Modified btb forwarding logic to reduce critical path.

This commit is contained in:
Ross Thompson 2023-02-24 17:47:43 -06:00
parent 5243d1e1d4
commit 4ffaa75c2a
2 changed files with 32 additions and 24 deletions

View File

@ -77,7 +77,7 @@ module bpred (
logic AnyWrongPredInstrClassD, AnyWrongPredInstrClassE;
logic DirPredictionWrongE;
logic SelBPPredF;
logic BPPCSrcF;
logic [`XLEN-1:0] BPPredPCF;
logic [`XLEN-1:0] PCNext0F;
logic [`XLEN-1:0] PCCorrectE;
@ -96,6 +96,7 @@ module bpred (
logic BranchM, JumpM, RetM, JalM;
logic WrongBPRetD;
logic [`XLEN-1:0] PCW;
// Part 1 branch direction prediction
// look into the 2 port Sram model. something is wrong.
@ -147,16 +148,18 @@ module bpred (
btb #(`BTB_SIZE)
TargetPredictor(.clk, .reset, .StallF, .StallD, .StallE, .StallM, .StallW, .FlushD, .FlushE, .FlushM, .FlushW,
.PCNextF, .PCF, .PCD, .PCE, .PCM,
.PCNextF, .PCF, .PCD, .PCE, .PCM, .PCW,
.BTAF, .BTAD,
.BTBPredInstrClassF({BTBJalF, BTBRetF, BTBJumpF, BTBBranchF}),
.PredictionInstrClassWrongM,
.IEUAdrE, .IEUAdrM,
.InstrClassD({JalD, RetD, JumpD, BranchD}), .InstrClassE({JalE, RetE, JumpE, BranchE}), .InstrClassM({JalM, RetM, JumpM, BranchM}));
// the branch predictor needs a compact decoding of the instruction class.
if (`INSTR_CLASS_PRED == 0) begin : DirectClassDecode
logic [3:0] InstrClassF;
if (!`INSTR_CLASS_PRED) begin : DirectClassDecode
// This section is mainly for testing, verification, and PPA comparison.
// An alternative to using the BTB to store the instruction class is to partially decode
// the instructions in the Fetch stage into, Jal, Ret, Jump, and Branch instructions.
// This logic is not described in the text book as of 23 February 2023.
logic cjal, cj, cjr, cjalr, CJumpF, CBranchF;
logic NCJumpF, NCBranchF;
@ -185,9 +188,10 @@ module bpred (
(`C_SUPPORTED & (cjal | (cjalr & (PostSpillInstrRawF[11:7] & 5'h1b) == 5'h01)));
end else begin
// This section connects the BTB's instruction class prediction.
assign {BPJalF, BPRetF, BPJumpF, BPBranchF} = {BTBJalF, BTBRetF, BTBJumpF, BTBBranchF};
end
assign SelBPPredF = (BPBranchF & DirPredictionF[1]) | BPJumpF;
assign BPPCSrcF = (BPBranchF & DirPredictionF[1]) | BPJumpF;
// Part 3 RAS
RASPredictor RASPredictor(.clk, .reset, .StallF, .StallD, .StallE, .StallM, .FlushD, .FlushE, .FlushM,
@ -196,11 +200,7 @@ module bpred (
assign BPPredPCF = BPRetF ? RASPCF : BTAF;
//assign InstrClassD[0] = BranchD;
//assign InstrClassD[1] = JumpD ;
//assign InstrClassD[2] = JumpD & (InstrD[19:15] & 5'h1B) == 5'h01; // return must return to ra or x5
assign RetD = JumpD & (InstrD[19:15] & 5'h1B) == 5'h01; // return must return to ra or x5
//assign InstrClassD[3] = JumpD & (InstrD[11:7] & 5'h1B) == 5'h01; // jal(r) must link to ra or x5
assign JalD = JumpD & (InstrD[11:7] & 5'h1B) == 5'h01; // jal(r) must link to ra or x5
flopenrc #(2) InstrClassRegE(clk, reset, FlushE, ~StallE, {JalD, RetD}, {JalE, RetE});
@ -227,7 +227,6 @@ module bpred (
assign WrongBPRetD = BPRetD ^ RetD;
// branch is wrong only if the PC does not match and both the Decode and Fetch stages have valid instructions.
//assign BPPredWrongE = (PredictionPCWrongE & |InstrClassE | (AnyWrongPredInstrClassE & ~|InstrClassE));
assign BPPredWrongE = PredictionPCWrongE & InstrValidE & InstrValidD;
logic BPPredWrongEAlt;
@ -237,7 +236,7 @@ module bpred (
// Output the predicted PC or corrected PC on miss-predict.
// Selects the BP or PC+2/4.
mux2 #(`XLEN) pcmux0(PCPlus2or4F, BPPredPCF, SelBPPredF, PCNext0F);
mux2 #(`XLEN) pcmux0(PCPlus2or4F, BPPredPCF, BPPCSrcF, PCNext0F);
// If the prediction is wrong select the correct address.
mux2 #(`XLEN) pcmux1(PCNext0F, PCCorrectE, BPPredWrongE, PCNext1F);
// Correct branch/jump target.
@ -283,5 +282,6 @@ module bpred (
// **** Fix me
assign InstrClassM = {JalM, RetM, JumpM, BranchM};
flopenr #(`XLEN) PCWReg(clk, reset, ~StallW, PCM, PCW);
endmodule

View File

@ -34,7 +34,7 @@ module btb #(parameter Depth = 10 ) (
input logic clk,
input logic reset,
input logic StallF, StallD, StallE, StallM, StallW, FlushD, FlushE, FlushM, FlushW,
input logic [`XLEN-1:0] PCNextF, PCF, PCD, PCE, PCM, // PC at various stages
input logic [`XLEN-1:0] PCNextF, PCF, PCD, PCE, PCM, PCW,// PC at various stages
output logic [`XLEN-1:0] BTAF, // BTB's guess at PC
output logic [`XLEN-1:0] BTAD,
output logic [3:0] BTBPredInstrClassF, // BTB's guess at instruction class
@ -47,12 +47,14 @@ module btb #(parameter Depth = 10 ) (
input logic [3:0] InstrClassM // Instruction class to insert into btb
);
logic [Depth-1:0] PCNextFIndex, PCFIndex, PCDIndex, PCEIndex, PCMIndex;
logic [Depth-1:0] PCNextFIndex, PCFIndex, PCDIndex, PCEIndex, PCMIndex, PCWIndex;
logic [`XLEN-1:0] ResetPC;
logic MatchF, MatchD, MatchE, MatchM, MatchNextX, MatchXF;
logic MatchF, MatchD, MatchE, MatchM, MatchW, MatchNextX, MatchX;
logic [`XLEN+3:0] ForwardBTBPrediction, ForwardBTBPredictionF;
logic [`XLEN+3:0] TableBTBPredictionF;
logic UpdateEn;
logic [3:0] InstrClassW;
logic [`XLEN-1:0] IEUAdrW;
// hashing function for indexing the PC
// We have Depth bits to index, but XLEN bits as the input.
@ -62,6 +64,7 @@ module btb #(parameter Depth = 10 ) (
assign PCDIndex = {PCD[Depth+1] ^ PCD[1], PCD[Depth:2]};
assign PCEIndex = {PCE[Depth+1] ^ PCE[1], PCE[Depth:2]};
assign PCMIndex = {PCM[Depth+1] ^ PCM[1], PCM[Depth:2]};
assign PCWIndex = {PCW[Depth+1] ^ PCW[1], PCW[Depth:2]};
// must output a valid PC and valid bit during reset. Because only PCF, not PCNextF is reset, PCNextF is invalid
// during reset. The BTB must produce a non X PC1NextF to allow the simulation to run.
@ -71,21 +74,24 @@ module btb #(parameter Depth = 10 ) (
assign PCNextFIndex = reset ? ResetPC[Depth+1:2] : {PCNextF[Depth+1] ^ PCNextF[1], PCNextF[Depth:2]};
assign MatchF = PCNextFIndex == PCFIndex;
assign MatchD = PCNextFIndex == PCDIndex;
assign MatchE = PCNextFIndex == PCEIndex;
assign MatchM = PCNextFIndex == PCMIndex;
assign MatchNextX = MatchF | MatchD | MatchE | MatchM;
assign MatchD = PCFIndex == PCDIndex;
assign MatchE = PCFIndex == PCEIndex;
assign MatchM = PCFIndex == PCMIndex;
assign MatchW = PCFIndex == PCWIndex;
assign MatchX = MatchD | MatchE | MatchM | MatchW;
flopenr #(1) MatchReg(clk, reset, ~StallF, MatchNextX, MatchXF);
// flopenr #(1) MatchReg(clk, reset, ~StallF, MatchNextX, MatchXF);
assign ForwardBTBPrediction = MatchF ? {BTBPredInstrClassF, BTAF} :
MatchD ? {InstrClassD, BTAD} :
assign ForwardBTBPredictionF = MatchD ? {InstrClassD, BTAD} :
MatchE ? {InstrClassE, IEUAdrE} :
{InstrClassM, IEUAdrM} ;
MatchM ? {InstrClassM, IEUAdrM} :
{InstrClassW, IEUAdrW} ;
/* -----\/----- EXCLUDED -----\/-----
flopenr #(`XLEN+4) ForwardBTBPredicitonReg(clk, reset, ~StallF, ForwardBTBPrediction, ForwardBTBPredictionF);
-----/\----- EXCLUDED -----/\----- */
assign {BTBPredInstrClassF, BTAF} = MatchXF ? ForwardBTBPredictionF : {TableBTBPredictionF};
assign {BTBPredInstrClassF, BTAF} = MatchX ? ForwardBTBPredictionF : {TableBTBPredictionF};
assign UpdateEn = |InstrClassM | PredictionInstrClassWrongM;
@ -97,4 +103,6 @@ module btb #(parameter Depth = 10 ) (
flopenrc #(`XLEN) BTBD(clk, reset, FlushD, ~StallD, BTAF, BTAD);
flopenrc #(`XLEN+4) IEUAdrWReg(clk, reset, FlushW, ~StallW, {InstrClassM, IEUAdrM}, {InstrClassW, IEUAdrW});
endmodule