Merge branch 'main' of github.com:davidharrishmc/riscv-wally into main

This commit is contained in:
David Harris 2022-05-03 08:53:35 -07:00
commit 3efbd2565a
11 changed files with 377 additions and 20 deletions

View File

@ -154,13 +154,13 @@ def main():
os.system('./make-tests.sh | tee ./logs/make-tests.log')
if '-all' in sys.argv:
TIMEOUT_DUR = 20*3600 # seconds
TIMEOUT_DUR = 30*3600 # seconds
configs.append(getBuildrootTC(short=False))
elif '-buildroot' in sys.argv:
TIMEOUT_DUR = 20*3600 # seconds
TIMEOUT_DUR = 30*3600 # seconds
configs=[getBuildrootTC(short=False)]
else:
TIMEOUT_DUR = 5*60 # seconds
TIMEOUT_DUR = 10*60 # seconds
configs.append(getBuildrootTC(short=True))
# Scale the number of concurrent processes to the number of test cases, but

View File

@ -119,8 +119,8 @@ module cache #(parameter LINELEN, NUMLINES, NUMWAYS, LOGWPL, WORDLEN, MUXINTER
.s({SelFlush, SelAdr}), .y(RAdr));
// Array of cache ways, along with victim, hit, dirty, and read merging logic
cacheway #(NUMLINES, LINELEN, TAGLEN, OFFSETLEN, SETLEN) CacheWays[NUMWAYS-1:0](
.clk, .reset, .RAdr, .PAdr, .CacheWriteData, .ByteMask,
cacheway #(NUMLINES, LINELEN, TAGLEN, OFFSETLEN, SETLEN)
CacheWays[NUMWAYS-1:0](.clk, .reset, .RAdr, .PAdr, .CacheWriteData, .ByteMask,
.SetValidWay, .ClearValidWay, .SetDirtyWay, .ClearDirtyWay, .SelEvict, .VictimWay,
.FlushWay, .SelFlush, .ReadDataLineWay, .HitWay, .VictimDirtyWay, .VictimTagWay,
.Invalidate(InvalidateCacheM));

268
pipelined/src/fma/fma16.v Normal file
View File

@ -0,0 +1,268 @@
// fma16.sv
// David_Harris@hmc.edu 26 February 2022
// 16-bit floating-point multiply-accumulate
// Operation: general purpose multiply, add, fma, with optional negation
// If mul=1, p = x * y. Else p = x.
// If add=1, result = p + z. Else result = p.
// If negr or negz = 1, negate result or z to handle negations and subtractions
// fadd: mul = 0, add = 1, negr = negz = 0
// fsub: mul = 0, add = 1, negr = 0, negz = 1
// fmul: mul = 1, add = 0, negr = 0, negz = 0
// fmadd: mul = 1, add = 1, negr = 0, negz = 0
// fmsub: mul = 1, add = 1, negr = 0, negz = 1
// fnmadd: mul = 1, add = 1, negr = 1, negz = 0
// fnmsub: mul = 1, add = 1, negr = 1, negz = 1
`define FFLEN 16
`define Nf 10
`define Ne 5
`define BIAS 15
`define EMIN (-(2**(`Ne-1)-1))
`define EMAX (2**(`Ne-1)-1)
`define NaN 16'h7E00
`define INF 15'h7C00
// rounding modes *** update
`define RZ 3'b00
`define RNE 3'b01
`define RM 3'b10
`define RP 3'b11
module fma16(
input logic [`FFLEN-1:0] x, y, z,
input logic mul, add, negr, negz,
input logic [1:0] roundmode, // 00: rz, 01: rne, 10: rp, 11: rn
output logic [`FFLEN-1:0] result);
logic [`Nf:0] xm, ym, zm; // U1.Nf
logic [`Ne-1:0] xe, ye, ze; // B_Ne
logic xs, ys, zs;
logic zs1; // sign before optional negation
logic [2*`Nf+1:0] pm; // U2.2Nf
logic [`Ne:0] pe; // B_Ne+1
logic ps; // sign of product
logic [22:0] rm;
logic [`Ne+1:0] re;
logic rs;
logic xzero, yzero, zzero, xinf, yinf, zinf, xnan, ynan, znan;
logic [`Ne+1:0] re2;
unpack16 unpack(x, y, z, xm, ym, zm, xe, ye, ze, xs, ys, zs1, xzero, yzero, zzero, xinf, yinf, zinf, xnan, ynan, znan); // unpack inputs
//signadj16 signadj(negr, negz, xs, ys, zs1, ps, zs); // handle negations
mult16 mult16(mul, xm, ym, xe, ye, xs, ys, pm, pe, ps); // p = x * y
add16 add16(add, pm, zm, pe, ze, ps, zs, negz, rm, re, re2, rs); // r = z + p
postproc16 post(roundmode, xzero, yzero, zzero, xinf, yinf, zinf, xnan, ynan, znan, rm, zm, re, ze, rs, zs, ps, re2, result); // normalize, round, pack
endmodule
module mult16(
input logic mul,
input logic [`Nf:0] xm, ym,
input logic [`Ne-1:0] xe, ye,
input logic xs, ys,
output logic [2*`Nf+1:0] pm,
output logic [`Ne:0] pe,
output logic ps);
// only multiply if mul = 1
assign pm = mul ? xm * ym : {1'b0, xm, 10'b0}; // multiply mantiassas
assign pe = mul ? xe + ye - `BIAS : {1'b0, xe}; // add exponents, account for bias
assign ps = xs ^ ys; // negative if X xor Y are negative
endmodule
module add16(
input logic add,
input logic [2*`Nf+1:0] pm, // U2.2Nf
input logic [`Nf:0] zm, // U1.Nf
input logic [`Ne:0] pe, // B_Ne+1
input logic [`Ne-1:0] ze, // B_Ne
input logic ps, zs,
input logic negz,
output logic [22:0] rm,
output logic [`Ne+1:0] re, // B_Ne+2
output logic [`Ne+1:0] re2,
output logic rs);
logic [`Nf*3+7:0] paligned, zaligned, zalignedaddsub, r, r2, rnormed, rnormed2; // U(Nf+6).(2Nf+2) aligned significands
logic signed [`Ne:0] ExpDiff; // Q(Ne+2).0
logic [`Ne:0] AlignCnt; // U(Ne+3) bits to right shift Z for alignment *** check size.
logic [`Nf-1:0] prezsticky;
logic zsticky;
logic effectivesub;
logic rs0;
logic [`Ne:0] leadingzeros, NormCnt; // *** should paramterize size
logic [`Ne:0] re1;
// Alignment shift
assign paligned = {{(`Nf+4){1'b0}}, pm, 2'b00}; // constant shift to prepend leading and trailing 0s.
assign ExpDiff = pe - {1'b0, ze}; // Compute exponent difference as signed number
always_comb // AlignCount mux; see Muller page 254
if (ExpDiff <= (-2*`Nf - 1)) begin AlignCnt = 3*`Nf + 7; re = {1'b0, pe}; end
else if (ExpDiff <= 2) begin AlignCnt = `Nf + 4 - ExpDiff; re = {1'b0, pe}; end
else if (ExpDiff <= `Nf+3) begin AlignCnt = `Nf + 4 - ExpDiff; re = {2'b0, ze}; end
else begin AlignCnt = 0; re = {2'b0, ze}; end
// Shift Zm right by AlignCnt. Produce 3Nf+8 bits of Zaligned in U(Nf+6).(2Nf+2) and Nf bits becoming sticky
assign {zaligned, prezsticky} = {zm, {(3*`Nf+7){1'b0}}} >> AlignCnt; //Right shift
assign zsticky = |prezsticky; // Sticky bit if any of the discarded bits were 1
// Effective subtraction
assign effectivesub = ps ^ zs ^ negz; // subtract |z| from |p|
assign zalignedaddsub = effectivesub ? ~zaligned : zaligned; // invert zaligned for subtraction
// Adder
assign r = paligned + zalignedaddsub + {{`Nf*3+7{1'b0}}, effectivesub}; // add aligned significands
assign rs0 = r[`Nf*3+7]; // sign of the initial result
assign r2 = rs0 ? ~r+1 : r; // invert sum if negative; could optimize with end-around carry?
// Sign Logic
assign rs = ps ^ rs0; // flip the sign if necessary
// Leading zero counter
lzc lzc(r2, leadingzeros); // count number of leading zeros in 2Nf+5 lower digits of r2
assign re1 = pe +2 - leadingzeros; // *** declare, # of bits
// Normalization shift
always_comb // NormCount mux
if (ExpDiff < 3) begin
if (re1 >= `EMIN) begin NormCnt = `Nf + 3 + leadingzeros; re2 = {1'b0, re1}; end
else begin NormCnt = `Nf + 5 + pe - `EMIN; re2 = `EMIN; end
end else begin NormCnt = AlignCnt; re = {2'b00, ze}; end
assign rnormed = r2 << NormCnt; // *** update sticky
/* temporarily comment out to start synth
// One-bit secondary normalization
if (ExpDiff <= 2) begin rnormed2 = rnormed; re2 = re; end // no secondary normalization
else begin // *** handle sticky
if (rnormed[***]) begin rnormed2 = rnormed >> 1; re2 = re+1; end
else if (rnormed[***-1]) begin rnormed2 = rnormed; re2 = re; end
else begin rnormed2 = rnormed << 1; re2 = re-1; end
end
// round
assign l = rnormed2[***]; // least significant bit
assign r = rnormed2[***-1]; // rounding bit
assign s = ***; // sticky bit
always_comb
case (roundmode)
RZ: roundup = 0;
RP: roundup = ~rs & (r | s);
RM: roundup = rs & (r | s);
RNE: roundup = r & (s | l);
default: roundup = 0;
endcase
assign {re3, rrounded} = {re2, rnormed2[***]} + roundup; // increment if necessary
*/
// *** need to handle rounding to MAXNUM vs. INFINITY
// add or pass product through
/* assign rm = add ? arm : {1'b0, pm};
assign re = add ? are : {1'b0, pe};
assign rs = add ? ars : ps; */
endmodule
module lzc(
input logic [`Nf*3+7:0] r2,
output logic [`Ne:0] leadingzeros
);
endmodule
module postproc16(
input logic [1:0] roundmode,
input logic xzero, yzero, zzero, xinf, yinf, zinf, xnan, ynan, znan,
input logic [22:0] rm,
input logic [`Nf:0] zm, // U1.Nf
input logic [6:0] re,
input logic [`Ne-1:0] ze, // B_Ne
input logic rs, zs, ps,
input logic [`Ne+1:0] re2,
output logic [15:0] result);
logic [9:0] uf, uff;
logic [6:0] ue;
logic [6:0] ueb, uebiased;
logic invalid;
// Special cases
// *** not handling signaling NaN
// *** also add overflow/underflow/inexact
always_comb begin
if (xnan | ynan | znan) begin result = `NaN; invalid = 0; end // propagate NANs
else if ((xinf | yinf) & zinf & (ps ^ zs)) begin result = `NaN; invalid = 1; end // infinity - infinity
else if (xzero & yinf | xinf & yzero) begin result = `NaN; invalid = 1; end // zero times infinity
else if (xinf | yinf) begin result = {ps, `INF}; invalid = 0; end // X or Y
else if (zinf) begin result = {zs, `INF}; invalid = 0; end // infinite Z
else if (xzero | yzero) begin result = {zs, ze, zm[`Nf-1:0]}; invalid = 0; end
else if (re2 >= `EMAX) begin result = {rs, `INF}; invalid = 0; end
else begin result = {rs, re[`Ne-1:0], rm[`Nf-1:0]}; invalid = 0; end
end
always_comb
if (rm[21]) begin // normalization right shift by 1 and bump up exponent;
ue = re + 7'b1;
uf = rm[20:11];
end else begin // no normalization shift needed
ue = re;
uf = rm[19:10];
end
// overflow
always_comb begin
ueb = ue-7'd15;
if (ue >= 7'd46) begin // overflow
/* uebiased = 7'd30;
uff = 10'h3ff; */
end else begin
uebiased = ue-7'd15;
uff = uf;
end
end
assign result = {rs, uebiased[4:0], uff};
// add special case handling for zeros, NaN, Infinity
endmodule
module signadj16(
input logic negr, negz,
input logic xs, ys, zs1,
output logic ps, zs);
assign ps = xs ^ ys; // sign of product
assign zs = zs1 ^ negz; // sign of addend
endmodule
module unpack16(
input logic [15:0] x, y, z,
output logic [10:0] xm, ym, zm,
output logic [4:0] xe, ye, ze,
output logic xs, ys, zs,
output logic xzero, yzero, zzero, xinf, yinf, zinf, xnan, ynan, znan);
unpacknum16 upx(x, xm, xe, xs, xzero, xinf, xnan);
unpacknum16 upy(y, ym, ye, ys, yzero, yinf, ynan);
unpacknum16 upz(z, zm, ze, zs, zzero, zinf, znan);
endmodule
module unpacknum16(
input logic [15:0] num,
output logic [10:0] m,
output logic [4:0] e,
output logic s,
output logic zero, inf, nan);
logic [9:0] f; // fraction without leading 1
logic [4:0] eb; // biased exponent
assign {s, eb, f} = num; // pull bit fields out of floating-point number
assign m = {1'b1, f}; // prepend leading 1 to fraction
assign e = eb; // leave bias in exponent ***
assign zero = (e == 0 && f == 0);
assign inf = (e == 31 && f == 0);
assign nan = (e == 31 && f != 0);
endmodule

View File

@ -5,6 +5,7 @@ module fctrl (
input logic [4:0] Rs2D, // bits 24:20 of instruction
input logic [2:0] Funct3D, // bits 14:12 of instruction - may contain rounding mode
input logic [2:0] FRM_REGW, // rounding mode from CSR
input logic [1:0] STATUS_FS, // is FPU enabled?
output logic IllegalFPUInstrD, // Is the instruction an illegal fpu instruction
output logic FRegWriteD, // FP register write enable
output logic FDivStartD, // Start division or squareroot
@ -21,7 +22,9 @@ module fctrl (
logic [`FCTRLW-1:0] ControlsD;
// FPU Instruction Decoder
always_comb
case(OpD)
if (STATUS_FS == 2'b00) // FPU instructions are illegal when FPU is disabled
ControlsD = `FCTRLW'b0_0_00_000_000_00_0_1;
else case(OpD)
// FRegWrite_FWriteInt_FResultSel_FOpCtrl_FResSel_FIntResSel_FDivStart_IllegalFPUInstr
7'b0000111: case(Funct3D)
3'b010: ControlsD = `FCTRLW'b1_0_00_000_000_00_0_0; // flw

View File

@ -39,6 +39,7 @@ module fpu (
input logic StallE, StallM, StallW, // stall signals from HZU
input logic FlushE, FlushM, FlushW, // flush signals from HZU
input logic [4:0] RdM, RdW, // which FP register to write to (from IEU)
input logic [1:0] STATUS_FS, // Is floating-point enabled?
output logic FRegWriteM, // FP register write enable
output logic FStallD, // Stall the decode stage
output logic FWriteIntE, // integer register write enables
@ -134,7 +135,7 @@ module fpu (
// DECODE STAGE
// calculate FP control signals
fctrl fctrl (.Funct7D(InstrD[31:25]), .OpD(InstrD[6:0]), .Rs2D(InstrD[24:20]), .Funct3D(InstrD[14:12]), .FRM_REGW,
fctrl fctrl (.Funct7D(InstrD[31:25]), .OpD(InstrD[6:0]), .Rs2D(InstrD[24:20]), .Funct3D(InstrD[14:12]), .FRM_REGW, .STATUS_FS,
.IllegalFPUInstrD, .FRegWriteD, .FDivStartD, .FResultSelD, .FOpCtrlD, .FResSelD,
.FIntResSelD, .FmtD, .FrmD, .FWriteIntD);

View File

@ -30,14 +30,16 @@
`include "wally-config.vh"
module comparator #(parameter WIDTH=32) (
module comparator_sub #(parameter WIDTH=64) (
input logic [WIDTH-1:0] a, b,
output logic [2:0] flags);
logic [WIDTH-1:0] bbar, diff;
logic carry, eq, neg, overflow, lt, ltu;
/*
logic eq, lt, ltu;
// Subtractor implementation
logic [WIDTH-1:0] bbar, diff;
logic carry, neg, overflow;
// subtraction
assign bbar = ~b;
@ -52,7 +54,85 @@ module comparator #(parameter WIDTH=32) (
assign lt = neg ^ overflow;
assign ltu = ~carry;
assign flags = {eq, lt, ltu};
*/
endmodule
// *** eventually substitute comparator_flip, which gives slightly better synthesis
module comparator #(parameter WIDTH=64) (
input logic [WIDTH-1:0] a, b,
output logic [2:0] flags);
logic eq, lt, ltu;
// Behavioral description gives best results
assign eq = (a == b);
assign ltu = (a < b);
assign lt = ($signed(a) < $signed(b));
assign flags = {eq, lt, ltu};
endmodule
// This comaprator
module comparator_flip #(parameter WIDTH=16) (
input logic [WIDTH-1:0] a, b,
input logic sgnd,
output logic [1:0] flags);
logic eq, lt, ltu;
logic [WIDTH-1:0] af, bf;
// For signed numbers, flip most significant bit
assign af = {a[WIDTH-1] ^ sgnd, a[WIDTH-2:0]};
assign bf = {b[WIDTH-1] ^ sgnd, b[WIDTH-2:0]};
// behavioral description gives best results
assign eq = (af == bf);
assign lt = (af < bf);
assign flags = {eq, lt};
endmodule
module comparator2 #(parameter WIDTH=64) (
input logic clk, reset,
input logic [WIDTH-1:0] a, b,
output logic [2:0] flags);
logic eq, lt, ltu;
/* verilator lint_off UNOPTFLAT */
// prefix implementation
localparam levels=$clog2(WIDTH);
genvar i;
genvar level;
logic [WIDTH-1:0] e[levels:0];
logic [WIDTH-1:0] l[levels:0];
logic eq2, lt2, ltu2;
// Bitwise logic
assign e[0] = a ~^ b; // bitwise equality
assign l[0] = ~a & b; // bitwise less than unsigned: A=0 and B=1
// Recursion
for (level = 1; level<=levels; level++) begin
for (i=0; i<WIDTH/(2**level); i++) begin
assign e[level][i] = e[level-1][i*2+1] & e[level-1][i*2]; // group equal if both parts equal
assign l[level][i] = l[level-1][i*2+1] | e[level-1][i*2+1] & l[level-1][i*2]; // group less if upper is les or upper equal and lower less
end
end
// Output logic
assign eq2 = e[levels][0]; // A = B if all bits are equal
assign ltu2 = l[levels][0]; // A < B if group is less (unsigned)
// A < B signed if less than unsigned and msb is not < unsigned, or if A negative and B positive
assign lt2 = ltu2 & ~l[0][WIDTH-1] | a[WIDTH-1] & ~b[WIDTH-1];
assign flags = {eq2, lt2, ltu2};
/* verilator lint_on UNOPTFLAT */
endmodule
module comparator_prefix #(parameter WIDTH=64) (
input logic [WIDTH-1:0] a, b,
output logic [2:0] flags);
logic eq, lt, ltu;
/* verilator lint_off UNOPTFLAT */
// prefix implementation

View File

@ -120,7 +120,7 @@ module controller(
// RegWrite_ImmSrc_ALUSrc_MemRW_ResultSrc_Branch_ALUOp_Jump_ALUResultSrc_W64_CSRRead_Privileged_Fence_MDU_Atomic_Illegal
7'b0000000: ControlsD = `CTRLW'b0_000_00_00_000_0_0_0_0_0_0_0_0_0_00_1; // illegal instruction
7'b0000011: ControlsD = `CTRLW'b1_000_01_10_001_0_0_0_0_0_0_0_0_0_00_0; // lw
7'b0000111: ControlsD = `CTRLW'b0_000_01_10_001_0_0_0_0_0_0_0_0_0_00_0; // flw
7'b0000111: ControlsD = `CTRLW'b0_000_01_10_001_0_0_0_0_0_0_0_0_0_00_0; // flw - only legal if FP supported
7'b0001111: ControlsD = `CTRLW'b0_000_00_00_000_0_0_0_0_0_0_0_1_0_00_0; // fence
7'b0010011: ControlsD = `CTRLW'b1_000_01_00_000_0_1_0_0_0_0_0_0_0_00_0; // I-type ALU
7'b0010111: ControlsD = `CTRLW'b1_100_11_00_000_0_0_0_0_0_0_0_0_0_00_0; // auipc
@ -129,7 +129,7 @@ module controller(
else
ControlsD = `CTRLW'b0_000_00_00_000_0_0_0_0_0_0_0_0_0_00_1; // non-implemented instruction
7'b0100011: ControlsD = `CTRLW'b0_001_01_01_000_0_0_0_0_0_0_0_0_0_00_0; // sw
7'b0100111: ControlsD = `CTRLW'b0_001_01_01_000_0_0_0_0_0_0_0_0_0_00_0; // fsw
7'b0100111: ControlsD = `CTRLW'b0_001_01_01_000_0_0_0_0_0_0_0_0_0_00_0; // fsw - only legal if FP supported
7'b0101111: if (`A_SUPPORTED) begin
if (InstrD[31:27] == 5'b00010)
ControlsD = `CTRLW'b1_000_00_10_001_0_0_0_0_0_0_0_0_0_01_0; // lr

View File

@ -64,6 +64,7 @@ module csr #(parameter
output logic [11:0] MIP_REGW, MIE_REGW, SIP_REGW, SIE_REGW, MIDELEG_REGW,
output logic STATUS_MIE, STATUS_SIE,
output logic STATUS_MXR, STATUS_SUM, STATUS_MPRV, STATUS_TW,
output logic [1:0] STATUS_FS,
output var logic [7:0] PMPCFG_ARRAY_REGW[`PMP_ENTRIES-1:0],
output var logic [`XLEN-1:0] PMPADDR_ARRAY_REGW[`PMP_ENTRIES-1:0],
@ -141,7 +142,8 @@ module csr #(parameter
.mretM, .sretM, .WriteFRMM, .WriteFFLAGSM, .CSRWriteValM,
.MSTATUS_REGW, .SSTATUS_REGW, .MSTATUSH_REGW,
.STATUS_MPP, .STATUS_SPP, .STATUS_TSR, .STATUS_TW,
.STATUS_MIE, .STATUS_SIE, .STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_TVM);
.STATUS_MIE, .STATUS_SIE, .STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_TVM,
.STATUS_FS);
csrc counters(.clk, .reset,
.StallE, .StallM, .StallW, .FlushE, .FlushM, .FlushW,
.InstrValidM, .LoadStallD, .CSRMWriteM,

View File

@ -44,11 +44,12 @@ module csrsr (
output logic STATUS_SPP, STATUS_TSR, STATUS_TW,
output logic STATUS_MIE, STATUS_SIE,
output logic STATUS_MXR, STATUS_SUM,
output logic STATUS_MPRV, STATUS_TVM
output logic STATUS_MPRV, STATUS_TVM,
output logic [1:0] STATUS_FS
);
logic STATUS_SD, STATUS_TW_INT, STATUS_TSR_INT, STATUS_TVM_INT, STATUS_MXR_INT, STATUS_SUM_INT, STATUS_MPRV_INT;
logic [1:0] STATUS_SXL, STATUS_UXL, STATUS_XS, STATUS_FS, STATUS_FS_INT, STATUS_MPP_NEXT;
logic [1:0] STATUS_SXL, STATUS_UXL, STATUS_XS, STATUS_FS_INT, STATUS_MPP_NEXT;
logic STATUS_MPIE, STATUS_SPIE, STATUS_UBE, STATUS_SBE, STATUS_MBE;
// STATUS REGISTER FIELD

View File

@ -74,6 +74,7 @@ module privileged (
output logic [`XLEN-1:0] SATP_REGW,
output logic STATUS_MXR, STATUS_SUM, STATUS_MPRV,
output logic [1:0] STATUS_MPP,
output logic [1:0] STATUS_FS,
output var logic [7:0] PMPCFG_ARRAY_REGW[`PMP_ENTRIES-1:0],
output var logic [`XLEN-1:0] PMPADDR_ARRAY_REGW [`PMP_ENTRIES-1:0],
output logic [2:0] FRM_REGW,
@ -172,7 +173,7 @@ module privileged (
.SATP_REGW,
.MIP_REGW, .MIE_REGW, .SIP_REGW, .SIE_REGW, .MIDELEG_REGW,
.STATUS_MIE, .STATUS_SIE,
.STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_TW,
.STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_TW, .STATUS_FS,
.PMPCFG_ARRAY_REGW,
.PMPADDR_ARRAY_REGW,
.SetFflagsM,

View File

@ -108,7 +108,7 @@ module wallypipelinedcore (
logic ITLBMissF;
logic [`XLEN-1:0] SATP_REGW;
logic STATUS_MXR, STATUS_SUM, STATUS_MPRV;
logic [1:0] STATUS_MPP;
logic [1:0] STATUS_MPP, STATUS_FS;
logic [1:0] PrivilegeModeW;
logic [`XLEN-1:0] PTE;
logic [1:0] PageType;
@ -338,7 +338,7 @@ module wallypipelinedcore (
.InstrAccessFaultF, .LoadAccessFaultM, .StoreAmoAccessFaultM,
.ExceptionM, .IllegalFPUInstrE,
.PrivilegeModeW, .SATP_REGW,
.STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_MPP,
.STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_MPP, .STATUS_FS,
.PMPCFG_ARRAY_REGW, .PMPADDR_ARRAY_REGW,
.FRM_REGW,.BreakpointFaultM, .EcallFaultM
);
@ -373,6 +373,7 @@ module wallypipelinedcore (
.StallE, .StallM, .StallW, // stall signals from HZU
.FlushE, .FlushM, .FlushW, // flush signals from HZU
.RdM, .RdW, // which FP register to write to (from IEU)
.STATUS_FS, // is floating-point enabled?
.FRegWriteM, // FP register write enable
.FStallD, // Stall the decode stage
.FWriteIntE, // integer register write enable