Merge branch 'main' of github.com:davidharrishmc/riscv-wally into main

This commit is contained in:
Ross Thompson 2021-07-21 14:56:30 -05:00
commit 7785401281
12 changed files with 143 additions and 127 deletions

View File

@ -78,8 +78,6 @@
// *** each of these is `PA_BITS wide. is this paramaterizable INSIDE the config file?
`define BOOTTIM_SUPPORTED 1'b1
//`define BOOTTIM_RANGE 56'h00003FFF
//`define BOOTTIM_BASE 56'h00000000 // spec had been 0x1000 to 0x2FFF, but dh truncated to 0x1000 to 0x1FFF because upper half seems to be all zeros and this is easier for decoder
`define BOOTTIM_BASE 56'h00001000 // spec had been 0x1000 to 0x2FFF, but dh truncated to 0x1000 to 0x1FFF because upper half seems to be all zeros and this is easier for decoder
`define BOOTTIM_RANGE 56'h00000FFF
`define TIM_SUPPORTED 1'b1

View File

@ -49,9 +49,9 @@
`define PMPCFG_ENTRIES (`PMP_ENTRIES/8)
// Floating point length FLEN and number of exponent (NE) and fraction (NF) bits
`define FLEN (`Q_SUPPORTED ? 128 : `D_SUPPORTED ? 64 : 32)
`define NE (`Q_SUPPORTED ? 15 : `D_SUPPORTED ? 11 : 8)
`define NF (`Q_SUPPORTED ? 112 : `D_SUPPORTED ? 52 : 23)
`define FLEN 64//(`Q_SUPPORTED ? 128 : `D_SUPPORTED ? 64 : 32)
`define NE 11//(`Q_SUPPORTED ? 15 : `D_SUPPORTED ? 11 : 8)
`define NF 52//(`Q_SUPPORTED ? 112 : `D_SUPPORTED ? 52 : 23)
// Disable spurious Verilator warnings

View File

@ -30,10 +30,11 @@ outDir="../linux-testvectors"
# - Makes qemu_in_gdb_format.txt
# - Splits qemu_in_gdb_format.txt into chunks of 100,000 instrs
#cat $intermedDir/qemu_output.txt | ./parse_qemu.py >$intermedDir/qemu_in_gdb_format.txt
cd $intermedDir
split -d -l 5000000 ./qemu_in_gdb_format.txt --verbose
cd ../../testvector-generation
#cd $intermedDir
#split -d -l 5000000 ./qemu_in_gdb_format.txt --verbose
#cd ../../testvector-generation
# Uncomment this version for parse_gdb_output.py debugging
# - Uses qemu_in_gdb_format.txt
# - Makes testvectors#cat $intermedDir/qemu_in_gdb_format.txt | ./parse_gdb_output.py "$outDir"
# - Makes testvectors
#cat $intermedDir/qemu_in_gdb_format.txt | ./parse_gdb_output.py "$outDir"

View File

@ -1,10 +1,12 @@
set pagination off
file ../buildroot-image-output/fw_jump.elf
target extended-remote :1237
b irqchip_plic_warm_init
b *0x80200040
c
file ../buildroot-image-output/vmlinux
b plic_init
c
#b irqchip_plic_warm_init
#c
#b plic_init
#c
b do_idle
c

View File

@ -36,12 +36,15 @@ def printCSRs():
def parseCSRs(l):
global parseState, inPageFault, CSRs, pageFaultCSRs, regs, pageFaultCSRs, instrs
if l.strip() and (not l.startswith("Disassembler")) and (not l.startswith("Please")) and not inPageFault:
if l.strip() and (not l.startswith("Disassembler")) and (not l.startswith("Please")):
# If we've hit the register file
if l.startswith(' x0/zero'):
parseState = "regFile"
instr = instrs[CSRs["pc"]]
printPC(instr)
if not inPageFault:
instr = instrs[CSRs["pc"]]
printPC(instr)
parseRegs(l)
# If we've hit a CSR
else:
csr = l.split()[0]
val = int(l.split()[1],16)
@ -64,11 +67,16 @@ def parseCSRs(l):
# However SEPC and STVAL do get corrupted upon exiting
if endPageFault and ((csr == 'sepc') or (csr == 'stval')):
CSRs[csr] = returnAdr
pageFaultCSRs[csr] = val
elif pageFaultCSRs and (csr in pageFaultCSRs):
if (val != pageFaultCSRs[csr]):
del pageFaultCSRs[csr]
CSRs[csr] = val
else:
CSRs[csr] = val
def parseRegs(l):
global parseState, inPageFault, CSRs, pageFaultCSRs, regs, pageFaultCSRs, instrs
global parseState, inPageFault, CSRs, pageFaultCSRs, regs, pageFaultCSRs, instrs, pageFaultRegs
if "pc" in l:
printCSRs()
# New non-disassembled instruction
@ -86,6 +94,7 @@ def parseRegs(l):
val = int(s[i+1], 16)
if inPageFault:
pageFaultRegs[reg] = val
sys.stderr.write(str(pageFaultRegs))
else:
if pageFaultRegs and (reg in pageFaultRegs):
if (val != pageFaultRegs[reg]):
@ -110,9 +119,10 @@ for l in fileinput.input():
elif (parseState == "instr") and l.startswith('0x'):
if "out of bounds" in l:
sys.stderr.write("Detected QEMU page fault error\n")
beginPageFault = ~(inPageFault)
beginPageFault = not inPageFault
if beginPageFault:
returnAdr = int(l.split()[0][2:-1], 16)
sys.stderr.write('Saving SEPC of '+hex(returnAdr)+'\n')
inPageFault = 1
else:
endPageFault = inPageFault

View File

@ -23,6 +23,7 @@
///////////////////////////////////////////
`include "wally-config.vh"
// `include "../../../config/rv64icfd/wally-config.vh"
module fma(
input logic clk,
@ -33,11 +34,11 @@ module fma(
input logic [2:0] FOpCtrlM, FOpCtrlE, // 000 = fmadd (X*Y)+Z, 001 = fmsub (X*Y)-Z, 010 = fnmsub -(X*Y)+Z, 011 = fnmadd -(X*Y)-Z, 100 = fmul (X*Y)
input logic [2:0] FrmM, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
input logic XSgnE, YSgnE, ZSgnE,
input logic [10:0] XExpE, YExpE, ZExpE,
input logic [51:0] XFracE, YFracE, ZFracE,
input logic [`NE-1:0] XExpE, YExpE, ZExpE,
input logic [`NF-1:0] XFracE, YFracE, ZFracE,
input logic XSgnM, YSgnM, ZSgnM,
input logic [10:0] XExpM, YExpM, ZExpM,
input logic [51:0] XFracM, YFracM, ZFracM,
input logic [`NE-1:0] XExpM, YExpM, ZExpM,
input logic [`NF-1:0] XFracM, YFracM, ZFracM,
input logic XAssumed1E, YAssumed1E, ZAssumed1E,
input logic XDenormE, YDenormE, ZDenormE,
input logic XZeroE, YZeroE, ZZeroE,
@ -46,13 +47,13 @@ module fma(
input logic XZeroM, YZeroM, ZZeroM,
input logic XInfM, YInfM, ZInfM,
input logic [10:0] BiasE,
output logic [63:0] FMAResM,
output logic [`FLEN-1:0] FMAResM,
output logic [4:0] FMAFlgM);
logic [105:0] ProdManE, ProdManM;
logic [161:0] AlignedAddendE, AlignedAddendM;
logic [12:0] ProdExpE, ProdExpM;
logic [2*`NF+1:0] ProdManE, ProdManM;
logic [3*`NF+5:0] AlignedAddendE, AlignedAddendM;
logic [`NE+1:0] ProdExpE, ProdExpM;
logic AddendStickyE, AddendStickyM;
logic KillProdE, KillProdM;
@ -128,7 +129,7 @@ module fma1(
assign AlignCnt = ProdExpE - ZExpE - ZDenormE;
// Defualt Addition without shifting
// | 55'b0 | 106'b(product) | 2'b0 |
// | 54'b0 | 106'b(product) | 2'b0 |
// |1'b0| addnend |
// the 1'b0 before the added is because the product's mantissa has two bits before the binary point (xx.xxxxxxxxxx...)
@ -140,7 +141,7 @@ module fma1(
// | 54'b0 | 106'b(product) | 2'b0 |
// | addnend |
if ($signed(AlignCnt) <= /*$signed(-13'd56)*/-(`NF+4)) begin
if ($signed(AlignCnt) <= $signed(-(`NF+4))) begin
KillProdE = 1;
ZManShifted = ZManPreShifted;//{107'b0, {~ZAssumed1E, ZFrac}, 54'b0};
AddendStickyE = ~(XZeroE|YZeroE);
@ -149,19 +150,19 @@ module fma1(
// | 54'b0 | 106'b(product) | 2'b0 |
// | addnend |
end else if($signed(AlignCnt) <= 0) begin
end else if($signed(AlignCnt) <= $signed(0)) begin
KillProdE = 0;
ZManShifted = ZManPreShifted << -AlignCnt;
AddendStickyE = |(ZManShifted[51:0]);
AddendStickyE = |(ZManShifted[`NF-1:0]);
// If the Addend is shifted right (positive AlignCnt)
// | 54'b0 | 106'b(product) | 2'b0 |
// | addnend |
end else if ($signed(AlignCnt)<=(2*`NF+2)) begin
end else if ($signed(AlignCnt)<=$signed(2*`NF+1)) begin
KillProdE = 0;
ZManShifted = ZManPreShifted >> AlignCnt;
AddendStickyE = |(ZManShifted[51:0]);
AddendStickyE = |(ZManShifted[`NF-1:0]);
// If the addend is too small to effect the addition
// - The addend has to shift two past the end of the addend to be considered too small
@ -176,47 +177,47 @@ module fma1(
end
end
assign AlignedAddendE = ZManShifted[(4*`NF+5):`NF];
assign AlignedAddendE = ZManShifted[4*`NF+5:`NF];
endmodule
module fma2(
input logic XSgnM, YSgnM, ZSgnM,
input logic [10:0] XExpM, YExpM, ZExpM,
input logic [51:0] XFracM, YFracM, ZFracM,
input logic [`NE-1:0] XExpM, YExpM, ZExpM,
input logic [`NF-1:0] XFracM, YFracM, ZFracM,
input logic [2:0] FrmM, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
input logic [2:0] FOpCtrlM, // 000 = fmadd (X*Y)+Z, 001 = fmsub (X*Y)-Z, 010 = fnmsub -(X*Y)+Z, 011 = fnmadd -(X*Y)-Z, 100 = fmul (X*Y)
input logic FmtM, // precision 1 = double 0 = single
input logic [105:0] ProdManM, // 1.X frac * 1.Y frac
input logic [161:0] AlignedAddendM, // Z aligned for addition
input logic [12:0] ProdExpM, // X exponent + Y exponent - bias
input logic [2*`NF+1:0] ProdManM, // 1.X frac * 1.Y frac
input logic [3*`NF+5:0] AlignedAddendM, // Z aligned for addition
input logic [`NE+1:0] ProdExpM, // X exponent + Y exponent - bias
input logic AddendStickyM, // sticky bit that is calculated during alignment
input logic KillProdM, // set the product to zero before addition if the product is too small to matter
input logic XZeroM, YZeroM, ZZeroM, // inputs are zero
input logic XInfM, YInfM, ZInfM, // inputs are infinity
input logic XNaNM, YNaNM, ZNaNM, // inputs are NaN
input logic XSNaNM, YSNaNM, ZSNaNM, // inputs are signaling NaNs
output logic [63:0] FMAResM, // FMA final result
output logic [`FLEN-1:0] FMAResM, // FMA final result
output logic [4:0] FMAFlgM); // FMA flags {invalid, divide by zero, overflow, underflow, inexact}
logic [51:0] ResultFrac; // Result fraction
logic [10:0] ResultExp; // Result exponent
logic [`NF-1:0] ResultFrac; // Result fraction
logic [`NE-1:0] ResultExp; // Result exponent
logic ResultSgn; // Result sign
logic PSgn; // product sign
logic [105:0] ProdMan2; // product being added
logic [162:0] AlignedAddend2; // possibly inverted aligned Z
logic [161:0] Sum; // positive sum
logic [162:0] PreSum; // possibly negitive sum
logic [12:0] SumExp; // exponent of the normalized sum
logic [12:0] SumExpTmp; // exponent of the normalized sum not taking into account denormal or zero results
logic [12:0] SumExpTmpMinus1; // SumExpTmp-1
logic [12:0] FullResultExp; // ResultExp with bits to determine sign and overflow
logic [54:0] NormSum; // normalized sum
logic [161:0] SumShifted; // sum shifted for normalization
logic [8:0] NormCnt; // output of the leading zero detector
logic [2*`NF+1:0] ProdMan2; // product being added
logic [3*`NF+6:0] AlignedAddend2; // possibly inverted aligned Z
logic [3*`NF+5:0] Sum; // positive sum
logic [3*`NF+6:0] PreSum; // possibly negitive sum
logic [`NE+1:0] SumExp; // exponent of the normalized sum
logic [`NE+1:0] SumExpTmp; // exponent of the normalized sum not taking into account denormal or zero results
logic [`NE+1:0] SumExpTmpMinus1; // SumExpTmp-1
logic [`NE+1:0] FullResultExp; // ResultExp with bits to determine sign and overflow
logic [`NF+2:0] NormSum; // normalized sum
logic [3*`NF+5:0] SumShifted; // sum shifted for normalization
logic [8:0] NormCnt; // output of the leading zero detector //***change this later
logic NormSumSticky; // sticky bit calulated from the normalized sum
logic SumZero; // is the sum zero
logic NegSum; // is the sum negitive
@ -226,18 +227,18 @@ module fma2(
logic Plus1, Minus1, CalcPlus1, CalcMinus1; // do you add or subtract one for rounding
logic UfPlus1, UfCalcPlus1; // do you add one (for determining underflow flag)
logic Invalid,Underflow,Overflow,Inexact; // flags
logic [8:0] DenormShift; // right shift if the result is denormalized
logic [8:0] DenormShift; // right shift if the result is denormalized //***change this later
logic SubBySmallNum; // was there supposed to be a subtraction by a small number
logic [63:0] Addend; // value to add (Z or zero)
logic [`FLEN-1:0] Addend; // value to add (Z or zero)
logic ZeroSgn; // the result's sign if the sum is zero
logic ResultSgnTmp; // the result's sign assuming the result is not zero
logic Guard, Round, LSBNormSum; // bits needed to determine rounding
logic UfGuard, UfRound, UfLSBNormSum; // bits needed to determine rounding for underflow flag
logic [12:0] MaxExp; // maximum value of the exponent
logic [12:0] FracLen; // length of the fraction
logic [`NE+1:0] MaxExp; // maximum value of the exponent
logic [`NE+1:0] FracLen; // length of the fraction
logic SigNaN; // is an input a signaling NaN
logic UnderflowFlag; // Underflow singal used in FMAFlgM (used to avoid a circular depencency)
logic [63:0] XNaNResult, YNaNResult, ZNaNResult, InvalidResult, OverflowResult, KillProdResult, UnderflowResult; // possible results
logic [`FLEN-1:0] XNaNResult, YNaNResult, ZNaNResult, InvalidResult, OverflowResult, KillProdResult, UnderflowResult; // possible results
@ -259,17 +260,17 @@ module fma2(
// Choose an inverted or non-inverted addend - the one is added later
assign AlignedAddend2 = InvZ ? ~{1'b0, AlignedAddendM} : {1'b0, AlignedAddendM};
// Kill the product if the product is too small to effect the addition (determined in fma1.sv)
assign ProdMan2 = KillProdM ? 106'b0 : ProdManM;
assign ProdMan2 = KillProdM ? 0 : ProdManM;
// Do the addition
// - add one to negate if the added was inverted
// - the 2 extra bits at the begining and end are needed for rounding
assign PreSum = AlignedAddend2 + {55'b0, ProdMan2, 2'b0} + {162'b0, InvZ};
assign PreSum = AlignedAddend2 + {ProdMan2, 2'b0} + InvZ;
// Is the sum negitive
assign NegSum = PreSum[162];
assign NegSum = PreSum[3*`NF+6];
// If the sum is negitive, negate the sum.
assign Sum = NegSum ? -PreSum[161:0] : PreSum[161:0];
assign Sum = NegSum ? -PreSum[3*`NF+5:0] : PreSum[3*`NF+5:0];
@ -284,7 +285,7 @@ module fma2(
logic [8:0] i;
always_comb begin
i = 0;
while (~Sum[161-i] && $unsigned(i) <= $unsigned(9'd161)) i = i+1; // search for leading one
while (~Sum[3*`NF+5-i] && $unsigned(i) <= $unsigned(3*`NF+5)) i = i+1; // search for leading one
NormCnt = i+1; // compute shift count
end
@ -306,26 +307,26 @@ module fma2(
assign SumZero = ~(|Sum);
// determine the length of the fraction based on precision
assign FracLen = FmtM ? 13'd52 : 13'd23;
assign FracLen = FmtM ? `NF : 13'd23;
// Determine if the result is denormal
assign SumExpTmp = KillProdM ? {2'b0, ZExpM} : ProdExpM + -({4'b0, NormCnt} - 13'd56);
assign SumExpTmp = KillProdM ? {2'b0, ZExpM} : ProdExpM + -({4'b0, NormCnt} - (`NF+4));
assign ResultDenorm = $signed(SumExpTmp)<=0 & ($signed(SumExpTmp)>=$signed(-FracLen)) & ~SumZero;
// Determine the shift needed for denormal results
assign SumExpTmpMinus1 = SumExpTmp-1;
assign DenormShift = ResultDenorm ? SumExpTmpMinus1[8:0] : 9'b0;
assign DenormShift = ResultDenorm ? SumExpTmpMinus1[8:0] : 0; //*** change this when changing the size of DenormShift also change to an and opperation
// Normalize the sum
assign SumShifted = SumZero ? 162'b0 : Sum << NormCnt+DenormShift;
assign NormSum = SumShifted[161:107];
assign SumShifted = SumZero ? 0 : Sum << NormCnt+DenormShift; //*** fix mux's with constants in them
assign NormSum = SumShifted[3*`NF+5:2*`NF+3];
// Calculate the sticky bit
assign NormSumSticky = FmtM ? (|SumShifted[107:0]) : (|SumShifted[136:0]);
assign NormSumSticky = FmtM ? (|SumShifted[2*`NF+3:0]) : (|SumShifted[136:0]);
assign Sticky = AddendStickyM | NormSumSticky;
// Determine sum's exponent
assign SumExp = SumZero ? 13'b0 :
ResultDenorm ? 13'b0 :
assign SumExp = SumZero ? 0 : //***again fix mux
ResultDenorm ? 0 :
SumExpTmp;
@ -412,14 +413,14 @@ module fma2(
assign Minus1 = CalcMinus1 & (Sticky | UfGuard | Guard | Round);
// Compute rounded result
logic [64:0] RoundAdd;
logic [51:0] NormSumTruncated;
assign RoundAdd = FmtM ? Minus1 ? {65{1'b1}} : {64'b0, Plus1} :
logic [`FLEN:0] RoundAdd; //*** move this up
logic [`NF-1:0] NormSumTruncated;
assign RoundAdd = FmtM ? Minus1 ? {`FLEN+1{1'b1}} : {{{`FLEN{1'b0}}}, Plus1} :
Minus1 ? {{36{1'b1}}, 29'b0} : {35'b0, Plus1, 29'b0};
assign NormSumTruncated = FmtM ? NormSum[54:3] : {NormSum[54:32], 29'b0};
assign NormSumTruncated = FmtM ? NormSum[`NF+2:3] : {NormSum[54:32], 29'b0};
assign {FullResultExp, ResultFrac} = {SumExp, NormSumTruncated} + RoundAdd;
assign ResultExp = FullResultExp[10:0];
assign ResultExp = FullResultExp[`NE-1:0];
@ -457,18 +458,18 @@ module fma2(
// 1) any input is a signaling NaN
// 2) Inf - Inf (unless x or y is NaN)
// 3) 0 * Inf
assign MaxExp = FmtM ? 13'd2047 : 13'd255;
assign MaxExp = FmtM ? {`NE{1'b1}} : 13'd255;
assign SigNaN = XSNaNM | YSNaNM | ZSNaNM;
assign Invalid = SigNaN | ((XInfM || YInfM) & ZInfM & (PSgn ^ ZSgnM) & ~XNaNM & ~YNaNM) | (XZeroM & YInfM) | (YZeroM & XInfM);
// Set Overflow flag if the number is too big to be represented
// - Don't set the overflow flag if an overflowed result isn't outputed
assign Overflow = FullResultExp >= MaxExp & ~FullResultExp[12]&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
assign Overflow = FullResultExp >= MaxExp & ~FullResultExp[`NE+1]&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
// Set Underflow flag if the number is too small to be represented in normal numbers
// - Don't set the underflow flag if the result is exact
assign Underflow = (SumExp[12] | ((SumExp == 0) & (Round|Guard|Sticky|UfGuard)))&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
assign UnderflowFlag = (FullResultExp[12] | ((FullResultExp == 0) | ((FullResultExp == 1) & (SumExp == 0) & ~(UfPlus1&UfLSBNormSum)))&(Round|Guard|Sticky))&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
assign Underflow = (SumExp[`NE+1] | ((SumExp == 0) & (Round|Guard|Sticky|UfGuard)))&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
assign UnderflowFlag = (FullResultExp[`NE+1] | ((FullResultExp == 0) | ((FullResultExp == 1) & (SumExp == 0) & ~(UfPlus1&UfLSBNormSum)))&(Round|Guard|Sticky))&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
// Set Inexact flag if the result is diffrent from what would be outputed given infinite precision
// - Don't set the underflow flag if an underflowed result isn't outputed
assign Inexact = (Sticky|UfGuard|Overflow|Guard|Round|Underflow)&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
@ -489,23 +490,23 @@ module fma2(
///////////////////////////////////////////////////////////////////////////////
// Select the result
///////////////////////////////////////////////////////////////////////////////
assign XNaNResult = FmtM ? {XSgnM, XExpM, 1'b1, XFracM[50:0]} : {{32{1'b1}}, XSgnM, XExpM[7:0], 1'b1, XFracM[50:29]};
assign YNaNResult = FmtM ? {YSgnM, YExpM, 1'b1, YFracM[50:0]} : {{32{1'b1}}, YSgnM, YExpM[7:0], 1'b1, YFracM[50:29]};
assign ZNaNResult = FmtM ? {ZSgnM, ZExpM, 1'b1, ZFracM[50:0]} : {{32{1'b1}}, ZSgnM, ZExpM[7:0], 1'b1, ZFracM[50:29]};
assign OverflowResult = FmtM ? ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, 11'h7fe, {52{1'b1}}} :
{ResultSgn, 11'h7ff, 52'b0} :
assign XNaNResult = FmtM ? {XSgnM, XExpM, 1'b1, XFracM[`NF-2:0]} : {{32{1'b1}}, XSgnM, XExpM[7:0], 1'b1, XFracM[50:29]};
assign YNaNResult = FmtM ? {YSgnM, YExpM, 1'b1, YFracM[`NF-2:0]} : {{32{1'b1}}, YSgnM, YExpM[7:0], 1'b1, YFracM[50:29]};
assign ZNaNResult = FmtM ? {ZSgnM, ZExpM, 1'b1, ZFracM[`NF-2:0]} : {{32{1'b1}}, ZSgnM, ZExpM[7:0], 1'b1, ZFracM[50:29]};
assign OverflowResult = FmtM ? ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} :
{ResultSgn, {`NE{1'b1}}, {`NF{1'b0}}} :
((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{32{1'b1}}, ResultSgn, 8'hfe, {23{1'b1}}} :
{{32{1'b1}}, ResultSgn, 8'hff, 23'b0};
assign InvalidResult = FmtM ? {ResultSgn, 11'h7ff, 1'b1, 51'b0} : {{32{1'b1}}, ResultSgn, 8'hff, 1'b1, 22'b0};
assign KillProdResult = FmtM ? {ResultSgn, {ZExpM, ZFracM} - {62'b0, (Minus1&AddendStickyM)}} + {62'b0, (Plus1&AddendStickyM)} : {{32{1'b1}}, ResultSgn, {ZExpM[7:0], ZFracM[51:29]} - {30'b0, (Minus1&AddendStickyM)} + {30'b0, (Plus1&AddendStickyM)}};
assign UnderflowResult = FmtM ? {ResultSgn, 63'b0} + {63'b0, (CalcPlus1&(AddendStickyM|FrmM[1]))} : {{32{1'b1}}, {ResultSgn, 31'b0} + {31'b0, (CalcPlus1&(AddendStickyM|FrmM[1]))}};
assign InvalidResult = FmtM ? {ResultSgn, {`NE{1'b1}}, 1'b1, {`NF-1{1'b0}}} : {{32{1'b1}}, ResultSgn, 8'hff, 1'b1, 22'b0};
assign KillProdResult = FmtM ? {ResultSgn, {ZExpM, ZFracM} - (Minus1&AddendStickyM) + (Plus1&AddendStickyM)} : {{32{1'b1}}, ResultSgn, {ZExpM[7:0], ZFracM[51:29]} - {30'b0, (Minus1&AddendStickyM)} + {30'b0, (Plus1&AddendStickyM)}};
assign UnderflowResult = FmtM ? {ResultSgn, {`FLEN-1{1'b0}}} + (CalcPlus1&(AddendStickyM|FrmM[1])) : {{32{1'b1}}, {ResultSgn, 31'b0} + {31'b0, (CalcPlus1&(AddendStickyM|FrmM[1]))}};
assign FMAResM = XNaNM ? XNaNResult :
YNaNM ? YNaNResult :
ZNaNM ? ZNaNResult :
Invalid ? InvalidResult : // has to be before inf
XInfM ? FmtM ? {PSgn, XExpM, XFracM} : {{32{1'b1}}, PSgn, XExpM[7:0], XFracM[51:29]} :
XInfM ? FmtM ? {PSgn, YExpM, YFracM} : {{32{1'b1}}, PSgn, YExpM[7:0], YFracM[51:29]} :
XInfM ? FmtM ? {ZSgnM, ZExpM, ZFracM} : {{32{1'b1}}, ZSgnM, ZExpM[7:0], ZFracM[51:29]} :
YInfM ? FmtM ? {PSgn, YExpM, YFracM} : {{32{1'b1}}, PSgn, YExpM[7:0], YFracM[51:29]} :
ZInfM ? FmtM ? {ZSgnM, ZExpM, ZFracM} : {{32{1'b1}}, ZSgnM, ZExpM[7:0], ZFracM[51:29]} :
Overflow ? OverflowResult :
KillProdM ? KillProdResult : // has to be after Underflow
Underflow & ~ResultDenorm ? UnderflowResult :

View File

@ -204,7 +204,7 @@ module fpu (
fpdiv fdivsqrt (.op1(DivInput1E), .op2(DivInput2E), .done(FDivSqrtDoneE), .rm(FrmE[1:0]), .op_type(FOpCtrlE[0]),
.P(~FmtE), .FDivBusyE, .HoldInputs,
.OvEn(1'b1), .UnEn(1'b1),
.start(FDivStartE), .reset, .clk(~clk), .AS_Result(FDivResultM), .Flags(FDivSqrtFlgM));
.start(FDivStartE), .reset, .clk(fpdivClk), .AS_Result(FDivResultM), .Flags(FDivSqrtFlgM));
// .DivOpType(FOpCtrlE[0]), .clk(fpdivClk), .FmtE(~FmtE), .DivInput1E, .DivInput2E,
// .FrmE, .DivOvEn(1'b1), .DivUnEn(1'b1), .FDivStartE, .FDivResultM, .FDivSqrtFlgM,

View File

@ -476,7 +476,7 @@ module fsm (done, load_rega, load_regb, load_regc,
sel_muxa = 3'b011;
sel_muxb = 3'b110;
sel_muxr = 1'b1;
NEXT_STATE = S27;
NEXT_STATE = S26;
end
S26: // done
begin

View File

@ -56,9 +56,9 @@ module unpacking (
assign YNaNE = YExpMaxE & ~YFracZero;
assign ZNaNE = ZExpMaxE & ~ZFracZero;
assign XSNaNE = XNaNE&~XExpE[51];
assign YSNaNE = YNaNE&~YExpE[51];
assign ZSNaNE = ZNaNE&~ZExpE[51];
assign XSNaNE = XNaNE&~XFracE[51];
assign YSNaNE = YNaNE&~YFracE[51];
assign ZSNaNE = ZNaNE&~ZFracE[51];
assign XDenormE = XExpZero & ~XFracZero;
assign YDenormE = YExpZero & ~YFracZero;

View File

@ -87,31 +87,32 @@ module uncore (
generate
// tightly integrated memory
dtim #(.BASE(`TIM_BASE), .RANGE(`TIM_RANGE)) dtim (.*);
//if (`BOOTTIM_SUPPORTED) *** restore when naming is figured out
if (`BOOTTIM_SUPPORTED) begin : bootdtim
dtim #(.BASE(`BOOTTIM_BASE), .RANGE(`BOOTTIM_RANGE)) bootdtim(.HSELTim(HSELBootTim), .HREADTim(HREADBootTim), .HRESPTim(HRESPBootTim), .HREADYTim(HREADYBootTim), .*);
end
// memory-mapped I/O peripherals
if (`CLINT_SUPPORTED == 1)
if (`CLINT_SUPPORTED == 1) begin : clint
clint clint(.HADDR(HADDR[15:0]), .MTIME(MTIME_CLINT), .MTIMECMP(MTIMECMP_CLINT), .*);
else begin
end else begin : clint
assign MTIME_CLINT = 0; assign MTIMECMP_CLINT = 0;
assign TimerIntM = 0; assign SwIntM = 0;
end
if (`PLIC_SUPPORTED == 1)
if (`PLIC_SUPPORTED == 1) begin : plic
plic plic(.HADDR(HADDR[27:0]), .*);
else begin
end else begin : plic
assign ExtIntM = 0;
end
if (`GPIO_SUPPORTED == 1)
if (`GPIO_SUPPORTED == 1) begin : gpio
gpio gpio(.HADDR(HADDR[7:0]), .*);
else begin
end else begin : gpio
assign GPIOPinsOut = 0; assign GPIOPinsEn = 0; assign GPIOIntr = 0;
end
if (`UART_SUPPORTED == 1)
if (`UART_SUPPORTED == 1) begin : uart
uart uart(.HADDR(HADDR[2:0]), .TXRDYb(), .RXRDYb(), .INTR(UARTIntr), .SIN(UARTSin), .SOUT(UARTSout),
.DSRb(1'b1), .DCDb(1'b1), .CTSb(1'b0), .RIb(1'b1),
.RTSb(), .DTRb(), .OUT1b(), .OUT2b(), .*);
else begin
end else begin : uart
assign UARTSout = 0; assign UARTIntr = 0;
end
endgenerate

View File

@ -121,7 +121,7 @@ string tests32f[] = '{
"rv64d/I-FLD-01", "2420",
"rv64d/I-FMV-X-D-01", "2000",
"rv64d/I-FMV-D-X-01", "2000",
// "rv64d/I-FDIV-D-01", "2000",
"rv64d/I-FDIV-D-01", "2000",
"rv64d/I-FCVT-D-L-01", "2000",
"rv64d/I-FCVT-D-LU-01", "2000",
"rv64d/I-FCVT-D-S-01", "2000",
@ -147,7 +147,7 @@ string tests32f[] = '{
"rv64d/I-FSGNJ-D-01", "2000",
"rv64d/I-FSGNJN-D-01", "2000",
"rv64d/I-FSGNJX-D-01", "2000",
// "rv64d/I-FSQRT-D-01", "2000",
"rv64d/I-FSQRT-D-01", "2000",
"rv64d/I-FSUB-D-01", "2000"
};
@ -753,6 +753,7 @@ module riscvassertions();
assert (`ICACHE_NUMWAYS == 1 || `MEM_ICACHE == 0) else $error("Multiple Instruction Cache ways not yet implemented");
assert (2**$clog2(`ITLB_ENTRIES) == `ITLB_ENTRIES) else $error("ITLB_ENTRIES must be a power of 2");
assert (2**$clog2(`DTLB_ENTRIES) == `DTLB_ENTRIES) else $error("DTLB_ENTRIES must be a power of 2");
assert (`TIM_RANGE >= 56'h07FFFFFF) else $error("Some regression tests will fail if TIM_RANGE is less than 56'h07FFFFFF");
end
endmodule

View File

@ -27,7 +27,7 @@
module testbench();
parameter waveOnICount = `BUSYBEAR*140000 + `BUILDROOT*0900000; // # of instructions at which to turn on waves in graphical sim
parameter waveOnICount = `BUSYBEAR*140000 + `BUILDROOT*3160000; // # of instructions at which to turn on waves in graphical sim
parameter stopICount = `BUSYBEAR*143898 + `BUILDROOT*0000000; // # instructions at which to halt sim completely (set to 0 to let it run as far as it can)
///////////////////////////////////////////////////////////////////////////////
@ -140,7 +140,7 @@ module testbench();
end
// initial loading of memories
initial begin
$readmemh({`LINUX_TEST_VECTORS,"bootmem.txt"}, dut.uncore.bootdtim.RAM, 'h1000 >> 3);
$readmemh({`LINUX_TEST_VECTORS,"bootmem.txt"}, dut.uncore.bootdtim.bootdtim.RAM, 'h1000 >> 3);
$readmemh({`LINUX_TEST_VECTORS,"ram.txt"}, dut.uncore.dtim.RAM);
$readmemb(`TWO_BIT_PRELOAD, dut.hart.ifu.bpred.bpred.Predictor.DirPredictor.PHT.memory);
$readmemb(`BTB_PRELOAD, dut.hart.ifu.bpred.bpred.TargetPredictor.memory.memory);
@ -222,24 +222,24 @@ module testbench();
`SCAN_PC(data_file_PCF, scan_file_PCF, PCtextF, PCtextF2, InstrFExpected, PCFexpected);
`SCAN_PC(data_file_PCD, scan_file_PCD, PCtextD, PCtextD2, InstrDExpected, PCDexpected);
// NOP out certain instructions
if(dut.hart.ifu.PCD===PCDexpected) begin
if((dut.hart.ifu.PCD == 32'h80001dc6) || // for now, NOP out any stores to PLIC
(dut.hart.ifu.PCD == 32'h80001de0) ||
(dut.hart.ifu.PCD == 32'h80001de2)) begin
$display("warning: NOPing out %s at PCD=%0x, instr %0d, time %0t", PCtextD, dut.hart.ifu.PCD, instrs, $time);
force InstrDExpected = 32'b0010011;
force dut.hart.ifu.InstrRawD = 32'b0010011;
while (clk != 0) #1;
while (clk != 1) #1;
release dut.hart.ifu.InstrRawD;
release InstrDExpected;
warningCount += 1;
forcedInstr = 1;
end else begin
forcedInstr = 0;
end
end
// NOP out certain instructions <-- commented out because no duh hardcoded addressses break easily
//if(dut.hart.ifu.PCD===PCDexpected) begin
// if((dut.hart.ifu.PCD == 32'h80001dc6) || // for now, NOP out any stores to PLIC
// (dut.hart.ifu.PCD == 32'h80001de0) ||
// (dut.hart.ifu.PCD == 32'h80001de2)) begin
// $display("warning: NOPing out %s at PCD=%0x, instr %0d, time %0t", PCtextD, dut.hart.ifu.PCD, instrs, $time);
// force InstrDExpected = 32'b0010011;
// force dut.hart.ifu.InstrRawD = 32'b0010011;
// while (clk != 0) #1;
// while (clk != 1) #1;
// release dut.hart.ifu.InstrRawD;
// release InstrDExpected;
// warningCount += 1;
// forcedInstr = 1;
// end else begin
// forcedInstr = 0;
// end
//end
// Increment instruction count
if (instrs <= 10 || (instrs <= 100 && instrs % 10 == 0) ||
@ -260,7 +260,7 @@ module testbench();
// Check if PCD is going to be flushed due to a branch or jump
if (`BPRED_ENABLED) begin
PCDwrong = dut.hart.hzu.FlushD || (PCtextE.substr(0,3) == "mret"); //Old version: dut.hart.ifu.bpred.bpred.BPPredWrongE; <-- This old version failed to account for MRET.
PCDwrong = dut.hart.hzu.FlushD || (PCtextE.substr(0,3) == "mret") || dut.hart.priv.InstrPageFaultF || dut.hart.priv.InstrPageFaultD || dut.hart.priv.InstrPageFaultE || dut.hart.priv.InstrPageFaultM;
end
// Check PCD, InstrD
@ -283,10 +283,10 @@ module testbench();
scan_file_memR = $fscanf(data_file_memR, "%x\n", readAdrExpected);
scan_file_memR = $fscanf(data_file_memR, "%x\n", readDataExpected);
// Next force a timer interrupt (*** this may later need generalizing)
force dut.uncore.genblk1.clint.MTIME = dut.uncore.genblk1.clint.MTIMECMP + 1;
force dut.uncore.clint.clint.MTIME = dut.uncore.clint.clint.MTIMECMP + 1;
while (clk != 0) #1;
while (clk != 1) #1;
release dut.uncore.genblk1.clint.MTIME;
release dut.uncore.clint.clint.MTIME;
end
end
end
@ -526,6 +526,7 @@ module testbench();
string MTVALstring = "MTVAL";
string SEPCstring = "SEPC";
string SCAUSEstring = "SCAUSE";
string STVALstring = "STVAL";
string SSTATUSstring = "SSTATUS";
logic [63:0] expectedCSR;
@ -556,6 +557,7 @@ module testbench();
if (``CSR``name == MTVALstring) #3; \
if (``CSR``name == SEPCstring) #1; \
if (``CSR``name == SCAUSEstring) #2; \
if (``CSR``name == STVALstring) #3; \
if (``CSR``name == SSTATUSstring) #3; \
scan_file_csr = $fscanf(data_file_csr, "%s\n", expectedCSRname); \
scan_file_csr = $fscanf(data_file_csr, "%x\n", expectedCSR); \