fpu cleanup

This commit is contained in:
David Harris 2023-01-11 12:18:06 -08:00
parent d1bfdddd8c
commit 4ff2627a50
2 changed files with 90 additions and 143 deletions

View File

@ -50,6 +50,7 @@ module fctrl (
output logic [2:0] OpCtrlE, OpCtrlM, // Select which opperation to do in each component
output logic [1:0] FResSelE, FResSelM, FResSelW, // Select one of the results that finish in the memory stage
output logic [1:0] PostProcSelE, PostProcSelM, // select result in the post processing unit
output logic FpLoadStoreM, // FP load or store instruction
output logic FCvtIntW,
output logic [4:0] Adr1D, Adr2D, Adr3D, // adresses of each input
output logic [4:0] Adr1E, Adr2E, Adr3E // adresses of each input
@ -275,12 +276,13 @@ module fctrl (
if (`M_SUPPORTED & `IDIV_ON_FPU) assign IDivStartE = IntDivE;
else assign IDivStartE = 0;
//assign FCvtIntE = (FResSelE == 2'b01);
// E/M pipleine register
flopenrc #(14+int'(`FMTBITS)) EMCtrlReg (clk, reset, FlushM, ~StallM,
{FRegWriteE, FResSelE, PostProcSelE, FrmE, FmtE, OpCtrlE, FWriteIntE, IllegalFPUInstrE, FCvtIntE},
{FRegWriteM, FResSelM, PostProcSelM, FrmM, FmtM, OpCtrlM, FWriteIntM, IllegalFPUInstrM, FCvtIntM});
assign FpLoadStoreM = FResSelM[1];
// M/W pipleine register
flopenrc #(4) MWCtrlReg(clk, reset, FlushW, ~StallW,
{FRegWriteM, FResSelM, FCvtIntM},

View File

@ -61,7 +61,7 @@ module fpu (
output logic [`XLEN-1:0] FCvtIntResW, // convert result to to be written to integer register (to IEU)
output logic FCvtIntW, // select FCvtIntRes (to IEU)
output logic [`XLEN-1:0] FIntDivResultW // Result from integer division (to IEU)
);
);
// RISC-V FPU specifics:
// - multiprecision support uses NAN-boxing, putting 1's in unused msbs
@ -110,6 +110,8 @@ module fpu (
logic XExpMaxE; // is the exponent all ones (max value)
// Fma Signals
logic FmaAddSubE; // Multiply by 1.0 when adding or subtracting
logic [1:0] FmaZSelE; // Select Z = Y when adding or subtracting, 0 when multiplying
logic [3*`NF+3:0] SmE, SmM; // Sum significand
logic FmaAStickyE, FmaAStickyM; // FMA addend sticky bit output
logic [`NE+1:0] SeE,SeM; // Sum exponent
@ -118,7 +120,7 @@ module fpu (
logic PsE, PsM; // Product sign
logic SsE, SsM; // Sum sign
logic [$clog2(3*`NF+5)-1:0] SCntE, SCntM; // LZA sum leading zero count
// Cvt Signals
logic [`NE:0] CeE, CeM; // convert intermediate expoent
logic [`LOGCVTLEN-1:0] CvtShiftAmtE, CvtShiftAmtM; // how much to shift by
@ -133,37 +135,31 @@ module fpu (
logic [`NE+1:0] QeM; // fdivsqrt exponent
logic DivStickyM; // fdivsqrt sticky bit
logic FDivDoneE, IFDivStartE; // fdivsqrt control signals
logic [`XLEN-1:0] FIntDivResultM; // fdivsqrt integer division result (for IEU)
logic [`XLEN-1:0] FIntDivResultM; // fdivsqrt integer division result (for IEU)
// result and flag signals
logic [`XLEN-1:0] ClassResE; // classify result
logic [`XLEN-1:0] FIntResE; // classify result
logic [`FLEN-1:0] FpResM, FpResW; // classify result
logic [`FLEN-1:0] PostProcResM; // classify result
logic [4:0] PostProcFlgM; // classify result
logic [`FLEN-1:0] CmpFpResE; // compare result
logic [`XLEN-1:0] CmpIntResE; // compare result
logic CmpNVE; // compare invalid flag (Not Valid)
logic [`FLEN-1:0] SgnResE; // sign injection result
logic [`FLEN-1:0] PreFpResE, PreFpResM; // selected result that is ready in the memory stage
logic [`FLEN-1:0] CmpFpResE; // compare result to FPU (min/max)
logic [`XLEN-1:0] CmpIntResE; // compare result to IEU (eq/gt/geq)
logic CmpNVE; // compare invalid flag (Not Valid)
logic [`FLEN-1:0] SgnResE; // sign injection result
logic [`XLEN-1:0] FIntResE; // FPU to IEU E-stage result (classify, compare, move)
logic [`FLEN-1:0] PostProcResM; // Postprocessor output
logic [4:0] PostProcFlgM; // Postprocessor flags
logic PreNVE, PreNVM; // selected flag that is ready in the memory stage
logic [`FLEN-1:0] FResultW; // final FP result being written to the FP register
// other signals
logic [`FLEN-1:0] AlignedSrcAE; // align SrcA to the floating point format
logic [`FLEN-1:0] BoxedZeroE; // Zero value for Z for multiplication, with NaN boxing if needed
logic [`FLEN-1:0] BoxedOneE; // Zero value for Z for multiplication, with NaN boxing if needed
logic StallUnpackedM;
logic [`FLEN-1:0] FpResM, FpResW; // FPU preliminary result
logic [`FLEN-1:0] PreFpResE, PreFpResM; // selected result that is ready in the memory stage
logic [`FLEN-1:0] FResultW; // final FP result being written to the FP register
// DECODE STAGE
// other signals
logic [`FLEN-1:0] AlignedSrcAE; // align SrcA from IEU to the floating point format for fmv
logic [`FLEN-1:0] BoxedZeroE; // Zero value for Z for multiplication, with NaN boxing if needed
logic [`FLEN-1:0] BoxedOneE; // One value for Z for multiplication, with NaN boxing if needed
logic StallUnpackedM; // Stall unpacker outputs during multicycle fdivsqrt
logic [`FLEN-1:0] SgnExtXE; // Sign-extended X input for move to integer
//////////////////////////////////////////////////////////////////////////////////////////
// |||||||||||
// ||| |||
// ||| |||
// ||| |||
// ||| |||
// ||| |||
// |||||||||||
// Decode Stage: fctrl decoder, read register file
//////////////////////////////////////////////////////////////////////////////////////////
// calculate FP control signals
@ -171,8 +167,10 @@ module fpu (
.Funct3E, .IntDivE, .InstrD,
.StallE, .StallM, .StallW, .FlushE, .FlushM, .FlushW, .FRM_REGW, .STATUS_FS, .FDivBusyE,
.reset, .clk, .FRegWriteE, .FRegWriteM, .FRegWriteW, .FrmM, .FmtE, .FmtM,
.FDivStartE, .IDivStartE, .FWriteIntE, .FCvtIntE, .FWriteIntM, .OpCtrlE, .OpCtrlM, .IllegalFPUInstrM, .XEnD, .YEnD, .ZEnD, .XEnE, .YEnE, .ZEnE,
.FResSelE, .FResSelM, .FResSelW, .PostProcSelE, .PostProcSelM, .FCvtIntW, .Adr1D, .Adr2D, .Adr3D, .Adr1E, .Adr2E, .Adr3E);
.FDivStartE, .IDivStartE, .FWriteIntE, .FCvtIntE, .FWriteIntM, .OpCtrlE, .OpCtrlM, .FpLoadStoreM,
.IllegalFPUInstrM, .XEnD, .YEnD, .ZEnD, .XEnE, .YEnE, .ZEnE,
.FResSelE, .FResSelM, .FResSelW, .PostProcSelE, .PostProcSelM, .FCvtIntW,
.Adr1D, .Adr2D, .Adr3D, .Adr1E, .Adr2E, .Adr3E);
// FP register file
fregfile fregfile (.clk, .reset, .we4(FRegWriteW),
@ -185,29 +183,21 @@ module fpu (
flopenrc #(`FLEN) DEReg2(clk, reset, FlushE, ~StallE, FRD2D, FRD2E);
flopenrc #(`FLEN) DEReg3(clk, reset, FlushE, ~StallE, FRD3D, FRD3E);
// EXECUTION STAGE
//////////////////////////////////////////////////////////////////////////////////////////
// ||||||||||||
// |||
// |||
// |||||||||
// |||
// |||
// ||||||||||||
// Execute Stage: hazards, forwarding, unpacking, execution units
//////////////////////////////////////////////////////////////////////////////////////////
// Hazard unit for FPU
// - determines if any forwarding or stalls are needed
fhazard fhazard(.Adr1D, .Adr2D, .Adr3D, .Adr1E, .Adr2E, .Adr3E, .FRegWriteE, .FRegWriteM, .FRegWriteW, .RdE, .RdM, .RdW, .FResSelM,
.XEnD, .YEnD, .ZEnD, .FPUStallD, .ForwardXE, .ForwardYE, .ForwardZE);
// Hazard unit for FPU: determines if any forwarding or stalls are needed
fhazard fhazard(.Adr1D, .Adr2D, .Adr3D, .Adr1E, .Adr2E, .Adr3E,
.FRegWriteE, .FRegWriteM, .FRegWriteW, .RdE, .RdM, .RdW, .FResSelM,
.XEnD, .YEnD, .ZEnD, .FPUStallD, .ForwardXE, .ForwardYE, .ForwardZE);
// forwarding muxs
mux3 #(`FLEN) fxemux (FRD1E, FResultW, PreFpResM, ForwardXE, XE);
mux3 #(`FLEN) fyemux (FRD2E, FResultW, PreFpResM, ForwardYE, PreYE);
mux3 #(`FLEN) fzemux (FRD3E, FResultW, PreFpResM, ForwardZE, PreZE);
// Select NAN-boxed value of Y = 1.0 in proper format for fma to add/subtract X*Y+Z
generate
if(`FPSIZES == 1) assign BoxedOneE = {2'b0, {`NE-1{1'b1}}, (`NF)'(0)};
else if(`FPSIZES == 2)
@ -218,11 +208,11 @@ module fpu (
{{`FLEN-`H_LEN{1'b1}}, 2'b0, {`H_NE-1{1'b1}}, (`H_NF)'(0)},
{2'b0, {`NE-1{1'b1}}, (`NF)'(0)}, FmtE, BoxedOneE); // NaN boxing zeroes
endgenerate
mux2 #(`FLEN) fyaddmux (PreYE, BoxedOneE, OpCtrlE[2]&OpCtrlE[1]&(FResSelE==2'b01)&(PostProcSelE==2'b10), YE); // Force Z to be 0 for multiply instructions
assign FmaAddSubE = OpCtrlE[2]&OpCtrlE[1]&(FResSelE==2'b01)&(PostProcSelE==2'b10);
mux2 #(`FLEN) fyaddmux (PreYE, BoxedOneE, FmaAddSubE, YE); // Force Y to be 1 for add/subtract
// Force Z to be 0 for multiply instructions
// Select NAN-boxed value of Z = 0.0 in proper format for FMA for multiply X*Y+Z
// For add and subtract, Z comes from second source operand
generate
if(`FPSIZES == 1) assign BoxedZeroE = 0;
else if(`FPSIZES == 2)
@ -233,74 +223,49 @@ module fpu (
{{`FLEN-`H_LEN{1'b1}}, {`H_LEN{1'b0}}},
(`FLEN)'(0), FmtE, BoxedZeroE); // NaN boxing zeroes
endgenerate
assign FmaZSelE = {OpCtrlE[2]&OpCtrlE[1], OpCtrlE[2]&~OpCtrlE[1]};
mux3 #(`FLEN) fzmulmux (PreZE, BoxedZeroE, PreYE, FmaZSelE, ZE);
mux3 #(`FLEN) fzmulmux (PreZE, BoxedZeroE, PreYE, {OpCtrlE[2]&OpCtrlE[1], OpCtrlE[2]&~OpCtrlE[1]}, ZE);
// unpack unit
// - splits FP inputs into their various parts
// - does some classifications (SNaN, NaN, Subnorm, Norm, Zero, Infifnity)
// unpack unit: splits FP inputs into their parts and classifies SNaN, NaN, Subnorm, Norm, Zero, Infifnity
unpack unpack (.X(XE), .Y(YE), .Z(ZE), .Fmt(FmtE), .Xs(XsE), .Ys(YsE), .Zs(ZsE),
.Xe(XeE), .Ye(YeE), .Ze(ZeE), .Xm(XmE), .Ym(YmE), .Zm(ZmE), .YEn(YEnE),
.XNaN(XNaNE), .YNaN(YNaNE), .ZNaN(ZNaNE), .XSNaN(XSNaNE), .XEn(XEnE),
.YSNaN(YSNaNE), .ZSNaN(ZSNaNE), .XSubnorm(XSubnormE),
.XZero(XZeroE), .YZero(YZeroE), .ZZero(ZZeroE), .XInf(XInfE), .YInf(YInfE),
.ZEn(ZEnE), .ZInf(ZInfE), .XExpMax(XExpMaxE));
.Xe(XeE), .Ye(YeE), .Ze(ZeE), .Xm(XmE), .Ym(YmE), .Zm(ZmE), .YEn(YEnE),
.XNaN(XNaNE), .YNaN(YNaNE), .ZNaN(ZNaNE), .XSNaN(XSNaNE), .XEn(XEnE),
.YSNaN(YSNaNE), .ZSNaN(ZSNaNE), .XSubnorm(XSubnormE),
.XZero(XZeroE), .YZero(YZeroE), .ZZero(ZZeroE), .XInf(XInfE), .YInf(YInfE),
.ZEn(ZEnE), .ZInf(ZInfE), .XExpMax(XExpMaxE));
// fused multiply add
// - fadd/fsub
// - fmul
// - fmadd/fnmadd/fmsub/fnmsub
fma fma (.Xs(XsE), .Ys(YsE), .Zs(ZsE),
.Xe(XeE), .Ye(YeE), .Ze(ZeE),
.Xm(XmE), .Ym(YmE), .Zm(ZmE),
.XZero(XZeroE), .YZero(YZeroE), .ZZero(ZZeroE),
.OpCtrl(OpCtrlE),
.As(AsE), .Ps(PsE), .Ss(SsE), .Se(SeE),
.Sm(SmE),
.InvA(InvAE), .SCnt(SCntE),
.ASticky(FmaAStickyE));
// fused multiply add: fadd/sub, fmul, fmadd/fnmadd/fmsub/fnmsub
fma fma (.Xs(XsE), .Ys(YsE), .Zs(ZsE), .Xe(XeE), .Ye(YeE), .Ze(ZeE), .Xm(XmE), .Ym(YmE), .Zm(ZmE),
.XZero(XZeroE), .YZero(YZeroE), .ZZero(ZZeroE), .OpCtrl(OpCtrlE),
.As(AsE), .Ps(PsE), .Ss(SsE), .Se(SeE), .Sm(SmE), .InvA(InvAE), .SCnt(SCntE), .ASticky(FmaAStickyE));
// divide and squareroot
// - fdiv
// - fsqrt
// *** add other opperations
// divide and square root: fdiv, fsqrt, optionally integer division
fdivsqrt fdivsqrt(.clk, .reset, .FmtE, .XmE, .YmE, .XeE, .YeE, .SqrtE(OpCtrlE[0]), .SqrtM(OpCtrlM[0]),
.XInfE, .YInfE, .XZeroE, .YZeroE, .XNaNE, .YNaNE, .FDivStartE, .IDivStartE, .XsE,
.ForwardedSrcAE, .ForwardedSrcBE, .Funct3E, .Funct3M, .IntDivE, .W64E,
.StallM, .FlushE, .DivStickyM, .FDivBusyE, .IFDivStartE, .FDivDoneE, .QeM,
.QmM, .FIntDivResultM /*, .DivDone(DivDoneM) */);
.XInfE, .YInfE, .XZeroE, .YZeroE, .XNaNE, .YNaNE, .FDivStartE, .IDivStartE, .XsE,
.ForwardedSrcAE, .ForwardedSrcBE, .Funct3E, .Funct3M, .IntDivE, .W64E,
.StallM, .FlushE, .DivStickyM, .FDivBusyE, .IFDivStartE, .FDivDoneE, .QeM,
.QmM, .FIntDivResultM);
//
// compare
// - fmin/fmax
// - flt/fle/feq
// compare: fmin/fmax, flt/fle/feq
fcmp fcmp (.Fmt(FmtE), .OpCtrl(OpCtrlE), .Xs(XsE), .Ys(YsE), .Xe(XeE), .Ye(YeE),
.Xm(XmE), .Ym(YmE), .XZero(XZeroE), .YZero(YZeroE), .XNaN(XNaNE), .YNaN(YNaNE),
.XSNaN(XSNaNE), .YSNaN(YSNaNE), .X(XE), .Y(YE), .CmpNV(CmpNVE),
.CmpFpRes(CmpFpResE), .CmpIntRes(CmpIntResE));
// sign injection
// - fsgnj/fsgnjx/fsgnjn
.Xm(XmE), .Ym(YmE), .XZero(XZeroE), .YZero(YZeroE), .XNaN(XNaNE), .YNaN(YNaNE),
.XSNaN(XSNaNE), .YSNaN(YSNaNE), .X(XE), .Y(YE), .CmpNV(CmpNVE),
.CmpFpRes(CmpFpResE), .CmpIntRes(CmpIntResE));
// sign injection: fsgnj/fsgnjx/fsgnjn
fsgninj fsgninj(.OpCtrl(OpCtrlE[1:0]), .Xs(XsE), .Ys(YsE), .X(XE), .Fmt(FmtE), .SgnRes(SgnResE));
// classify
// - fclass
// classify: fclass
fclassify fclassify (.Xs(XsE), .XSubnorm(XSubnormE), .XZero(XZeroE), .XNaN(XNaNE),
.XInf(XInfE), .XSNaN(XSNaNE), .ClassRes(ClassResE));
.XInf(XInfE), .XSNaN(XSNaNE), .ClassRes(ClassResE));
// convert
// - fcvt.*.*
// convert: fcvt.*.*
fcvt fcvt (.Xs(XsE), .Xe(XeE), .Xm(XmE), .Int(ForwardedSrcAE), .OpCtrl(OpCtrlE),
.ToInt(FWriteIntE), .XZero(XZeroE), .Fmt(FmtE), .Ce(CeE),
.ShiftAmt(CvtShiftAmtE), .ResSubnormUf(CvtResSubnormUfE), .Cs(CsE), .IntZero(IntZeroE),
.LzcIn(CvtLzcInE));
.ToInt(FWriteIntE), .XZero(XZeroE), .Fmt(FmtE), .Ce(CeE), .ShiftAmt(CvtShiftAmtE),
.ResSubnormUf(CvtResSubnormUfE), .Cs(CsE), .IntZero(IntZeroE), .LzcIn(CvtLzcInE));
// data to be stored in memory - to IEU
// - FP uses NaN-blocking format
// - if there are any unsused bits the most significant bits are filled with 1s
flopenrc #(`FLEN) FWriteDataMReg (clk, reset, FlushM, ~StallM, YE, FWriteDataM);
// NaN Block SrcA
// NaN Box SrcA to convert integer to requested FP size
generate
if(`FPSIZES == 1) assign AlignedSrcAE = {{`FLEN-`XLEN{1'b1}}, ForwardedSrcAE};
else if(`FPSIZES == 2)
@ -317,8 +282,6 @@ module fpu (
assign PreNVE = CmpNVE&(OpCtrlE[2]|FWriteIntE);
// select the result that may be written to the integer register - to IEU
logic [`FLEN-1:0] SgnExtXE;
generate
if(`FPSIZES == 1)
assign SgnExtXE = XE;
@ -328,20 +291,18 @@ module fpu (
mux4 #(`FLEN) fmulzeromux ({{`FLEN-`H_LEN{XsE}}, XE[`H_LEN-1:0]},
{{`FLEN-`S_LEN{XsE}}, XE[`S_LEN-1:0]},
{{`FLEN-`D_LEN{XsE}}, XE[`D_LEN-1:0]},
XE, FmtE, SgnExtXE); // NaN boxing zeroes
XE, FmtE, SgnExtXE);
endgenerate
if (`FLEN>`XLEN)
assign IntSrcXE = SgnExtXE[`XLEN-1:0];
else
assign IntSrcXE = {{`XLEN-`FLEN{XsE}}, SgnExtXE};
mux3 #(`XLEN) IntResMux (ClassResE, IntSrcXE, CmpIntResE, {~FResSelE[1], FResSelE[0]}, FIntResE);
// *** DH 5/25/22: CvtRes will move to mem stage. Premux in execute to save area, then make sure stalls are ok
// *** make sure the fpu matches the chapter diagram
// E/M pipe registers
assign StallUnpackedM = StallM | (FDivBusyE & ~IFDivStartE | FDivDoneE); // Need to stall during divsqrt iterations to avoid capturing bad flags from stale forwarded sources
// Need to stall during divsqrt iterations to avoid capturing bad flags from stale forwarded sources
assign StallUnpackedM = StallM | (FDivBusyE & ~IFDivStartE | FDivDoneE);
flopenrc #(`NF+1) EMFpReg2 (clk, reset, FlushM, ~StallM, XmE, XmM);
flopenrc #(`NF+1) EMFpReg3 (clk, reset, FlushM, ~StallM, YmE, YmM);
@ -349,57 +310,41 @@ module fpu (
flopenrc #(`XLEN) EMFpReg6 (clk, reset, FlushM, ~StallM, FIntResE, FIntResM);
flopenrc #(`FLEN) EMFpReg7 (clk, reset, FlushM, ~StallM, PreFpResE, PreFpResM);
flopenr #(13) EMFpReg5 (clk, reset, ~StallUnpackedM,
{XsE, YsE, XZeroE, YZeroE, XInfE, YInfE, ZInfE, XNaNE, YNaNE, ZNaNE, XSNaNE, YSNaNE, ZSNaNE},
{XsM, YsM, XZeroM, YZeroM, XInfM, YInfM, ZInfM, XNaNM, YNaNM, ZNaNM, XSNaNM, YSNaNM, ZSNaNM});
{XsE, YsE, XZeroE, YZeroE, XInfE, YInfE, ZInfE, XNaNE, YNaNE, ZNaNE, XSNaNE, YSNaNE, ZSNaNE},
{XsM, YsM, XZeroM, YZeroM, XInfM, YInfM, ZInfM, XNaNM, YNaNM, ZNaNM, XSNaNM, YSNaNM, ZSNaNM});
flopenrc #(1) EMRegCmpFlg (clk, reset, FlushM, ~StallM, PreNVE, PreNVM);
flopenrc #(3*`NF+4) EMRegFma2(clk, reset, FlushM, ~StallM, SmE, SmM);
flopenrc #($clog2(3*`NF+5)+7+`NE) EMRegFma4(clk, reset, FlushM, ~StallM,
{FmaAStickyE, InvAE, SCntE, AsE, PsE, SsE, SeE},
{FmaAStickyM, InvAM, SCntM, AsM, PsM, SsM, SeM});
flopenrc #($clog2(3*`NF+5)+7+`NE) EMRegFma4(clk, reset, FlushM, ~StallM,
{FmaAStickyE, InvAE, SCntE, AsE, PsE, SsE, SeE},
{FmaAStickyM, InvAM, SCntM, AsM, PsM, SsM, SeM});
flopenrc #(`NE+`LOGCVTLEN+`CVTLEN+4) EMRegCvt(clk, reset, FlushM, ~StallM,
{CeE, CvtShiftAmtE, CvtResSubnormUfE, CsE, IntZeroE, CvtLzcInE},
{CeM, CvtShiftAmtM, CvtResSubnormUfM, CsM, IntZeroM, CvtLzcInM});
// BEGIN MEMORY STAGE
{CeE, CvtShiftAmtE, CvtResSubnormUfE, CsE, IntZeroE, CvtLzcInE},
{CeM, CvtShiftAmtM, CvtResSubnormUfM, CsM, IntZeroM, CvtLzcInM});
flopenrc #(`FLEN) FWriteDataMReg (clk, reset, FlushM, ~StallM, YE, FWriteDataM);
//////////////////////////////////////////////////////////////////////////////////////////
// ||| |||
// |||||| ||||||
// ||| ||| ||| |||
// ||| ||||| |||
// ||| ||| |||
// ||| |||
// ||| |||
// Memory Stage: postprocessor and result muxes
//////////////////////////////////////////////////////////////////////////////////////////
assign FpLoadStoreM = FResSelM[1];
postprocess postprocess(.Xs(XsM), .Ys(YsM), .Xm(XmM), .Ym(YmM), .Zm(ZmM), .Frm(FrmM), .Fmt(FmtM),
.FmaASticky(FmaAStickyM), .XZero(XZeroM), .YZero(YZeroM), .XInf(XInfM), .YInf(YInfM), .DivQm(QmM), .FmaSs(SsM),
.ZInf(ZInfM), .XNaN(XNaNM), .YNaN(YNaNM), .ZNaN(ZNaNM), .XSNaN(XSNaNM), .YSNaN(YSNaNM), .ZSNaN(ZSNaNM), .FmaSm(SmM), .DivQe(QeM), /*.DivDone(DivDoneM), */
.FmaAs(AsM), .FmaPs(PsM), .OpCtrl(OpCtrlM), .FmaSCnt(SCntM), .FmaSe(SeM),
.CvtCe(CeM), .CvtResSubnormUf(CvtResSubnormUfM),.CvtShiftAmt(CvtShiftAmtM), .CvtCs(CsM), .ToInt(FWriteIntM), .DivS(DivStickyM),
.CvtLzcIn(CvtLzcInM), .IntZero(IntZeroM), .PostProcSel(PostProcSelM), .PostProcRes(PostProcResM), .PostProcFlg(PostProcFlgM), .FCvtIntRes(FCvtIntResM));
.FmaASticky(FmaAStickyM), .XZero(XZeroM), .YZero(YZeroM), .XInf(XInfM), .YInf(YInfM), .DivQm(QmM), .FmaSs(SsM),
.ZInf(ZInfM), .XNaN(XNaNM), .YNaN(YNaNM), .ZNaN(ZNaNM), .XSNaN(XSNaNM), .YSNaN(YSNaNM), .ZSNaN(ZSNaNM),
.FmaSm(SmM), .DivQe(QeM), .FmaAs(AsM), .FmaPs(PsM), .OpCtrl(OpCtrlM), .FmaSCnt(SCntM), .FmaSe(SeM),
.CvtCe(CeM), .CvtResSubnormUf(CvtResSubnormUfM),.CvtShiftAmt(CvtShiftAmtM), .CvtCs(CsM),
.ToInt(FWriteIntM), .DivS(DivStickyM), .CvtLzcIn(CvtLzcInM), .IntZero(IntZeroM),
.PostProcSel(PostProcSelM), .PostProcRes(PostProcResM), .PostProcFlg(PostProcFlgM), .FCvtIntRes(FCvtIntResM));
// FPU flag selection - to privileged
mux2 #(5) FPUFlgMux ({PreNVM&~FResSelM[1], 4'b0}, PostProcFlgM, ~FResSelM[1]&FResSelM[0], SetFflagsM);
mux2 #(`FLEN) FPUResMux (PreFpResM, PostProcResM, FResSelM[0], FpResM);
mux2 #(5) FPUFlgMux({PreNVM&~FResSelM[1], 4'b0}, PostProcFlgM, ~FResSelM[1]&FResSelM[0], SetFflagsM);
mux2 #(`FLEN) FPUResMux(PreFpResM, PostProcResM, FResSelM[0], FpResM);
// M/W pipe registers
flopenrc #(`FLEN) MWRegFp(clk, reset, FlushW, ~StallW, FpResM, FpResW);
flopenrc #(`XLEN) MWRegIntCvtRes(clk, reset, FlushW, ~StallW, FCvtIntResM, FCvtIntResW);
flopenrc #(`XLEN) MWRegIntDivRes(clk, reset, FlushW, ~StallW, FIntDivResultM, FIntDivResultW);
// BEGIN WRITEBACK STAGE
//////////////////////////////////////////////////////////////////////////////////////////
// ||| |||
// ||| |||
// ||| ||| |||
// ||| ||||| |||
// ||| ||| ||| |||
// |||||| ||||||
// ||| |||
// Writeback Stage: result mux
//////////////////////////////////////////////////////////////////////////////////////////
// select the result to be written to the FP register