Clean up PMA checker and begin PMP checker

This commit is contained in:
Thomas Fleming 2021-04-29 02:20:39 -04:00
parent c62fdfb7b3
commit 5f2bccd88f
8 changed files with 196 additions and 65 deletions

View File

@ -58,7 +58,9 @@ module ahblite (
output logic [`XLEN-1:0] MMUReadPTE,
output logic MMUReady,
// Signals from PMA checker
input logic SquashAHBAccess,
input logic SquashBusAccess,
// Signals to PMA checker (metadata of proposed access)
output logic AtomicAccessM, ExecuteAccessF, WriteAccessM, ReadAccessM,
// Return from bus
output logic [`XLEN-1:0] ReadDataW,
// AHB-Lite external signals
@ -79,8 +81,7 @@ module ahblite (
output logic HWRITED,
// Stalls
output logic /*InstrUpdate, */DataStall,
output logic MemAckW
// *** add a chip-level ready signal as part of handshake
output logic MemAckW
);
logic GrantData;
@ -90,9 +91,6 @@ module ahblite (
logic IReady, DReady;
logic CaptureDataM,CapturedDataAvailable;
// Describes type of access
logic Atomic, Execute, Write, Read;
assign HCLK = clk;
assign HRESETn = ~reset;
@ -103,43 +101,56 @@ module ahblite (
// while an instruction read is occuring, the instruction read finishes before
// the data access can take place.
import ahbliteState::*;
statetype BusState, NextBusState;
statetype BusState, ProposedNextBusState, NextBusState;
flopenl #(.TYPE(statetype)) busreg(HCLK, ~HRESETn, 1'b1, NextBusState, IDLE, BusState);
// *** If the SquashAHBAccess signal is high, we need to set NextBusState to IDLE.
// We could either have this case statement set a signal ProposedNextBusState, which gets
// used for NextBusState when we are not squashing. Alternatively, we could add a bunch of
// conditional statments below
// This case statement computes the desired next state for the AHBlite,
// prioritizing address translations, then atomics, then data accesses, and
// finally instructions. This proposition controls HADDR so the PMA and PMP
// checkers can determine whether the access is allowed. If not, the actual
// NextWalkerState is set to IDLE.
// *** This ability to squash accesses must be replicated by any bus
// interface that might be used in place of the ahblite.
always_comb
case (BusState)
IDLE: if (MMUTranslate) NextBusState = MMUTRANSLATE;
else if (AtomicMaskedM[1]) NextBusState = ATOMICREAD;
else if (MemReadM) NextBusState = MEMREAD; // Memory has priority over instructions
else if (MemWriteM) NextBusState = MEMWRITE;
else if (InstrReadF) NextBusState = INSTRREAD;
else NextBusState = IDLE;
MMUTRANSLATE: if (~HREADY) NextBusState = MMUTRANSLATE;
else NextBusState = IDLE;
ATOMICREAD: if (~HREADY) NextBusState = ATOMICREAD;
else NextBusState = ATOMICWRITE;
ATOMICWRITE: if (~HREADY) NextBusState = ATOMICWRITE;
else if (InstrReadF) NextBusState = INSTRREAD;
else NextBusState = IDLE;
MEMREAD: if (~HREADY) NextBusState = MEMREAD;
else if (InstrReadF) NextBusState = INSTRREADC;
else NextBusState = IDLE;
MEMWRITE: if (~HREADY) NextBusState = MEMWRITE;
else if (InstrReadF) NextBusState = INSTRREAD;
else NextBusState = IDLE;
INSTRREAD:
if (~HREADY) NextBusState = INSTRREAD;
else NextBusState = IDLE; // if (InstrReadF still high)
INSTRREADC: if (~HREADY) NextBusState = INSTRREADC; // "C" for "competing", meaning please don't mess up the memread in the W stage.
else NextBusState = IDLE;
default: NextBusState = IDLE;
IDLE: if (MMUTranslate) ProposedNextBusState = MMUTRANSLATE;
else if (AtomicMaskedM[1]) ProposedNextBusState = ATOMICREAD;
else if (MemReadM) ProposedNextBusState = MEMREAD; // Memory has priority over instructions
else if (MemWriteM) ProposedNextBusState = MEMWRITE;
else if (InstrReadF) ProposedNextBusState = INSTRREAD;
else ProposedNextBusState = IDLE;
MMUTRANSLATE: if (~HREADY) ProposedNextBusState = MMUTRANSLATE;
else ProposedNextBusState = IDLE;
ATOMICREAD: if (~HREADY) ProposedNextBusState = ATOMICREAD;
else ProposedNextBusState = ATOMICWRITE;
ATOMICWRITE: if (~HREADY) ProposedNextBusState = ATOMICWRITE;
else if (InstrReadF) ProposedNextBusState = INSTRREAD;
else ProposedNextBusState = IDLE;
MEMREAD: if (~HREADY) ProposedNextBusState = MEMREAD;
else if (InstrReadF) ProposedNextBusState = INSTRREADC;
else ProposedNextBusState = IDLE;
MEMWRITE: if (~HREADY) ProposedNextBusState = MEMWRITE;
else if (InstrReadF) ProposedNextBusState = INSTRREAD;
else ProposedNextBusState = IDLE;
INSTRREAD: if (~HREADY) ProposedNextBusState = INSTRREAD;
else ProposedNextBusState = IDLE; // if (InstrReadF still high)
INSTRREADC: if (~HREADY) ProposedNextBusState = INSTRREADC; // "C" for "competing", meaning please don't mess up the memread in the W stage.
else ProposedNextBusState = IDLE;
default: ProposedNextBusState = IDLE;
endcase
// Determine access type (important for determining whether to fault)
assign AtomicAccessM = (ProposedNextBusState == ATOMICREAD) || (ProposedNextBusState == ATOMICWRITE);
assign ExecuteAccessF = (ProposedNextBusState == INSTRREAD) || (ProposedNextBusState == INSTRREADC);
assign WriteAccessM = (ProposedNextBusState == MEMWRITE) || (ProposedNextBusState == ATOMICWRITE);
assign ReadAccessM = (ProposedNextBusState == MEMREAD) || (ProposedNextBusState == ATOMICREAD) ||
(ProposedNextBusState == MMUTRANSLATE);
// The PMA and PMP checkers can decide to squash the access
assign NextBusState = (SquashBusAccess) ? IDLE : ProposedNextBusState;
// stall signals
// Note that we need to extend both stalls when MMUTRANSLATE goes to idle,
// since translation might not be complete.
@ -150,16 +161,9 @@ module ahblite (
assign #1 InstrStall = ((NextBusState == INSTRREAD) || (NextBusState == INSTRREADC) ||
MMUStall);
// Determine access type (important for determining whether to fault)
assign Atomic = ((NextBusState == ATOMICREAD) || (NextBusState == ATOMICWRITE));
assign Execute = ((NextBusState == INSTRREAD) || (NextBusState == INSTRREADC));
assign Write = ((NextBusState == MEMWRITE) || (NextBusState == ATOMICWRITE));
assign Read = ((NextBusState == MEMREAD) || (NextBusState == ATOMICREAD) ||
(NextBusState == MMUTRANSLATE));
// bus outputs
assign #1 GrantData = (NextBusState == MEMREAD) || (NextBusState == MEMWRITE) ||
(NextBusState == ATOMICREAD) || (NextBusState == ATOMICWRITE);
assign #1 GrantData = (ProposedNextBusState == MEMREAD) || (ProposedNextBusState == MEMWRITE) ||
(ProposedNextBusState == ATOMICREAD) || (ProposedNextBusState == ATOMICWRITE);
assign #1 AccessAddress = (GrantData) ? MemPAdrM[31:0] : InstrPAdrF[31:0];
assign #1 HADDR = (MMUTranslate) ? MMUPAdr[31:0] : AccessAddress;
generate
@ -184,7 +188,7 @@ module ahblite (
// Route signals to Instruction and Data Caches
// *** assumes AHBW = XLEN
assign MMUReady = (BusState == MMUTRANSLATE && NextBusState == IDLE);
assign MMUReady = (BusState == MMUTRANSLATE && HREADY);
assign InstrRData = HRDATA;
assign InstrAckF = (BusState == INSTRREAD) && (NextBusState != INSTRREAD) || (BusState == INSTRREADC) && (NextBusState != INSTRREADC);

View File

@ -54,6 +54,8 @@ module csr #(parameter
output logic [11:0] MIP_REGW, MIE_REGW,
output logic STATUS_MIE, STATUS_SIE,
output logic STATUS_MXR, STATUS_SUM,
output logic STATUS_MPRV,
output logic [`XLEN-1:0] PMPADDR_ARRAY_REGW [0:15],
input logic [4:0] SetFflagsM,
output logic [2:0] FRM_REGW,
// output logic [11:0] MIP_REGW, SIP_REGW, UIP_REGW, MIE_REGW, SIE_REGW, UIE_REGW,

View File

@ -91,6 +91,7 @@ module csrm #(parameter
output logic [`XLEN-1:0] CSRMReadValM, MEPC_REGW, MTVEC_REGW,
output logic [31:0] MCOUNTEREN_REGW, MCOUNTINHIBIT_REGW,
output logic [`XLEN-1:0] MEDELEG_REGW, MIDELEG_REGW,
output logic [`XLEN-1:0] PMPADDR_ARRAY_REGW [0:15],
input logic [11:0] MIP_REGW, MIE_REGW,
output logic WriteMSTATUSM,
output logic IllegalCSRMAccessM, IllegalCSRMWriteReadonlyM
@ -99,8 +100,6 @@ module csrm #(parameter
logic [`XLEN-1:0] MISA_REGW;
logic [`XLEN-1:0] MSCRATCH_REGW,MCAUSE_REGW, MTVAL_REGW;
logic [63:0] PMPCFG01_REGW, PMPCFG23_REGW; // 64-bit registers in RV64, or two 32-bit registers in RV32
logic [`XLEN-1:0] PMPADDR_ARRAY_REGW [0:15]; // *** Might have to make 16 individual registers
//logic [`XLEN-1:0] PMPADDR0_REGW;
logic WriteMTVECM, WriteMEDELEGM, WriteMIDELEGM;
logic WriteMSCRATCHM, WriteMEPCM, WriteMCAUSEM, WriteMTVALM;

View File

@ -37,10 +37,11 @@ module csrsr (
output logic [1:0] STATUS_MPP,
output logic STATUS_SPP, STATUS_TSR,
output logic STATUS_MIE, STATUS_SIE,
output logic STATUS_MXR, STATUS_SUM
output logic STATUS_MXR, STATUS_SUM,
output logic STATUS_MPRV
);
logic STATUS_SD, STATUS_TW, STATUS_TVM, STATUS_SUM_INT, STATUS_MPRV, STATUS_MPRV_INT;
logic STATUS_SD, STATUS_TW, STATUS_TVM, STATUS_SUM_INT, STATUS_MPRV_INT;
logic [1:0] STATUS_SXL, STATUS_UXL, STATUS_XS, STATUS_FS, STATUS_FS_INT, STATUS_MPP_NEXT;
logic STATUS_MPIE, STATUS_SPIE, STATUS_UPIE, STATUS_UIE;

View File

@ -28,22 +28,22 @@
`include "wally-config.vh"
module pmachecker (
input logic clk, reset,
input logic [31:0] HADDR,
input logic [2:0] HSIZE,
input logic HWRITE,
input logic [2:0] HBURST,
input logic Atomic, Execute, Write, Read,
input logic AtomicAccessM, ExecuteAccessF, WriteAccessM, ReadAccessM,
// *** Add pipeline suffixes
output logic Cacheable, Idempotent, AtomicAllowed,
output logic SquashAHBAccess,
output logic PMASquashBusAccess,
output logic [5:0] HSELRegions,
output logic InstrAccessFaultF,
output logic LoadAccessFaultM,
output logic StoreAccessFaultM
output logic PMAInstrAccessFaultF,
output logic PMALoadAccessFaultM,
output logic PMAStoreAccessFaultM
);
// Signals are high if the memory access is within the given region
@ -51,6 +51,7 @@ module pmachecker (
logic PreHSELUART;
logic ExecutableRegion, ReadableRegion, WritableRegion;
logic Empty;
// Determine which region of physical memory (if any) is being accessed
@ -61,6 +62,7 @@ module pmachecker (
adrdec uartdec(HADDR, `UARTBASE, `UARTRANGE, PreHSELUART);
adrdec plicdec(HADDR, `PLICBASE, `PLICRANGE, HSELPLIC);
// *** Should this fault?
assign HSELUART = PreHSELUART && (HSIZE == 3'b000); // only byte writes to UART are supported
// Swizzle region bits
@ -75,12 +77,17 @@ module pmachecker (
// *** Temporarily assume only RAM regions allow full atomic operations -- likely wrong
assign AtomicAllowed = HSELBootTim | HSELTim;
assign ExecutableRegion = HSELBootTim | HSELTim;
assign ReadableRegion = HSELBootTim | HSELTim | HSELCLINT | HSELGPIO | HSELUART | HSELPLIC;
assign WritableRegion = HSELBootTim | HSELTim | HSELCLINT | HSELGPIO | HSELUART | HSELPLIC;
assign Empty = ~|HSELRegions;
assign InstrAccessFaultF = Empty && Execute;
assign LoadAccessFaultM = Empty && Read;
assign StoreAccessFaultM = Empty && Write;
assign PMAInstrAccessFaultF = ExecuteAccessF && (Empty || ~ExecutableRegion);
assign PMALoadAccessFaultM = ReadAccessM && (Empty || ~ReadableRegion);
assign PMAStoreAccessFaultM = WriteAccessM && (Empty || ~WritableRegion);
assign SquashAHBAccess = InstrAccessFaultF || LoadAccessFaultM || StoreAccessFaultM;
//assign PMASquashBusAccess = PMAInstrAccessFaultF || PMALoadAccessFaultM || PMAStoreAccessFaultM;
assign PMASquashBusAccess = 0;
endmodule

View File

@ -0,0 +1,104 @@
///////////////////////////////////////////
// pmpchecker.sv
//
// Written: tfleming@hmc.edu & jtorrey@hmc.edu 28 April 2021
// Modified:
//
// Purpose: Examines all physical memory accesses and checks them against the
// current values of the physical memory protection (PMP) registers.
// Can raise an access fault on illegal reads, writes, and instruction
// fetches.
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-config.vh"
module pmpchecker (
input logic clk, reset,
input logic [31:0] HADDR,
input logic [1:0] PrivilegeModeW,
input logic [1:0] STATUS_MPP,
input logic STATUS_MPRV,
input logic [`XLEN-1:0] PMPADDR_ARRAY_REGW [0:15],
input logic ExecuteAccessF, WriteAccessM, ReadAccessM,
output logic PMPSquashBusAccess,
output logic PMPInstrAccessFaultF,
output logic PMPLoadAccessFaultM,
output logic PMPStoreAccessFaultM
);
assign PMPSquashBusAccess = '0;
assign PMPInstrAccessFaultF = '0;
assign PMPLoadAccessFaultM = '0;
assign PMPStoreAccessFaultM = '0;
/*
// Signals are high if the memory access is within the given region
logic HSELBootTim, HSELTim, HSELCLINT, HSELGPIO, HSELUART, HSELPLIC;
logic PreHSELUART;
logic ExecutableRegion, ReadableRegion, WritableRegion;
logic Empty;
// Determine which region of physical memory (if any) is being accessed
adrdec boottimdec(HADDR, `BOOTTIMBASE, `BOOTTIMRANGE, HSELBootTim);
adrdec timdec(HADDR, `TIMBASE, `TIMRANGE, HSELTim);
adrdec clintdec(HADDR, `CLINTBASE, `CLINTRANGE, HSELCLINT);
adrdec gpiodec(HADDR, `GPIOBASE, `GPIORANGE, HSELGPIO);
adrdec uartdec(HADDR, `UARTBASE, `UARTRANGE, PreHSELUART);
adrdec plicdec(HADDR, `PLICBASE, `PLICRANGE, HSELPLIC);
// *** Should this fault?
assign HSELUART = PreHSELUART && (HSIZE == 3'b000); // only byte writes to UART are supported
// Swizzle region bits
assign HSELRegions = {HSELBootTim, HSELTim, HSELCLINT, HSELGPIO, HSELUART, HSELPLIC};
// Only RAM memory regions are cacheable
assign Cacheable = HSELBootTim | HSELTim;
// *** Temporarily assume only RAM regions are idempotent -- likely wrong
assign Idempotent = HSELBootTim | HSELTim;
// *** Temporarily assume only RAM regions allow full atomic operations -- likely wrong
assign AtomicAllowed = HSELBootTim | HSELTim;
assign ExecutableRegion = HSELBootTim | HSELTim;
assign ReadableRegion = HSELBootTim | HSELTim | HSELCLINT | HSELGPIO | HSELUART | HSELPLIC;
assign WritableRegion = HSELBootTim | HSELTim | HSELCLINT | HSELGPIO | HSELUART | HSELPLIC;
assign Empty = ~|HSELRegions;
assign InstrAccessFaultF = ExecuteAccessF && (Empty || ~ExecutableRegion);
assign LoadAccessFaultM = ReadAccessM && (Empty || ~ReadableRegion);
assign StoreAccessFaultM = WriteAccessM && (Empty || ~WritableRegion);
assign SquashBusAccess = InstrAccessFaultF || LoadAccessFaultM || StoreAccessFaultM;
*/
endmodule

View File

@ -62,9 +62,9 @@ module privileged (
input logic [31:0] HADDR,
input logic [2:0] HSIZE, HBURST,
input logic HWRITE,
input logic Atomic, Execute, Write, Read,
input logic AtomicAccessM, ExecuteAccessF, WriteAccessM, ReadAccessM,
output logic Cacheable, Idempotent, AtomicAllowed,
output logic SquashAHBAccess,
output logic SquashBusAccess,
output logic [5:0] HSELRegions
);
@ -90,9 +90,16 @@ module privileged (
logic [1:0] STATUS_MPP;
logic STATUS_SPP, STATUS_TSR;
logic STATUS_MIE, STATUS_SIE;
logic STATUS_MPRV;
logic [11:0] MIP_REGW, MIE_REGW;
logic md, sd;
logic [`XLEN-1:0] PMPADDR_ARRAY_REGW [0:15];
logic PMASquashBusAccess, PMPSquashBusAccess;
logic PMAInstrAccessFaultF, PMALoadAccessFaultM, PMAStoreAccessFaultM;
logic PMPInstrAccessFaultF, PMPLoadAccessFaultM, PMPStoreAccessFaultM;
///////////////////////////////////////////
// track the current privilege level
///////////////////////////////////////////
@ -137,6 +144,7 @@ module privileged (
///////////////////////////////////////////
pmachecker pmachecker(.*);
pmpchecker pmpchecker(.*);
///////////////////////////////////////////
// Extract exceptions by name and handle them
@ -153,6 +161,12 @@ module privileged (
assign LoadPageFaultM = DTLBLoadPageFaultM || WalkerLoadPageFaultM;
assign StorePageFaultM = DTLBStorePageFaultM || WalkerStorePageFaultM;
assign InstrAccessFaultF = PMAInstrAccessFaultF || PMPInstrAccessFaultF;
assign LoadAccessFaultM = PMALoadAccessFaultM || PMPLoadAccessFaultM;
assign StoreAccessFaultM = PMAStoreAccessFaultM || PMPStoreAccessFaultM;
assign SquashBusAccess = PMASquashBusAccess || PMPSquashBusAccess;
// pipeline fault signals
flopenrc #(2) faultregD(clk, reset, FlushD, ~StallD,
{InstrPageFaultF, InstrAccessFaultF},

View File

@ -112,9 +112,9 @@ module wallypipelinedhart (
logic [1:0] PageTypeF, PageTypeM;
// PMA checker signals
logic Atomic, Execute, Write, Read;
logic AtomicAccessM, ExecuteAccessF, WriteAccessM, ReadAccessM;
logic Cacheable, Idempotent, AtomicAllowed;
logic SquashAHBAccess;
logic SquashBusAccess;
// IMem stalls
logic ICacheStallF;