, MCOUNTEREN_REGW, SCOUNTEREN_REGW;
logic WriteMSTATUSM, WriteSSTATUSM, WriteUSTATUSM;
logic CSRMWriteM, CSRSWriteM, CSRUWriteM;
logic STATUS_TVM;
logic [`XLEN-1:0] UnalignedNextEPCM, NextEPCM, NextCauseM, NextMtvalM;
@ -109,7 +110,7 @@ module csr #(parameter
assign NextCauseM = TrapM ? CauseM : CSRWriteValM;
assign NextMtvalM = TrapM ? NextFaultMtvalM : CSRWriteValM;
assign CSRMWriteM = CSRWriteM && (PrivilegeModeW == `M_MODE);
assign CSRSWriteM = CSRWriteM && (PrivilegeModeW[0]);
assign CSRSWriteM = CSRWriteM && (|PrivilegeModeW);
assign CSRUWriteM = CSRWriteM;
csri csri(.*);

View File

@ -51,7 +51,9 @@ module csrs #(parameter
input logic CSRSWriteM, STrapM,
input logic [11:0] CSRAdrM,
input logic [`XLEN-1:0] NextEPCM, NextCauseM, NextMtvalM, SSTATUS_REGW,
input logic STATUS_TVM,
input logic [`XLEN-1:0] CSRWriteValM,
input logic [1:0] PrivilegeModeW,
output logic [`XLEN-1:0] CSRSReadValM, SEPC_REGW, STVEC_REGW,
output logic [31:0] SCOUNTEREN_REGW,
output logic [`XLEN-1:0] SEDELEG_REGW, SIDELEG_REGW,
@ -79,7 +81,7 @@ module csrs #(parameter
assign WriteSEPCM = STrapM | (CSRSWriteM && (CSRAdrM == SEPC)) && ~StallW;
assign WriteSCAUSEM = STrapM | (CSRSWriteM && (CSRAdrM == SCAUSE)) && ~StallW;
assign WriteSTVALM = STrapM | (CSRSWriteM && (CSRAdrM == STVAL)) && ~StallW;
assign WriteSATPM = CSRSWriteM && (CSRAdrM == SATP) && ~StallW;
assign WriteSATPM = CSRSWriteM && (CSRAdrM == SATP) && (PrivilegeModeW == `M_MODE || ~STATUS_TVM) && ~StallW;
assign WriteSCOUNTERENM = CSRSWriteM && (CSRAdrM == SCOUNTEREN) && ~StallW;
// CSRs
@ -88,7 +90,10 @@ module csrs #(parameter
flopenr #(`XLEN) SEPCreg(clk, reset, WriteSEPCM, NextEPCM, SEPC_REGW);
flopenl #(`XLEN) SCAUSEreg(clk, reset, WriteSCAUSEM, NextCauseM, `XLEN'b0, SCAUSE_REGW);
flopenr #(`XLEN) STVALreg(clk, reset, WriteSTVALM, NextMtvalM, STVAL_REGW);
flopenr #(`XLEN) SATPreg(clk, reset, WriteSATPM, CSRWriteValM, SATP_REGW);
if (`MEM_VIRTMEM)
flopenr #(`XLEN) SATPreg(clk, reset, WriteSATPM, CSRWriteValM, SATP_REGW);
else
assign SATP_REGW = 0;
if (`BUSYBEAR == 1)
flopenl #(32) SCOUNTERENreg(clk, reset, WriteSCOUNTERENM, {CSRWriteValM[31:2],1'b0,CSRWriteValM[0]}, 32'b0, SCOUNTEREN_REGW);
else if (`BUILDROOT == 1)
@ -122,7 +127,11 @@ module csrs #(parameter
SEPC: CSRSReadValM = SEPC_REGW;
SCAUSE: CSRSReadValM = SCAUSE_REGW;
STVAL: CSRSReadValM = STVAL_REGW;
SATP: CSRSReadValM = SATP_REGW;
SATP: if (`MEM_VIRTMEM && (PrivilegeModeW == `M_MODE || ~STATUS_TVM)) CSRSReadValM = SATP_REGW;
else begin
CSRSReadValM = 0;
if (PrivilegeModeW == `S_MODE & STATUS_TVM) IllegalCSRSAccessM = 1;
end
SCOUNTEREN:CSRSReadValM = {{(`XLEN-32){1'b0}}, SCOUNTEREN_REGW};
default: begin
CSRSReadValM = 0;

View File

@ -35,13 +35,13 @@ module csrsr (
input logic [`XLEN-1:0] CSRWriteValM,
output logic [`XLEN-1:0] MSTATUS_REGW, SSTATUS_REGW, USTATUS_REGW,
output logic [1:0] STATUS_MPP,
output logic STATUS_SPP, STATUS_TSR,
output logic STATUS_SPP, STATUS_TSR, STATUS_TW,
output logic STATUS_MIE, STATUS_SIE,
output logic STATUS_MXR, STATUS_SUM,
output logic STATUS_MPRV
output logic STATUS_MPRV, STATUS_TVM
);
logic STATUS_SD, STATUS_TW, STATUS_TVM, STATUS_SUM_INT, STATUS_MPRV_INT;
logic STATUS_SD, STATUS_TW_INT, STATUS_TSR_INT, STATUS_TVM_INT, STATUS_MXR_INT, STATUS_SUM_INT, STATUS_MPRV_INT;
logic [1:0] STATUS_SXL, STATUS_UXL, STATUS_XS, STATUS_FS, STATUS_FS_INT, STATUS_MPP_NEXT;
logic STATUS_MPIE, STATUS_SPIE, STATUS_UPIE, STATUS_UIE;
@ -86,18 +86,18 @@ module csrsr (
// harwired STATUS bits
generate
assign STATUS_TSR = `S_SUPPORTED & STATUS_TSR_INT; // override reigster with 0 if supervisor mode not supported
assign STATUS_TW = (`S_SUPPORTED | `U_SUPPORTED) & STATUS_TW_INT; // override reigster with 0 if only machine mode supported
assign STATUS_TVM = `S_SUPPORTED & STATUS_TVM_INT; // override reigster with 0 if supervisor mode not supported
assign STATUS_MXR = `S_SUPPORTED & STATUS_MXR_INT; // override reigster with 0 if supervisor mode not supported
// SXL and UXL bits only matter for RV64. Set to 10 for RV64 if mode is supported, or 0 if not
assign STATUS_SXL = `S_SUPPORTED ? 2'b10 : 2'b00; // 10 if supervisor mode supported
assign STATUS_UXL = `U_SUPPORTED ? 2'b10 : 2'b00; // 10 if user mode supported
assign STATUS_SUM = `S_SUPPORTED & STATUS_SUM_INT; // override reigster with 0 if supervisor mode not supported
assign STATUS_SUM = `S_SUPPORTED & `MEM_VIRTMEM & STATUS_SUM_INT; // override reigster with 0 if supervisor mode not supported
assign STATUS_MPRV = `U_SUPPORTED & STATUS_MPRV_INT; // override with 0 if user mode not supported
assign STATUS_FS = (`S_SUPPORTED && (`F_SUPPORTED || `D_SUPPORTED)) ? STATUS_FS_INT : 2'b00; // off if no FP
endgenerate
assign STATUS_SD = (STATUS_FS == 2'b11) || (STATUS_XS == 2'b11); // dirty state logic
assign STATUS_TSR = 0; // Trap SRET not supported; revisit whether this is necessary for an OS
assign STATUS_TW = 0; // Timeout Wait not supported
assign STATUS_TVM = 0; // Trap Virtual Memory not supported (revisit if supporting virtualizations)
assign STATUS_MXR = 0; // Make Executable Readable (may need to add support for VM later)
assign STATUS_XS = 2'b00; // No additional user-mode state to be dirty
always_comb
@ -109,6 +109,10 @@ module csrsr (
// complex register with reset, write enable, and the ability to update other bits in certain cases
always_ff @(posedge clk, posedge reset)
if (reset) begin
STATUS_TSR_INT <= #1 0;
STATUS_TW_INT <= #1 0;
STATUS_TVM_INT <= #1 0;
STATUS_MXR_INT <= #1 0;
STATUS_SUM_INT <= #1 0;
STATUS_MPRV_INT <= #1 0; // Per Priv 3.3
STATUS_FS_INT <= #1 0; //2'b01; // busybear: change all these reset values to 0
@ -121,7 +125,42 @@ module csrsr (
STATUS_SIE <= #1 0; //`S_SUPPORTED;
STATUS_UIE <= #1 0; //`U_SUPPORTED;
end else if (~StallW) begin
if (WriteMSTATUSM) begin
if (FloatRegWriteW) STATUS_FS_INT <= #12'b11; // mark Float State dirty *** this should happen in M stage, be part of if/else
if (TrapM) begin
// Update interrupt enables per Privileged Spec p. 21
// y = PrivilegeModeW
// x = NextPrivilegeModeM
// Modes: 11 = Machine, 01 = Supervisor, 00 = User
if (NextPrivilegeModeM == `M_MODE) begin
STATUS_MPIE <= #1 STATUS_MIE;
STATUS_MIE <= #1 0;
STATUS_MPP <= #1 PrivilegeModeW;
end else if (NextPrivilegeModeM == `S_MODE) begin
STATUS_SPIE <= #1 STATUS_SIE;
STATUS_SIE <= #1 0;
STATUS_SPP <= #1 PrivilegeModeW[0]; // *** seems to disagree with P. 56
end else begin // user mode
STATUS_UPIE <= #1 STATUS_UIE;
STATUS_UIE <= #1 0;
end
end else if (mretM) begin // Privileged 3.1.6.1
STATUS_MIE <= #1 STATUS_MPIE;
STATUS_MPIE <= #1 1;
STATUS_MPP <= #1 `U_SUPPORTED ? `U_MODE : `M_MODE; // per spec, not sure why
STATUS_MPRV_INT <= #1 0; // per 20210108 draft spec
end else if (sretM) begin
STATUS_SIE <= #1 STATUS_SPIE;
STATUS_SPIE <= #1 `S_SUPPORTED;
STATUS_SPP <= #1 0; // Privileged 4.1.1
STATUS_MPRV_INT <= #1 0; // per 20210108 draft spec
end else if (uretM) begin
STATUS_UIE <= #1 STATUS_UPIE;
STATUS_UPIE <= #1 `U_SUPPORTED;
end else if (WriteMSTATUSM) begin
STATUS_TSR_INT <= #1 CSRWriteValM[22];
STATUS_TW_INT <= #1 CSRWriteValM[21];
STATUS_TVM_INT <= #1 CSRWriteValM[20];
STATUS_MXR_INT <= #1 CSRWriteValM[19];
STATUS_SUM_INT <= #1 CSRWriteValM[18];
STATUS_MPRV_INT <= #1 CSRWriteValM[17];
STATUS_FS_INT <= #1 CSRWriteValM[14:13];
@ -134,6 +173,7 @@ module csrsr (
STATUS_SIE <= #1 `S_SUPPORTED & CSRWriteValM[1];
STATUS_UIE <= #1 `U_SUPPORTED & CSRWriteValM[0];
end else if (WriteSSTATUSM) begin // write a subset of the STATUS bits
STATUS_MXR_INT <= #1 CSRWriteValM[19];
STATUS_SUM_INT <= #1 CSRWriteValM[18];
STATUS_FS_INT <= #1 CSRWriteValM[14:13];
STATUS_SPP <= #1 `S_SUPPORTED & CSRWriteValM[8];
@ -145,40 +185,6 @@ module csrsr (
STATUS_FS_INT <= #1 CSRWriteValM[14:13];
STATUS_UPIE <= #1 `U_SUPPORTED & CSRWriteValM[4];
STATUS_UIE <= #1 `U_SUPPORTED & CSRWriteValM[0];
end else begin
if (FloatRegWriteW) STATUS_FS_INT <= #12'b11; // mark Float State dirty
if (TrapM) begin
// Update interrupt enables per Privileged Spec p. 21
// y = PrivilegeModeW
// x = NextPrivilegeModeM
// Modes: 11 = Machine, 01 = Supervisor, 00 = User
if (NextPrivilegeModeM == `M_MODE) begin
STATUS_MPIE <= #1 STATUS_MIE;
STATUS_MIE <= #1 0;
STATUS_MPP <= #1 PrivilegeModeW;
end else if (NextPrivilegeModeM == `S_MODE) begin
STATUS_SPIE <= #1 STATUS_SIE;
STATUS_SIE <= #1 0;
STATUS_SPP <= #1 PrivilegeModeW[0]; // *** seems to disagree with P. 56
end else begin // user mode
STATUS_UPIE <= #1 STATUS_UIE;
STATUS_UIE <= #1 0;
end
end else if (mretM) begin // Privileged 3.1.6.1
STATUS_MIE <= #1 STATUS_MPIE;
STATUS_MPIE <= #1 1;
STATUS_MPP <= #1 `U_SUPPORTED ? `U_MODE : `M_MODE; // per spec, not sure why
STATUS_MPRV_INT <= #1 0; // per 20210108 draft spec
end else if (sretM) begin
STATUS_SIE <= #1 STATUS_SPIE;
STATUS_SPIE <= #1 `S_SUPPORTED;
STATUS_SPP <= #1 0; // Privileged 4.1.1
STATUS_MPRV_INT <= #1 0; // per 20210108 draft spec
end else if (uretM) begin
STATUS_UIE <= #1 STATUS_UPIE;
STATUS_UPIE <= #1 `U_SUPPORTED;
end
// *** add code to track STATUS_FS_INT for dirty floating point registers
end
end
end
endmodule

View File

@ -28,7 +28,7 @@
module privdec (
input logic [31:20] InstrM,
input logic PrivilegedM, IllegalIEUInstrFaultM, IllegalCSRAccessM, IllegalFPUInstrM,
input logic PrivilegedM, IllegalIEUInstrFaultM, IllegalCSRAccessM, IllegalFPUInstrM, TrappedSRETM,
input logic [1:0] PrivilegeModeW,
input logic STATUS_TSR,
output logic IllegalInstrFaultM,
@ -47,7 +47,7 @@ module privdec (
assign wfiM = PrivilegedM & (InstrM[31:20] == 12'b000100000101);
assign sfencevmaM = PrivilegedM & (InstrM[31:25] == 7'b0001001);
assign IllegalPrivilegedInstrM = PrivilegedM & ~(uretM|sretM|mretM|ecallM|ebreakM|wfiM|sfencevmaM);
assign IllegalInstrFaultM = (IllegalIEUInstrFaultM & IllegalFPUInstrM) | IllegalPrivilegedInstrM | IllegalCSRAccessM; // *** generalize this for other instructions
assign IllegalInstrFaultM = (IllegalIEUInstrFaultM & IllegalFPUInstrM) | IllegalPrivilegedInstrM | IllegalCSRAccessM | TrappedSRETM; // *** generalize this for other instructions
// *** initially, wfi and sfencevma are nop
// *** zfenci extension?

View File

@ -89,13 +89,13 @@ module privileged (
logic InstrPageFaultF, InstrPageFaultD, InstrPageFaultE, InstrPageFaultM;
logic InstrAccessFaultF, InstrAccessFaultD, InstrAccessFaultE, InstrAccessFaultM;
logic LoadAccessFaultM, StoreAccessFaultM;
logic IllegalInstrFaultM;
logic IllegalInstrFaultM, TrappedSRETM;
logic BreakpointFaultM, EcallFaultM;
logic MTrapM, STrapM, UTrapM;
logic InterruptM;
logic STATUS_SPP, STATUS_TSR;
logic STATUS_SPP, STATUS_TSR, STATUS_TW;
logic STATUS_MIE, STATUS_SIE;
logic [11:0] MIP_REGW, MIE_REGW, SIP_REGW, SIE_REGW;
logic md, sd;
@ -112,10 +112,14 @@ module privileged (
assign sd = CauseM[`XLEN-1] ? SIDELEG_REGW[CauseM[`LOG_XLEN-1:0]] : SEDELEG_REGW[CauseM[`LOG_XLEN-1:0]]; // depricated
// PrivilegeMode FSM
always_comb
/* if (reset) NextPrivilegeModeM = `M_MODE; // Privilege resets to 11 (Machine Mode) // moved reset to flop
else */ if (mretM) NextPrivilegeModeM = STATUS_MPP;
else if (sretM) NextPrivilegeModeM = {1'b0, STATUS_SPP};
always_comb begin
TrappedSRETM = 0;
if (mretM) NextPrivilegeModeM = STATUS_MPP;
else if (sretM)
if (STATUS_TSR & PrivilegeModeW == `S_MODE) begin
TrappedSRETM = 1;
NextPrivilegeModeM = PrivilegeModeW;
end else NextPrivilegeModeM = {1'b0, STATUS_SPP};
else if (uretM) NextPrivilegeModeM = `U_MODE;
else if (TrapM) begin // Change privilege based on DELEG registers (see 3.1.8)
if (PrivilegeModeW == `U_MODE)
@ -127,6 +131,8 @@ module privileged (
else NextPrivilegeModeM = `M_MODE;
else NextPrivilegeModeM = `M_MODE;
end else NextPrivilegeModeM = PrivilegeModeW;
end
// *** WFI could be implemented here and depends on TW
flopenl #(2) privmodereg(clk, reset, ~StallW, NextPrivilegeModeM, `M_MODE, PrivilegeModeW);
@ -171,6 +177,7 @@ module privileged (
flopenrc #(4) faultregM(clk, reset, FlushM, ~StallM,
{IllegalIEUInstrFaultE, InstrPageFaultE, InstrAccessFaultE, IllegalFPUInstrE},
{IllegalIEUInstrFaultM, InstrPageFaultM, InstrAccessFaultM, IllegalFPUInstrM});
// *** it should be possible to compbine some of these faults earlier to reduce module boundary crossings and save flops dh 5 july 2021
trap trap(.*);