forked from Github_Repos/cvw
Merge branch 'main' of github.com:davidharrishmc/riscv-wally into main
This commit is contained in:
commit
766c829d31
@ -26,7 +26,7 @@
|
||||
|
||||
// include shared configuration
|
||||
`include "wally-shared.vh"
|
||||
// `include "../shared/wally-shared.vh"
|
||||
// `include "../shared/wally-shared.vh"
|
||||
|
||||
`define QEMU 0
|
||||
`define BUILDROOT 0
|
||||
|
@ -130,10 +130,21 @@ assign wnan = FmtE ? &FMAResM[`FLEN-2:`NF] && |FMAResM[`NF-1:0] : &FMAResM[30:23
|
||||
// assign ZNaNE = FmtE ? &Z[62:52] && |Z[51:0] : &Z[62:55] && |Z[54:32];
|
||||
assign ansnan = FmtE ? &ans[`FLEN-2:`NF] && |ans[`NF-1:0] : &ans[30:23] && |ans[22:0];
|
||||
// instantiate device under test
|
||||
fma1 UUT1(.XManE({XAssumed1E,XFracE}), .YManE({YAssumed1E,YFracE}), .ZManE({ZAssumed1E,ZFracE}), .*);
|
||||
|
||||
logic [3*`NF+5:0] SumE, SumM;
|
||||
logic InvZE, InvZM;
|
||||
logic NegSumE, NegSumM;
|
||||
logic ZSgnEffE, ZSgnEffM;
|
||||
logic PSgnE, PSgnM;
|
||||
logic [8:0] NormCntE, NormCntM;
|
||||
|
||||
fma1 fma1 (.XSgnE, .YSgnE, .ZSgnE, .XExpE, .YExpE, .ZExpE, .XManE({XAssumed1E,XFracE}), .YManE({YAssumed1E,YFracE}), .ZManE({ZAssumed1E,ZFracE}),
|
||||
.BiasE, .XDenormE, .YDenormE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE,
|
||||
.FOpCtrlE, .FmtE, .SumE, .NegSumE, .InvZE, .NormCntE, .ZSgnEffE, .PSgnE,
|
||||
.ProdExpE, .AddendStickyE, .KillProdE);
|
||||
fma2 UUT2(.XSgnM(XSgnE), .YSgnM(YSgnE), .ZSgnM(ZSgnE), .XExpM(XExpE), .YExpM(YExpE), .ZExpM(ZExpE), .XManM({XAssumed1E,XFracE}), .YManM({YAssumed1E,YFracE}), .ZManM({ZAssumed1E,ZFracE}), .XNaNM(XNaNE), .YNaNM(YNaNE), .ZNaNM(ZNaNE), .XZeroM(XZeroE), .YZeroM(YZeroE), .ZZeroM(ZZeroE), .XInfM(XInfE), .YInfM(YInfE), .ZInfM(ZInfE), .XSNaNM(XSNaNE), .YSNaNM(YSNaNE), .ZSNaNM(ZSNaNE),
|
||||
// .FSrcXE, .FSrcYE, .FSrcZE, .FSrcXM, .FSrcYM, .FSrcZM,
|
||||
.FOpCtrlM(FOpCtrlE[2:0]), .KillProdM(KillProdE), .AddendStickyM(AddendStickyE), .ProdExpM(ProdExpE), .AlignedAddendM(AlignedAddendE), .ProdManM(ProdManE),
|
||||
.FOpCtrlM(FOpCtrlE[2:0]), .KillProdM(KillProdE), .AddendStickyM(AddendStickyE), .ProdExpM(ProdExpE), .SumM(SumE), .NegSumM(NegSumE), .InvZM(InvZE), .NormCntM(NormCntE), .ZSgnEffM(ZSgnEffE), .PSgnM(PSgnE),
|
||||
.FmtM(FmtE), .FrmM(FrmE), .FMAFlgM, .FMAResM);
|
||||
|
||||
|
||||
|
@ -1,3 +1,3 @@
|
||||
testfloat_gen f32_add -tininessafter -n 6133248 -rnear_even -seed 113355 -level 1 > testFloat
|
||||
testfloat_gen f64_mulAdd -tininessafter -n 6133248 -rnear_even -seed 113355 -level 1 > testFloat
|
||||
tr -d ' ' < testFloat > testFloatNoSpace
|
||||
|
||||
|
@ -41,12 +41,10 @@ module cvtfp (
|
||||
logic [12:0] ShiftCnt;
|
||||
logic [51:0] SFrac;
|
||||
logic [25:0] DFrac;
|
||||
logic [77:0] DFracTmp,tmp, tmp2;
|
||||
logic [77:0] DFracTmp;
|
||||
//assign ShiftCnt = FmtE ? -DExpCalc&{13{Denorm}} : NormCnt;
|
||||
assign SFrac = XManE[51:0] << NormCnt;
|
||||
logic Shift;
|
||||
assign tmp = (-DExpCalc+1)&{13{Shift}};
|
||||
assign tmp2 = {XManE, 23'b0};
|
||||
assign Shift = {13{Denorm|(($signed(DExpCalc) > $signed(-25)) & DExpCalc[12])}};
|
||||
assign DFracTmp = {XManE, 25'b0} >> ((-DExpCalc+1)&{13{Shift}});
|
||||
assign DFrac = DFracTmp[76:51];
|
||||
|
@ -23,7 +23,7 @@
|
||||
///////////////////////////////////////////
|
||||
|
||||
`include "wally-config.vh"
|
||||
// `include "../../../config/rv64icfd/wally-config.vh"
|
||||
// `include "../../../config/rv64icfd/wally-config.vh"
|
||||
|
||||
module fma(
|
||||
input logic clk,
|
||||
@ -58,28 +58,33 @@ module fma(
|
||||
// {?, is mul, negate product, negate addend}
|
||||
|
||||
// signals transfered between pipeline stages
|
||||
logic [2*`NF+1:0] ProdManE, ProdManM;
|
||||
logic [3*`NF+5:0] AlignedAddendE, AlignedAddendM;
|
||||
// logic [2*`NF+1:0] ProdManE, ProdManM;
|
||||
// logic [3*`NF+5:0] AlignedAddendE, AlignedAddendM;
|
||||
logic [3*`NF+5:0] SumE, SumM;
|
||||
logic [`NE+1:0] ProdExpE, ProdExpM;
|
||||
logic AddendStickyE, AddendStickyM;
|
||||
logic KillProdE, KillProdM;
|
||||
logic InvZE, InvZM;
|
||||
logic NegSumE, NegSumM;
|
||||
logic ZSgnEffE, ZSgnEffM;
|
||||
logic PSgnE, PSgnM;
|
||||
logic [8:0] NormCntE, NormCntM;
|
||||
|
||||
fma1 fma1 (.XExpE, .YExpE, .ZExpE, .XManE, .YManE, .ZManE,
|
||||
fma1 fma1 (.XSgnE, .YSgnE, .ZSgnE, .XExpE, .YExpE, .ZExpE, .XManE, .YManE, .ZManE,
|
||||
.BiasE, .XDenormE, .YDenormE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE,
|
||||
.FOpCtrlE, .FmtE, .ProdManE, .AlignedAddendE,
|
||||
.FOpCtrlE, .FmtE, .SumE, .NegSumE, .InvZE, .NormCntE, .ZSgnEffE, .PSgnE,
|
||||
.ProdExpE, .AddendStickyE, .KillProdE);
|
||||
|
||||
// E/M pipeline registers
|
||||
flopenrc #(106) EMRegFma1(clk, reset, FlushM, ~StallM, ProdManE, ProdManM);
|
||||
flopenrc #(162) EMRegFma2(clk, reset, FlushM, ~StallM, AlignedAddendE, AlignedAddendM);
|
||||
// flopenrc #(106) EMRegFma1(clk, reset, FlushM, ~StallM, ProdManE, ProdManM);
|
||||
flopenrc #(3*`NF+6) EMRegFma2(clk, reset, FlushM, ~StallM, SumE, SumM);
|
||||
flopenrc #(13) EMRegFma3(clk, reset, FlushM, ~StallM, ProdExpE, ProdExpM);
|
||||
flopenrc #(2) EMRegFma4(clk, reset, FlushM, ~StallM,
|
||||
{AddendStickyE, KillProdE},
|
||||
{AddendStickyM, KillProdM});
|
||||
flopenrc #(15) EMRegFma4(clk, reset, FlushM, ~StallM,
|
||||
{AddendStickyE, KillProdE, InvZE, NormCntE, NegSumE, ZSgnEffE, PSgnE},
|
||||
{AddendStickyM, KillProdM, InvZM, NormCntM, NegSumM, ZSgnEffM, PSgnM});
|
||||
|
||||
fma2 fma2(.XSgnM, .YSgnM, .ZSgnM, .XExpM, .YExpM, .ZExpM, .XManM, .YManM, .ZManM,
|
||||
.FOpCtrlM, .FrmM, .FmtM,
|
||||
.ProdManM, .AlignedAddendM, .ProdExpM, .AddendStickyM, .KillProdM,
|
||||
.FOpCtrlM, .FrmM, .FmtM, .ProdExpM, .AddendStickyM, .KillProdM, .SumM, .NegSumM, .InvZM, .NormCntM, .ZSgnEffM, .PSgnM,
|
||||
.XZeroM, .YZeroM, .ZZeroM, .XInfM, .YInfM, .ZInfM, .XNaNM, .YNaNM, .ZNaNM, .XSNaNM, .YSNaNM, .ZSNaNM,
|
||||
.FMAResM, .FMAFlgM);
|
||||
|
||||
@ -88,7 +93,7 @@ endmodule
|
||||
|
||||
|
||||
module fma1(
|
||||
// input logic XSgnE, YSgnE, ZSgnE,
|
||||
input logic XSgnE, YSgnE, ZSgnE,
|
||||
input logic [`NE-1:0] XExpE, YExpE, ZExpE, // biased exponents in B(NE.0) format
|
||||
input logic [`NF:0] XManE, YManE, ZManE, // fractions in U(0.NF) format]
|
||||
input logic XDenormE, YDenormE, ZDenormE, // is the input denormal
|
||||
@ -96,15 +101,24 @@ module fma1(
|
||||
input logic [`NE-1:0] BiasE,
|
||||
input logic [2:0] FOpCtrlE, // 000 = fmadd (X*Y)+Z, 001 = fmsub (X*Y)-Z, 010 = fnmsub -(X*Y)+Z, 011 = fnmadd -(X*Y)-Z, 100 = fmul (X*Y)
|
||||
input logic FmtE, // precision 1 = double 0 = single
|
||||
output logic [2*`NF+1:0] ProdManE, // 1.X frac * 1.Y frac in U(2.2Nf) format
|
||||
output logic [3*`NF+5:0] AlignedAddendE, // Z aligned for addition in U(NF+5.2NF+1)
|
||||
// output logic [2*`NF+1:0] ProdManE, // 1.X frac * 1.Y frac in U(2.2Nf) format
|
||||
// output logic [3*`NF+5:0] AlignedAddendE, // Z aligned for addition in U(NF+5.2NF+1)
|
||||
output logic [`NE+1:0] ProdExpE, // X exponent + Y exponent - bias in B(NE+2.0) format; adds 2 bits to allow for size of number and negative sign
|
||||
output logic AddendStickyE, // sticky bit that is calculated during alignment
|
||||
output logic KillProdE // set the product to zero before addition if the product is too small to matter
|
||||
output logic KillProdE, // set the product to zero before addition if the product is too small to matter
|
||||
output logic [3*`NF+5:0] SumE,
|
||||
output logic NegSumE,
|
||||
output logic InvZE,
|
||||
output logic ZSgnEffE,
|
||||
output logic PSgnE,
|
||||
output logic [8:0] NormCntE
|
||||
);
|
||||
logic [`NE-1:0] Denorm;
|
||||
logic [`NE-1:0] DenormXExp, DenormYExp; // Denormalized input value
|
||||
|
||||
logic [2*`NF+1:0] ProdManE; // 1.X frac * 1.Y frac in U(2.2Nf) format
|
||||
logic [3*`NF+5:0] AlignedAddendE; // Z aligned for addition in U(NF+5.2NF+1)
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Calculate the product
|
||||
// - When multipliying two fp numbers, add the exponents
|
||||
@ -117,8 +131,7 @@ module fma1(
|
||||
assign Denorm = FmtE ? 1 : 897;
|
||||
assign DenormXExp = XDenormE ? Denorm : XExpE;
|
||||
assign DenormYExp = YDenormE ? Denorm : YExpE;
|
||||
assign ProdExpE = (XZeroE|YZeroE) ? 0 :
|
||||
DenormXExp + DenormYExp - BiasE;
|
||||
assign ProdExpE = (DenormXExp + DenormYExp - BiasE)&{`NE+2{~(XZeroE|YZeroE)}};
|
||||
|
||||
// Calculate the product's mantissa
|
||||
// - Mantissa includes the assumed one. If the number is denormalized or zero, it does not have an assumed one.
|
||||
@ -189,6 +202,15 @@ module fma1(
|
||||
|
||||
alignshift alignshift(.ZExpE, .ZManE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE, .ProdExpE, .Denorm,
|
||||
.AlignedAddendE, .AddendStickyE, .KillProdE);
|
||||
|
||||
|
||||
// Calculate the product's sign
|
||||
// Negate product's sign if FNMADD or FNMSUB
|
||||
|
||||
assign PSgnE = XSgnE ^ YSgnE ^ (FOpCtrlE[1]&~FOpCtrlE[2]);
|
||||
assign ZSgnEffE = ZSgnE^FOpCtrlE[0]; // Swap sign of Z for subtract
|
||||
fmaadd fmaadd(.AlignedAddendE, .ProdManE, .PSgnE, .ZSgnEffE, .KillProdE, .SumE, .NegSumE, .InvZE, .NormCntE, .XZeroE, .YZeroE);
|
||||
|
||||
endmodule
|
||||
|
||||
|
||||
@ -201,8 +223,8 @@ module fma2(
|
||||
input logic [2:0] FrmM, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
|
||||
input logic [2:0] FOpCtrlM, // 000 = fmadd (X*Y)+Z, 001 = fmsub (X*Y)-Z, 010 = fnmsub -(X*Y)+Z, 011 = fnmadd -(X*Y)-Z, 100 = fmul (X*Y)
|
||||
input logic FmtM, // precision 1 = double 0 = single
|
||||
input logic [2*`NF+1:0] ProdManM, // 1.X frac * 1.Y frac
|
||||
input logic [3*`NF+5:0] AlignedAddendM, // Z aligned for addition
|
||||
// input logic [2*`NF+1:0] ProdManM, // 1.X frac * 1.Y frac
|
||||
// input logic [3*`NF+5:0] AlignedAddendM, // Z aligned for addition
|
||||
input logic [`NE+1:0] ProdExpM, // X exponent + Y exponent - bias
|
||||
input logic AddendStickyM, // sticky bit that is calculated during alignment
|
||||
input logic KillProdM, // set the product to zero before addition if the product is too small to matter
|
||||
@ -210,6 +232,12 @@ module fma2(
|
||||
input logic XInfM, YInfM, ZInfM, // inputs are infinity
|
||||
input logic XNaNM, YNaNM, ZNaNM, // inputs are NaN
|
||||
input logic XSNaNM, YSNaNM, ZSNaNM, // inputs are signaling NaNs
|
||||
input logic [3*`NF+5:0] SumM,
|
||||
input logic NegSumM,
|
||||
input logic InvZM,
|
||||
input logic ZSgnEffM,
|
||||
input logic PSgnM,
|
||||
input logic [8:0] NormCntM,
|
||||
output logic [`FLEN-1:0] FMAResM, // FMA final result
|
||||
output logic [4:0] FMAFlgM); // FMA flags {invalid, divide by zero, overflow, underflow, inexact}
|
||||
|
||||
@ -218,10 +246,10 @@ module fma2(
|
||||
logic [`NF-1:0] ResultFrac; // Result fraction
|
||||
logic [`NE-1:0] ResultExp; // Result exponent
|
||||
logic ResultSgn; // Result sign
|
||||
logic PSgn; // product sign
|
||||
// logic PSgn; // product sign
|
||||
// logic [2*`NF+1:0] ProdMan2; // product being added
|
||||
// logic [3*`NF+6:0] AlignedAddend2; // possibly inverted aligned Z
|
||||
logic [3*`NF+5:0] Sum; // positive sum
|
||||
// logic [3*`NF+5:0] Sum; // positive sum
|
||||
// logic [3*`NF+6:0] PreSum; // possibly negitive sum
|
||||
logic [`NE+1:0] SumExp; // exponent of the normalized sum
|
||||
// logic [`NE+1:0] SumExpTmp; // exponent of the normalized sum not taking into account denormal or zero results
|
||||
@ -229,11 +257,11 @@ module fma2(
|
||||
logic [`NE+1:0] FullResultExp; // ResultExp with bits to determine sign and overflow
|
||||
logic [`NF+2:0] NormSum; // normalized sum
|
||||
// logic [3*`NF+5:0] SumShifted; // sum shifted for normalization
|
||||
logic [8:0] NormCnt, NormCntCheck; // output of the leading zero detector //***change this later
|
||||
// logic [8:0] NormCnt; // output of the leading zero detector //***change this later
|
||||
logic NormSumSticky; // sticky bit calulated from the normalized sum
|
||||
logic SumZero; // is the sum zero
|
||||
logic NegSum; // is the sum negitive
|
||||
logic InvZ; // invert Z if there is a subtraction (-product + Z or product - Z)
|
||||
// logic NegSum; // is the sum negitive
|
||||
// logic InvZ; // invert Z if there is a subtraction (-product + Z or product - Z)
|
||||
logic ResultDenorm; // is the result denormalized
|
||||
logic Sticky, UfSticky; // Sticky bit
|
||||
logic Plus1, Minus1, CalcPlus1, CalcMinus1; // do you add or subtract one for rounding
|
||||
@ -251,15 +279,9 @@ module fma2(
|
||||
logic SigNaN; // is an input a signaling NaN
|
||||
logic UnderflowFlag; // Underflow singal used in FMAFlgM (used to avoid a circular depencency)
|
||||
logic [`FLEN-1:0] XNaNResult, YNaNResult, ZNaNResult, InvalidResult, OverflowResult, KillProdResult, UnderflowResult; // possible results
|
||||
logic ZSgnEffM;
|
||||
//logic ZSgnEffM;
|
||||
|
||||
|
||||
// Calculate the product's sign
|
||||
// Negate product's sign if FNMADD or FNMSUB
|
||||
|
||||
assign PSgn = XSgnM ^ YSgnM ^ (FOpCtrlM[1]&~FOpCtrlM[2]);
|
||||
assign ZSgnEffM = ZSgnM^FOpCtrlM[0]; // Swap sign of Z for subtract
|
||||
|
||||
|
||||
|
||||
// ///////////////////////////////////////////////////////////////////////////////
|
||||
@ -287,30 +309,6 @@ module fma2(
|
||||
// // If the sum is negitive, negate the sum.
|
||||
// assign Sum = NegSum ? -PreSum[3*`NF+5:0] : PreSum[3*`NF+5:0];
|
||||
|
||||
fmaadd fmaadd(.AlignedAddendM, .ProdManM, .PSgn, .ZSgnEffM, .KillProdM, .Sum, .NegSum, .InvZ, .NormCnt);
|
||||
|
||||
|
||||
|
||||
|
||||
// ///////////////////////////////////////////////////////////////////////////////
|
||||
// // Leading zero counter
|
||||
// ///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// //*** replace with non-behavoral code
|
||||
// logic [8:0] i;
|
||||
// always_comb begin
|
||||
// i = 0;
|
||||
// while (~Sum[3*`NF+5-i] && $unsigned(i) <= $unsigned(3*`NF+5)) i = i+1; // search for leading one
|
||||
// NormCnt = i+1; // compute shift count
|
||||
// end
|
||||
|
||||
fmalzc fmalzc(.Sum, .NormCntCheck);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@ -347,7 +345,7 @@ module fma2(
|
||||
// assign SumExp = SumZero ? 0 : //***again fix mux
|
||||
// ResultDenorm ? 0 :
|
||||
// SumExpTmp;
|
||||
normalize normalize(.Sum, .ZExpM, .ProdExpM, .NormCnt, .FmtM, .KillProdM, .AddendStickyM, .NormSum,
|
||||
normalize normalize(.SumM, .ZExpM, .ProdExpM, .NormCntM, .FmtM, .KillProdM, .AddendStickyM, .NormSum,
|
||||
.SumZero, .NormSumSticky, .UfSticky, .SumExp, .ResultDenorm);
|
||||
|
||||
|
||||
@ -442,7 +440,7 @@ module fma2(
|
||||
// assign {FullResultExp, ResultFrac} = {SumExp, NormSumTruncated} + RoundAdd;
|
||||
// assign ResultExp = FullResultExp[`NE-1:0];
|
||||
|
||||
fmaround fmaround(.FmtM, .FrmM, .Sticky, .UfSticky, .NormSum, .AddendStickyM, .NormSumSticky, .ZZeroM, .InvZ, .ResultSgn, .SumExp,
|
||||
fmaround fmaround(.FmtM, .FrmM, .Sticky, .UfSticky, .NormSum, .AddendStickyM, .NormSumSticky, .ZZeroM, .InvZM, .ResultSgn, .SumExp,
|
||||
.CalcPlus1, .Plus1, .UfPlus1, .Minus1, .FullResultExp, .ResultFrac, .ResultExp, .Round, .Guard, .UfRound, .UfLSBNormSum);
|
||||
|
||||
|
||||
@ -456,13 +454,13 @@ module fma2(
|
||||
// Determine the sign if the sum is zero
|
||||
// if cancelation then 0 unless round to -infinity
|
||||
// otherwise psign
|
||||
assign ZeroSgn = (PSgn^ZSgnEffM)&~Underflow ? FrmM == 3'b010 : PSgn;
|
||||
assign ZeroSgn = (PSgnM^ZSgnEffM)&~Underflow ? FrmM[1:0] == 2'b10 : PSgnM;
|
||||
|
||||
// is the result negitive
|
||||
// if p - z is the Sum negitive
|
||||
// if -p + z is the Sum positive
|
||||
// if -p - z then the Sum is negitive
|
||||
assign ResultSgnTmp = InvZ&(ZSgnEffM)&NegSum | InvZ&PSgn&~NegSum | ((ZSgnEffM)&PSgn);
|
||||
assign ResultSgnTmp = InvZM&(ZSgnEffM)&NegSumM | InvZM&PSgnM&~NegSumM | ((ZSgnEffM)&PSgnM);
|
||||
assign ResultSgn = SumZero ? ZeroSgn : ResultSgnTmp;
|
||||
|
||||
|
||||
@ -503,7 +501,7 @@ module fma2(
|
||||
// assign FMAFlgM = {Invalid, 1'b0, Overflow, UnderflowFlag, Inexact};
|
||||
|
||||
fmaflags fmaflags(.XSNaNM, .YSNaNM, .ZSNaNM, .XInfM, .YInfM, .ZInfM, .XZeroM, .YZeroM,
|
||||
.XNaNM, .YNaNM, .ZNaNM, .FullResultExp, .SumExp, .ZSgnEffM, .PSgn, .Round, .Guard, .UfRound, .UfLSBNormSum, .Sticky, .UfPlus1,
|
||||
.XNaNM, .YNaNM, .ZNaNM, .FullResultExp, .SumExp, .ZSgnEffM, .PSgnM, .Round, .Guard, .UfRound, .UfLSBNormSum, .Sticky, .UfPlus1,
|
||||
.FmtM, .Invalid, .Overflow, .Underflow, .FMAFlgM);
|
||||
|
||||
|
||||
@ -526,11 +524,11 @@ module fma2(
|
||||
YNaNM ? YNaNResult :
|
||||
ZNaNM ? ZNaNResult :
|
||||
Invalid ? InvalidResult : // has to be before inf
|
||||
XInfM ? FmtM ? {PSgn, XExpM, XManM[`NF-1:0]} : {{32{1'b1}}, PSgn, XExpM[7:0], XManM[51:29]} :
|
||||
YInfM ? FmtM ? {PSgn, YExpM, YManM[`NF-1:0]} : {{32{1'b1}}, PSgn, YExpM[7:0], YManM[51:29]} :
|
||||
XInfM ? FmtM ? {PSgnM, XExpM, XManM[`NF-1:0]} : {{32{1'b1}}, PSgnM, XExpM[7:0], XManM[51:29]} :
|
||||
YInfM ? FmtM ? {PSgnM, YExpM, YManM[`NF-1:0]} : {{32{1'b1}}, PSgnM, YExpM[7:0], YManM[51:29]} :
|
||||
ZInfM ? FmtM ? {ZSgnEffM, ZExpM, ZManM[`NF-1:0]} : {{32{1'b1}}, ZSgnEffM, ZExpM[7:0], ZManM[51:29]} :
|
||||
KillProdM ? KillProdResult :
|
||||
Overflow ? OverflowResult :
|
||||
Overflow ? OverflowResult :
|
||||
Underflow & ~ResultDenorm & (ResultExp!=1) ? UnderflowResult :
|
||||
FmtM ? {ResultSgn, ResultExp, ResultFrac} :
|
||||
{{32{1'b1}}, ResultSgn, ResultExp[7:0], ResultFrac[51:29]};
|
||||
@ -628,18 +626,20 @@ module alignshift(
|
||||
endmodule
|
||||
|
||||
module fmaadd(
|
||||
input logic [3*`NF+5:0] AlignedAddendM, // Z aligned for addition
|
||||
input logic [2*`NF+1:0] ProdManM,
|
||||
input logic PSgn, ZSgnEffM,
|
||||
input logic KillProdM,
|
||||
output logic [3*`NF+5:0] Sum,
|
||||
output logic NegSum,
|
||||
output logic InvZ,
|
||||
output logic [8:0] NormCnt
|
||||
input logic [3*`NF+5:0] AlignedAddendE, // Z aligned for addition
|
||||
input logic [2*`NF+1:0] ProdManE,
|
||||
input logic PSgnE, ZSgnEffE,
|
||||
input logic KillProdE,
|
||||
input logic XZeroE, YZeroE,
|
||||
output logic [3*`NF+5:0] SumE,
|
||||
output logic NegSumE,
|
||||
output logic InvZE,
|
||||
output logic [8:0] NormCntE
|
||||
);
|
||||
logic [3*`NF+6:0] PreSum, NegPreSum; // possibly negitive sum
|
||||
logic [2*`NF+1:0] ProdMan2; // product being added
|
||||
logic [3*`NF+6:0] AlignedAddend2; // possibly inverted aligned Z
|
||||
logic [3*`NF+6:0] NegProdMan2;
|
||||
logic [8:0] PNormCnt, NNormCnt;
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
@ -649,47 +649,48 @@ module fmaadd(
|
||||
// Negate Z when doing one of the following opperations:
|
||||
// -prod + Z
|
||||
// prod - Z
|
||||
assign InvZ = ZSgnEffM ^ PSgn;
|
||||
assign InvZE = ZSgnEffE ^ PSgnE;
|
||||
|
||||
// Choose an inverted or non-inverted addend - the one is added later
|
||||
assign AlignedAddend2 = InvZ ? -{1'b0, AlignedAddendM} : {1'b0, AlignedAddendM};
|
||||
// Kill the product if the product is too small to effect the addition (determined in fma1.sv)
|
||||
assign ProdMan2 = KillProdM ? 0 : ProdManM;
|
||||
assign AlignedAddend2 = InvZE ? -{1'b0, AlignedAddendE} : {1'b0, AlignedAddendE};
|
||||
// Kill the product if the product is too small to effect the addition (determined in fma1.sv)
|
||||
assign ProdMan2 = ProdManE&{2*`NF+2{~KillProdE}};
|
||||
assign NegProdMan2 = {{`NF+3{~(XZeroE|YZeroE|KillProdE)}}, -ProdMan2, 2'b0};
|
||||
poslza poslza(AlignedAddend2, ProdMan2, PNormCnt);
|
||||
neglza neglza({1'b0,AlignedAddendM}, -{{`NF+3{1'b0}}, ProdMan2, 2'b0}, NNormCnt);
|
||||
neglza neglza({1'b0,AlignedAddendE}, NegProdMan2, NNormCnt);
|
||||
// Do the addition
|
||||
// - add one to negate if the added was inverted
|
||||
// - the 2 extra bits at the begining and end are needed for rounding
|
||||
assign PreSum = AlignedAddend2 + {ProdMan2, 2'b0};
|
||||
assign NegPreSum = AlignedAddendM - {ProdMan2, 2'b0};
|
||||
assign NegPreSum = AlignedAddendE + NegProdMan2;
|
||||
|
||||
// Is the sum negitive
|
||||
assign NegSum = PreSum[3*`NF+6];
|
||||
assign NegSumE = PreSum[3*`NF+6];
|
||||
// If the sum is negitive, negate the sum.
|
||||
assign Sum = NegSum ? NegPreSum[3*`NF+5:0] : PreSum[3*`NF+5:0];
|
||||
assign NormCnt = NegSum ? NNormCnt : PNormCnt;
|
||||
assign SumE = NegSumE ? NegPreSum[3*`NF+5:0] : PreSum[3*`NF+5:0];
|
||||
assign NormCntE = NegSumE ? NNormCnt : PNormCnt;
|
||||
// set to PNormCnt if the product is zero (there may be an additional bit of error from the negation)
|
||||
|
||||
endmodule
|
||||
|
||||
module fmalzc(
|
||||
input logic [3*`NF+5:0] Sum,
|
||||
output logic [8:0] NormCntCheck
|
||||
);
|
||||
// module fmalzc(
|
||||
// input logic [3*`NF+5:0] Sum,
|
||||
// output logic [8:0] NormCntCheck
|
||||
// );
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Leading one detector
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// ///////////////////////////////////////////////////////////////////////////////
|
||||
// // Leading one detector
|
||||
// ///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
//*** replace with non-behavoral code
|
||||
logic [8:0] i;
|
||||
always_comb begin
|
||||
i = 0;
|
||||
while (~Sum[3*`NF+5-i] && $unsigned(i) <= $unsigned(3*`NF+5)) i = i+1; // search for leading one
|
||||
NormCntCheck = i;
|
||||
end
|
||||
// //*** replace with non-behavoral code
|
||||
// logic [8:0] i;
|
||||
// always_comb begin
|
||||
// i = 0;
|
||||
// while (~Sum[3*`NF+5-i] && $unsigned(i) <= $unsigned(3*`NF+5)) i = i+1; // search for leading one
|
||||
// NormCntCheck = i;
|
||||
// end
|
||||
|
||||
endmodule
|
||||
// endmodule
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// Filename: lza.v
|
||||
// Author: Katherine Parry
|
||||
@ -782,10 +783,10 @@ endmodule
|
||||
|
||||
|
||||
module normalize(
|
||||
input logic [3*`NF+5:0] Sum,
|
||||
input logic [3*`NF+5:0] SumM,
|
||||
input logic [`NE-1:0] ZExpM,
|
||||
input logic [`NE+1:0] ProdExpM, // X exponent + Y exponent - bias
|
||||
input logic [8:0] NormCnt,
|
||||
input logic [8:0] NormCntM,
|
||||
input logic FmtM, // precision 1 = double 0 = single
|
||||
input logic KillProdM,
|
||||
input logic AddendStickyM,
|
||||
@ -810,14 +811,14 @@ module normalize(
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Determine if the sum is zero
|
||||
assign SumZero = ~(|Sum);
|
||||
assign SumZero = ~(|SumM);
|
||||
|
||||
// determine the length of the fraction based on precision
|
||||
assign FracLen = FmtM ? `NF+1 : 13'd24;
|
||||
//assign FracLen = `NF;
|
||||
|
||||
// Determine if the result is denormal
|
||||
assign SumExpTmpTmp = KillProdM ? {2'b0, ZExpM} : ProdExpM + -({4'b0, NormCnt} + 1 - (`NF+4));
|
||||
assign SumExpTmpTmp = KillProdM ? {2'b0, ZExpM} : ProdExpM + -({4'b0, NormCntM} + 1 - (`NF+4));
|
||||
assign SumExpTmp = FmtM ? SumExpTmpTmp : (SumExpTmpTmp-1023+127)&{`NE+2{|SumExpTmpTmp}};
|
||||
|
||||
assign PreResultDenorm = $signed(SumExpTmp)<=0 & ($signed(SumExpTmp)>=$signed(-FracLen)) & ~SumZero;
|
||||
@ -826,19 +827,17 @@ module normalize(
|
||||
// - if not denorm add 1 to shift out the leading 1
|
||||
assign DenormShift = PreResultDenorm ? SumExpTmp[8:0] : 1; //*** change this when changing the size of DenormShift also change to an and opperation
|
||||
// Normalize the sum
|
||||
assign SumShiftedTmp = SumZero ? 0 : {2'b0, Sum} << NormCnt+DenormShift; //*** fix mux's with constants in them //***NormCnt can be simplified
|
||||
assign SumShiftedTmp = {2'b0, SumM} << NormCntM+DenormShift; //*** fix mux's with constants in them //***NormCnt can be simplified
|
||||
// LZA correction
|
||||
assign LZAPlus1 = SumShiftedTmp[3*`NF+7];
|
||||
assign SumShifted = LZAPlus1 ? SumShiftedTmp[3*`NF+6:1] : SumShiftedTmp[3*`NF+5:0];
|
||||
assign NormSum = SumShifted[3*`NF+5:2*`NF+3];
|
||||
// Calculate the sticky bit
|
||||
assign NormSumSticky = FmtM ? (|SumShifted[2*`NF+2:0]) : (|SumShifted[136:0]);
|
||||
assign NormSumSticky = (|SumShifted[2*`NF+2:0]) | (|SumShifted[136:2*`NF+3]&~FmtM);
|
||||
assign UfSticky = AddendStickyM | NormSumSticky;
|
||||
|
||||
// Determine sum's exponent
|
||||
assign SumExp = SumZero ? 0 : //***again fix mux
|
||||
ResultDenorm ? 0 :
|
||||
SumExpTmp+LZAPlus1+(~|SumExpTmp&SumShiftedTmp[3*`NF+6]);
|
||||
assign SumExp = (SumExpTmp+LZAPlus1+(~|SumExpTmp&SumShiftedTmp[3*`NF+6])) & {`NE+2{~(SumZero|ResultDenorm)}};
|
||||
// recalculate if the result is denormalized
|
||||
assign ResultDenorm = PreResultDenorm&~SumShiftedTmp[3*`NF+6]&~SumShiftedTmp[3*`NF+7];
|
||||
|
||||
@ -882,7 +881,7 @@ module fmaround(
|
||||
input logic AddendStickyM,
|
||||
input logic NormSumSticky,
|
||||
input logic ZZeroM,
|
||||
input logic InvZ,
|
||||
input logic InvZM,
|
||||
input logic [`NE+1:0] SumExp, // exponent of the normalized sum
|
||||
input logic ResultSgn,
|
||||
output logic CalcPlus1, Plus1, UfPlus1, Minus1,
|
||||
@ -941,8 +940,8 @@ module fmaround(
|
||||
// determine sticky
|
||||
assign Sticky = UfSticky | NormSum[0];
|
||||
// Deterimine if a small number was supposed to be subtrated
|
||||
assign SubBySmallNum = AddendStickyM & InvZ & ~(NormSumSticky|UfRound) & ~ZZeroM; //***here
|
||||
assign UfSubBySmallNum = AddendStickyM & InvZ & ~(NormSumSticky) & ~ZZeroM; //***here
|
||||
assign SubBySmallNum = AddendStickyM & InvZM & ~(NormSumSticky|UfRound) & ~ZZeroM; //***here
|
||||
assign UfSubBySmallNum = AddendStickyM & InvZM & ~(NormSumSticky) & ~ZZeroM; //***here
|
||||
|
||||
always_comb begin
|
||||
// Determine if you add 1
|
||||
@ -983,7 +982,7 @@ module fmaround(
|
||||
// Compute rounded result
|
||||
assign RoundAdd = FmtM ? Minus1 ? {`FLEN+1{1'b1}} : {{{`FLEN{1'b0}}}, Plus1} :
|
||||
Minus1 ? {{36{1'b1}}, 29'b0} : {35'b0, Plus1, 29'b0};
|
||||
assign NormSumTruncated = FmtM ? NormSum[`NF+2:3] : {NormSum[54:32], 29'b0};
|
||||
assign NormSumTruncated = {NormSum[`NF+2:32], NormSum[31:3]&{29{FmtM}}};
|
||||
|
||||
assign {FullResultExp, ResultFrac} = {SumExp, NormSumTruncated} + RoundAdd;
|
||||
assign ResultExp = FullResultExp[`NE-1:0];
|
||||
@ -998,7 +997,7 @@ module fmaflags(
|
||||
input logic XNaNM, YNaNM, ZNaNM, // inputs are NaN
|
||||
input logic [`NE+1:0] FullResultExp, // ResultExp with bits to determine sign and overflow
|
||||
input logic [`NE+1:0] SumExp, // exponent of the normalized sum
|
||||
input logic ZSgnEffM, PSgn,
|
||||
input logic ZSgnEffM, PSgnM,
|
||||
input logic Round, Guard, UfRound, UfLSBNormSum, Sticky, UfPlus1,
|
||||
input logic FmtM, // precision 1 = double 0 = single
|
||||
output logic Invalid, Overflow, Underflow,
|
||||
@ -1021,7 +1020,7 @@ module fmaflags(
|
||||
|
||||
// assign MaxExp = FmtM ? {`NE{1'b1}} : {8{1'b1}};
|
||||
assign SigNaN = XSNaNM | YSNaNM | ZSNaNM;
|
||||
assign Invalid = SigNaN | ((XInfM || YInfM) & ZInfM & (PSgn ^ ZSgnEffM) & ~XNaNM & ~YNaNM) | (XZeroM & YInfM) | (YZeroM & XInfM);
|
||||
assign Invalid = SigNaN | ((XInfM || YInfM) & ZInfM & (PSgnM ^ ZSgnEffM) & ~XNaNM & ~YNaNM) | (XZeroM & YInfM) | (YZeroM & XInfM);
|
||||
|
||||
// Set Overflow flag if the number is too big to be represented
|
||||
// - Don't set the overflow flag if an overflowed result isn't outputed
|
||||
|
@ -124,8 +124,10 @@ module fpu (
|
||||
logic [63:0] SgnResE, SgnResM; // sign injection result
|
||||
logic SgnNVE, SgnNVM; // sign injection invalid flag (Not Valid)
|
||||
|
||||
logic [63:0] FResM, FResW; // selected result that is ready in the memory stage
|
||||
logic [4:0] FFlgM; // selected flag that is ready in the memory stage
|
||||
logic [63:0] FResE, FResM, FResW; // selected result that is ready in the memory stage
|
||||
logic [4:0] FFlgE, FFlgM; // selected flag that is ready in the memory stage
|
||||
|
||||
logic [`XLEN-1:0] FIntResE;
|
||||
|
||||
logic [63:0] FPUResultW; // final FP result being written to the FP register
|
||||
|
||||
@ -133,7 +135,7 @@ module fpu (
|
||||
logic FDivSqrtDoneE; // is divide done
|
||||
logic [63:0] DivInput1E, DivInput2E; // inputs to divide/squareroot unit
|
||||
logic FDivClk; // clock for divide/squareroot unit
|
||||
logic [63:0] AlignedSrcAM; // align SrcA to the floating point format
|
||||
logic [63:0] AlignedSrcAE; // align SrcA to the floating point format
|
||||
|
||||
|
||||
|
||||
@ -305,7 +307,16 @@ module fpu (
|
||||
assign FWriteDataE = FSrcYE[`XLEN-1:0];
|
||||
|
||||
|
||||
// Align SrcA to MSB when single precicion
|
||||
mux2 #(64) SrcAMux({{32{1'b1}}, SrcAE[31:0]}, {{64-`XLEN{1'b1}}, SrcAE}, FmtE, AlignedSrcAE);
|
||||
|
||||
// select a result that may be written to the FP register
|
||||
mux4 #(64) FResMux(AlignedSrcAE, SgnResE, CmpResE, CvtResE, FResSelE, FResE);
|
||||
mux4 #(5) FFlgMux(5'b0, {4'b0, SgnNVE}, {4'b0, CmpNVE}, CvtFlgE, FResSelE, FFlgE);
|
||||
|
||||
// select the result that may be written to the integer register - to IEU
|
||||
mux4 #(`XLEN) IntResMux(CmpResE[`XLEN-1:0], FSrcXE[`XLEN-1:0], ClassResE[`XLEN-1:0], CvtResE[`XLEN-1:0], FIntResSelE, FIntResE);
|
||||
|
||||
|
||||
|
||||
//***will synth remove registers of values that are always zero?
|
||||
@ -313,7 +324,7 @@ module fpu (
|
||||
// E/M pipe registers
|
||||
////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
flopenrc #(64) EMFpReg1(clk, reset, FlushM, ~StallM, FSrcXE, FSrcXM);
|
||||
// flopenrc #(64) EMFpReg1(clk, reset, FlushM, ~StallM, FSrcXE, FSrcXM);
|
||||
flopenrc #(65) EMFpReg2(clk, reset, FlushM, ~StallM, {XSgnE,XExpE,XManE}, {XSgnM,XExpM,XManM});
|
||||
flopenrc #(65) EMFpReg3(clk, reset, FlushM, ~StallM, {YSgnE,YExpE,YManE}, {YSgnM,YExpM,YManM});
|
||||
flopenrc #(65) EMFpReg4(clk, reset, FlushM, ~StallM, {ZSgnE,ZExpE,ZManE}, {ZSgnM,ZExpM,ZManM});
|
||||
@ -321,23 +332,23 @@ module fpu (
|
||||
{XZeroE, YZeroE, ZZeroE, XInfE, YInfE, ZInfE, XNaNE, YNaNE, ZNaNE, XSNaNE, YSNaNE, ZSNaNE},
|
||||
{XZeroM, YZeroM, ZZeroM, XInfM, YInfM, ZInfM, XNaNM, YNaNM, ZNaNM, XSNaNM, YSNaNM, ZSNaNM});
|
||||
|
||||
flopenrc #(64) EMRegCmpRes(clk, reset, FlushM, ~StallM, CmpResE, CmpResM);
|
||||
flopenrc #(1) EMRegCmpFlg(clk, reset, FlushM, ~StallM, CmpNVE, CmpNVM);
|
||||
flopenrc #(64) EMRegCmpRes(clk, reset, FlushM, ~StallM, FResE, FResM);
|
||||
flopenrc #(5) EMRegCmpFlg(clk, reset, FlushM, ~StallM, FFlgE, FFlgM);
|
||||
|
||||
flopenrc #(64) EMRegSgnRes(clk, reset, FlushM, ~StallM, SgnResE, SgnResM);
|
||||
flopenrc #(1) EMRegSgnFlg(clk, reset, FlushM, ~StallM, SgnNVE, SgnNVM);
|
||||
flopenrc #(`XLEN) EMRegSgnRes(clk, reset, FlushM, ~StallM, FIntResE, FIntResM);
|
||||
// flopenrc #(1) EMRegSgnFlg(clk, reset, FlushM, ~StallM, SgnNVE, SgnNVM);
|
||||
|
||||
flopenrc #(64) EMRegCvtFpRes(clk, reset, FlushM, ~StallM, CvtFpResE, CvtFpResM);
|
||||
flopenrc #(5) EMRegCvtFpFlg(clk, reset, FlushM, ~StallM, CvtFpFlgE, CvtFpFlgM);
|
||||
|
||||
flopenrc #(64) EMRegCvtRes(clk, reset, FlushM, ~StallM, CvtResE, CvtResM);
|
||||
flopenrc #(5) EMRegCvtFlg(clk, reset, FlushM, ~StallM, CvtFlgE, CvtFlgM);
|
||||
// flopenrc #(64) EMRegCvtRes(clk, reset, FlushM, ~StallM, CvtResE, CvtResM);
|
||||
// flopenrc #(5) EMRegCvtFlg(clk, reset, FlushM, ~StallM, CvtFlgE, CvtFlgM);
|
||||
|
||||
flopenrc #(64) EMRegClass(clk, reset, FlushM, ~StallM, ClassResE, ClassResM);
|
||||
// flopenrc #(64) EMRegClass(clk, reset, FlushM, ~StallM, ClassResE, ClassResM);
|
||||
|
||||
flopenrc #(18) EMCtrlReg(clk, reset, FlushM, ~StallM,
|
||||
{FRegWriteE, FResultSelE, FResSelE, FIntResSelE, FrmE, FmtE, FOpCtrlE, FWriteIntE, XNormE, YNormE},
|
||||
{FRegWriteM, FResultSelM, FResSelM, FIntResSelM, FrmM, FmtM, FOpCtrlM, FWriteIntM, XNormM, YNormM});
|
||||
flopenrc #(14) EMCtrlReg(clk, reset, FlushM, ~StallM,
|
||||
{FRegWriteE, FResultSelE, FrmE, FmtE, FOpCtrlE, FWriteIntE, XNormE, YNormE},
|
||||
{FRegWriteM, FResultSelM, FrmM, FmtM, FOpCtrlM, FWriteIntM, XNormM, YNormM});
|
||||
|
||||
|
||||
|
||||
@ -348,16 +359,7 @@ module fpu (
|
||||
//BEGIN MEMORY STAGE
|
||||
////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Align SrcA to MSB when single precicion
|
||||
mux2 #(64) SrcAMux({{32{1'b1}}, SrcAM[31:0]}, {{64-`XLEN{1'b1}}, SrcAM}, FmtM, AlignedSrcAM);
|
||||
|
||||
// select a result that may be written to the FP register
|
||||
mux4 #(64) FResMux(AlignedSrcAM, SgnResM, CmpResM, CvtResM, FResSelM, FResM);
|
||||
mux4 #(5) FFlgMux(5'b0, {4'b0, SgnNVM}, {4'b0, CmpNVM}, CvtFlgM, FResSelM, FFlgM);
|
||||
|
||||
// select the result that may be written to the integer register - to IEU
|
||||
mux4 #(`XLEN) IntResMux(CmpResM[`XLEN-1:0], FSrcXM[`XLEN-1:0], ClassResM[`XLEN-1:0], CvtResM[`XLEN-1:0], FIntResSelM, FIntResM);
|
||||
|
||||
// FPU flag selection - to privileged
|
||||
mux5 #(5) FPUFlgMux(5'b0, FMAFlgM, CvtFpFlgM, FDivFlgM, FFlgM, FResultSelW, SetFflagsM);
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user