Merge branch 'main' into cacheburstmode

This commit is contained in:
slmnemo 2022-06-08 02:21:33 +00:00
commit 284e0395a0
129 changed files with 7717 additions and 124352 deletions

4
.gitignore vendored
View File

@ -68,6 +68,8 @@ synthDC/alib-52
synthDC/*.log
synthDC/*.svf
synthDC/runs/
synthDC/plots/
synthDC/runArchive
synthDC/hdl
/pipelined/regression/power.saif
tests/fp/vectors/*.tv
@ -104,3 +106,5 @@ pipelined/config/rv64ic_noPriv
pipelined/config/rv64ic_orig
synthDC/Summary.csv
pipelined/srt/exptestgen
pipelined/srt/testgen
pipelined/srt/qst2

@ -1 +1 @@
Subproject commit be67c99bd461742aa1c100bcc0732657faae2230
Subproject commit 307c77b26e070ae85ffea665ad9b642b40e33c86

View File

@ -1,37 +1,62 @@
# Makefile added 1/20/22 David_Harris@hmc.edu
# Expanded and developed by dtorres@hmc.edu
# Compile Embench for Wally
all: build sim
all: sim size
allClean: clean all
build:
../../addins/embench-iot/build_all.py --builddir=bd_speed --arch riscv32 --chip generic --board rv32wallyverilog --ldflags="-nostartfiles ../../../config/riscv32/boards/rv32wallyverilog/startup/crt0.S" --cflags="-nostartfiles"
../../addins/embench-iot/build_all.py --builddir=bd_size --arch riscv32 --chip generic --board rv32wallyverilog --ldflags="-nostdlib" --cflags="-nostdlib" --dummy-libs="libgcc libm libc crt0"
build: buildspeed buildsize
sim: size speed
# uses the build_all.py python file to build the tests in addins/embench-iot/bd_speed/ optimized for speed
buildspeed:
../../addins/embench-iot/build_all.py --builddir=bd_speed --arch riscv32 --chip generic --board rv32wallyverilog --ldflags="-nostartfiles ../../../config/riscv32/boards/rv32wallyverilog/startup/crt0.S" --cflags="-O2 -nostartfiles"
find ../../addins/embench-iot/bd_speed/ -type f ! -name "*.*" | while read f; do cp "$$f" "$$f.elf"; done
size:
# uses the build_all.py python file to build the tests in addins/embench-iot/bd_speed/ optimized for size
buildsize:
../../addins/embench-iot/build_all.py --builddir=bd_size --arch riscv32 --chip generic --board rv32wallyverilog --ldflags="-nostdlib -nostartfiles ../../../config/riscv32/boards/rv32wallyverilog/startup/dummy.S" --cflags="-Os -msave-restore" --dummy-libs="libgcc libm libc crt0"
# builds dependencies, then launches modelsim and finally runs python wrapper script to present results
sim: modelsim_build_memfile modelsim_run speed
# launches modelsim to simulate tests on wally
modelsim_run:
(cd ../../pipelined/regression/ && vsim -c -do "do wally-pipelined-batch.do rv32gc embench")
cd ../../benchmarks/embench/
# builds the objdump based on the compiled c elf files
objdump: buildspeed
find ../../addins/embench-iot/bd_speed/ -type f -name "*.elf" | while read f; do riscv64-unknown-elf-objdump -S -D "$$f" > "$$f.objdump"; done
# build memfiles, objdump.lab and objdump.addr files
modelsim_build_memfile: objdump
find ../../addins/embench-iot/bd_speed/ -type f -name "*.elf" | while read f; do riscv64-unknown-elf-elf2hex --bit-width 32 --input "$$f" --output "$$f.memfile"; done
find ../../addins/embench-iot/bd_speed/ -type f -name "*.elf.objdump" | while read f; do extractFunctionRadix.sh $$f; done
# builds the tests for speed, runs them on spike and then launches python script to present results
# note that the speed python script benchmark_speed.py can get confused if there's both a .output file created from spike and modelsim
# you'll need to manually remove one of the two .output files, or run make clean
spike: buildspeed spikecmd speed
# command to run spike on all of the benchmarks
spike_run: buildspeed
find ../../addins/embench-iot/bd_speed/ -type f -name "*.elf" | while read f; do spike --isa=rv32imac +signature=$$f.spike.output +signature-granularity=4 $$f; done
# python wrapper to present results of embench size benchmark
size: buildsize
../../addins/embench-iot/benchmark_size.py --builddir=bd_size
# python wrapper to present results of embench speed benchmark
speed:
../../addins/embench-iot/benchmark_speed.py --builddir=bd_speed --target-module run_wally --cpu-mhz=50
objdump:
riscv64-unknown-elf-objdump -S ../../addins/embench-iot/bd_speed/src/aha-mont64/aha-mont64 > ../../addins/embench-iot/bd_speed/src/aha-mont64/aha-mont64.objdump
riscv64-unknown-elf-objdump -S ../../addins/embench-iot/bd_speed/src/cubic/cubic > ../../addins/embench-iot/bd_speed/src/cubic/cubic.objdump
riscv64-unknown-elf-objdump -S ../../addins/embench-iot/bd_speed/src/md5sum/md5sum > ../../addins/embench-iot/bd_speed/src/md5sum/md5sum.objdump
riscv64-unknown-elf-objdump -S ../../addins/embench-iot/bd_speed/src/statemate/statemate > ../../addins/embench-iot/bd_speed/src/statemate/statemate.objdump
../../addins/embench-iot/benchmark_speed.py --builddir=bd_speed --target-module run_wally --cpu-mhz=1
# deletes all files
clean:
rm -rf ../../addins/embench-iot/bd_speed/
rm -rf ../../addins/embench-iot/bd_size/
# std:
# ../../addins/embench-iot/build_all.py --builddir=bd_std --arch riscv32 --chip generic --board rv32wallyverilog --cc riscv64-unknown-elf-gcc --cflags="-v -c -O2 -ffunction-sections -march=rv32imac -mabi=ilp32" --ldflags="-Wl,-gc-sections -v -march=rv32imac -mabi=ilp32 ../../../../../benchmarks/embench/tohost.S -T../../../config/riscv32/boards/rv32wallyverilog/link.ld" --user-libs="-lm"
# riscv64-unknown-elf-objdump -D ../../addins/embench-iot/bd_std/src/aha-mont64/aha-mont64 > ../../addins/embench-iot/bd_std/src/aha-mont64/aha-mont64.objdump
# --dummy-libs="libgcc libm libc"
# --cflags "-O2 -g -nostartfiles"
# ../../addins/embench-iot/build_all.py --arch riscv32 --chip generic --board rv32wallyverilog --cc riscv64-unknown-elf-gcc --cflags="-c -Os -ffunction-sections -nostdlib -march=rv32imac -mabi=ilp32" --ldflags="-Wl,-gc-sections -nostdlib -march=rv32imac -mabi=ilp32 -T../../../config/riscv32/boards/rv32wallyverilog/link.ld" --dummy-libs="libgcc libm libc"
# --user-libs="-lm"
# riscv64-unknown-elf-gcc -O2 -g -nostartfiles -I/home/harris/riscv-wally/addins/embench-iot/support -I/home/harris/riscv-wally/addins/embench-iot/config/riscv32/boards/ri5cyverilator -I/home/harris/riscv-wally/addins/embench-iot/config/riscv32/chips/generic -I/home/harris/riscv-wally/addins/embench-iot/config/riscv32 -DCPU_MHZ=1 -DWARMUP_HEAT=1 -o main.o /home/harris/riscv-wally/addins/embench-iot/support/main.c
allclean: clean
rm -rf ../../addins/embench-iot/logs/
# riscv64-unknown-elf-gcc -O2 -g -nostartfiles -I/home/harris/riscv-wally/addins/embench-iot/support -I/home/harris/riscv-wally/addins/embench-iot/config/riscv32/boards/ri5cyverilator -I/home/harris/riscv-wally/addins/embench-iot/config/riscv32/chips/generic -I/home/harris/riscv-wally/addins/embench-iot/config/riscv32 -DCPU_MHZ=1 -DWARMUP_HEAT=1 -o main.o /home/harris/riscv-wally/addins/embench-iot/support/main.c

View File

@ -11,9 +11,6 @@ work/coremark.bare.riscv.elf.memfile: work/coremark.bare.riscv
riscv64-unknown-elf-elf2hex --bit-width 64 --input $< --output $@
extractFunctionRadix.sh $<.elf.objdump
work/coremark.bare.riscv.objdump: work/coremark.bare.riscv
riscv64-unknown-elf-objdump -D work/coremark.bare.riscv > work/coremark.bare.riscv.objdump
work/coremark.bare.riscv: $(sources) Makefile
# make -C $(cmbase) PORT_DIR=$(PORT_DIR) compile RISCV=/opt/riscv/riscv-gnu-toolchain XCFLAGS="-march=rv64imd -mabi=lp64d -mbranch-cost=1 -DSKIP_DEFAULT_MEMSET -mtune=sifive-7-series -Ofast -funroll-all-loops -fno-delete-null-pointer-checks -fno-rename-registers --param=loop-max-datarefs-for-datadeps=0 -funroll-all-loops --param=uninlined-function-insns=8 -fno-tree-vrp -fwrapv -fno-toplevel-reorder --param=max-inline-insns-size=128 -fipa-pta"
# These flags were used by WD on CoreMark

View File

@ -327,7 +327,7 @@ connect_debug_port u_ila_0/probe72 [get_nets [list wallypipelinedsoc/core/hzu/BP
create_debug_port u_ila_0 probe
set_property port_width 1 [get_debug_ports u_ila_0/probe73]
set_property PROBE_TYPE DATA_AND_TRIGGER [get_debug_ports u_ila_0/probe73]
connect_debug_port u_ila_0/probe73 [get_nets [list wallypipelinedsoc/core/hzu/CSRWritePendingDEM ]]
connect_debug_port u_ila_0/probe73 [get_nets [list wallypipelinedsoc/core/hzu/CSRWriteFencePendingDEM ]]
create_debug_port u_ila_0 probe
set_property port_width 1 [get_debug_ports u_ila_0/probe74]
@ -402,7 +402,7 @@ connect_debug_port u_ila_0/probe87 [get_nets [list wallypipelinedsoc/core/hzu/Br
create_debug_port u_ila_0 probe
set_property port_width 1 [get_debug_ports u_ila_0/probe88]
set_property PROBE_TYPE DATA_AND_TRIGGER [get_debug_ports u_ila_0/probe88]
connect_debug_port u_ila_0/probe88 [get_nets [list wallypipelinedsoc/core/hzu/InvalidateICacheM ]]
connect_debug_port u_ila_0/probe88 [get_nets [list {wallypipelinedsoc/uncore/uart.uart/u/RXerrIP} ]]
create_debug_port u_ila_0 probe
set_property port_width 1 [get_debug_ports u_ila_0/probe89]
@ -433,7 +433,8 @@ connect_debug_port u_ila_0/probe93 [get_nets [list wallypipelinedsoc/core/hzu/St
create_debug_port u_ila_0 probe
set_property port_width 1 [get_debug_ports u_ila_0/probe94]
set_property PROBE_TYPE DATA_AND_TRIGGER [get_debug_ports u_ila_0/probe94]
connect_debug_port u_ila_0/probe94 [get_nets [list wallypipelinedsoc/core/hzu/FlushF ]]
connect_debug_port u_ila_0/probe94 [get_nets [list {wallypipelinedsoc/uncore/uart.uart/u/RXerrIP} ]]
create_debug_port u_ila_0 probe
set_property port_width 1 [get_debug_ports u_ila_0/probe95]
@ -835,8 +836,4 @@ set_property port_width 4 [get_debug_ports u_ila_0/probe171]
set_property PROBE_TYPE DATA_AND_TRIGGER [get_debug_ports u_ila_0/probe171]
connect_debug_port u_ila_0/probe171 [get_nets [list {wallypipelinedsoc/uncore/uart.uart/u/rxfifotail[0]} {wallypipelinedsoc/uncore/uart.uart/u/rxfifotail[1]} {wallypipelinedsoc/uncore/uart.uart/u/rxfifotail[2]} {wallypipelinedsoc/uncore/uart.uart/u/rxfifotail[3]} ]]
create_debug_port u_ila_0 probe
set_property port_width 1 [get_debug_ports u_ila_0/probe172]
set_property PROBE_TYPE DATA_AND_TRIGGER [get_debug_ports u_ila_0/probe172]
connect_debug_port u_ila_0/probe172 [get_nets [list {wallypipelinedsoc/uncore/uart.uart/u/RXerrIP} ]]

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -35,11 +35,11 @@
`define XLEN 64
// IEEE 754 compliance
`define IEEE754 1
`define IEEE754 0
// MISA RISC-V configuration per specification
//16 - quad 3 - double 5 - single
`define MISA (32'h00000104 | 1 << 5 | 1 << 3 | 0 << 16 | 1 << 18 | 1 << 20 | 1 << 12 | 1 << 0 )
// ZYXWVUTSRQPONMLKJIHGFEDCBA
`define MISA 32'b0000000000101000001000100101101
`define ZICSR_SUPPORTED 1
`define ZIFENCEI_SUPPORTED 1
`define COUNTERS 32
@ -52,9 +52,11 @@
`define UARCH_SINGLECYCLE 0
`define DMEM `MEM_CACHE
`define IMEM `MEM_CACHE
`define DBUS 1
`define IBUS 1
`define VIRTMEM_SUPPORTED 1
`define VECTORED_INTERRUPTS_SUPPORTED 1
`define BIGENDIAN_SUPPORTED 0
`define BIGENDIAN_SUPPORTED 1
// TLB configuration. Entries should be a power of 2
`define ITLB_ENTRIES 32
@ -82,13 +84,13 @@
// Bus Interface width
`define AHBW 64
// WFI Timeout Wait
`define WFI_TIMEOUT_BIT 16
// Peripheral Physiccal Addresses
// Peripheral memory space extends from BASE to BASE+RANGE
// Range should be a thermometer code with 0's in the upper bits and 1s in the lower bits
// WFI Timeout Wait
`define WFI_TIMEOUT_BIT 16
// *** each of these is `PA_BITS wide. is this paramaterizable INSIDE the config file?
`define BOOTROM_SUPPORTED 1'b1
`define BOOTROM_BASE 56'h00001000 // spec had been 0x1000 to 0x2FFF, but dh truncated to 0x1000 to 0x1FFF because upper half seems to be all zeros and this is easier for decoder
@ -130,13 +132,12 @@
`define PLIC_GPIO_ID 3
`define PLIC_UART_ID 10
`define TWO_BIT_PRELOAD "../config/rv64ic/twoBitPredictor.txt"
`define BTB_PRELOAD "../config/rv64ic/BTBPredictor.txt"
`define TWO_BIT_PRELOAD "../config/shared/twoBitPredictor.txt"
`define BTB_PRELOAD "../config/shared/BTBPredictor.txt"
`define BPRED_ENABLED 1
`define BPTYPE "BPGSHARE" // BPLOCALPAg or BPGLOBAL or BPTWOBIT or BPGSHARE
`define TESTSBP 0
`define BPRED_SIZE 10
`define REPLAY 0
`define HPTW_WRITES_SUPPORTED 0

View File

@ -32,33 +32,34 @@
`define DESIGN_COMPILER 0
// RV32 or RV64: XLEN = 32 or 64
`define XLEN 32
`define XLEN 64
// IEEE 754 compliance
`define IEEE754 0
// E
`define MISA (32'h00000010)
`define ZICSR_SUPPORTED 0
`define ZIFENCEI_SUPPORTED 0
`define COUNTERS 0
`define ZICOUNTERS_SUPPORTED 0
// MISA RISC-V configuration per specification
`define MISA (32'h00000104 | 1 << 5 | 1 << 3 | 1 << 16 | 1 << 18 | 1 << 20 | 1 << 12 | 1 << 0 )
`define ZICSR_SUPPORTED 1
`define ZIFENCEI_SUPPORTED 1
`define COUNTERS 32
`define ZICOUNTERS_SUPPORTED 1
`define ZFH_SUPPORTED 1
// Microarchitectural Features
/// Microarchitectural Features
`define UARCH_PIPELINED 1
`define UARCH_SUPERSCALR 0
`define UARCH_SINGLECYCLE 0
// *** replace with MEM_BUS
`define DMEM `MEM_NONE
`define IMEM `MEM_NONE
`define DMEM `MEM_CACHE
`define IMEM `MEM_CACHE
`define DBUS 1
`define IBUS 1
`define VIRTMEM_SUPPORTED 0
`define VECTORED_INTERRUPTS_SUPPORTED 0
`define VIRTMEM_SUPPORTED 1
`define VECTORED_INTERRUPTS_SUPPORTED 1
`define BIGENDIAN_SUPPORTED 1
// TLB configuration. Entries should be a power of 2
`define ITLB_ENTRIES 0
`define DTLB_ENTRIES 0
`define ITLB_ENTRIES 32
`define DTLB_ENTRIES 32
// Cache configuration. Sizes should be a power of two
// typical configuration 4 ways, 4096 bytes per way, 256 bit or more lines
@ -71,44 +72,49 @@
// Integer Divider Configuration
// DIV_BITSPERCYCLE must be 1, 2, or 4
`define DIV_BITSPERCYCLE 1
`define DIV_BITSPERCYCLE 4
// Legal number of PMP entries are 0, 16, or 64
`define PMP_ENTRIES 0
`define PMP_ENTRIES 64
// Address space
`define RESET_VECTOR 32'h80000000
// Peripheral Addresses
// Peripheral memory space extends from BASE to BASE+RANGE
// Range should be a thermometer code with 0's in the upper bits and 1s in the lower bits
`define BOOTROM_SUPPORTED 1'b1
`define BOOTROM_BASE 34'h00001000
`define BOOTROM_RANGE 34'h00000FFF
`define RAM_SUPPORTED 1'b1
`define RAM_BASE 34'h80000000
`define RAM_RANGE 34'h07FFFFFF
`define EXT_MEM_SUPPORTED 1'b0
`define EXT_MEM_BASE 34'h80000000
`define EXT_MEM_RANGE 34'h07FFFFFF
`define CLINT_SUPPORTED 1'b0
`define CLINT_BASE 34'h02000000
`define CLINT_RANGE 34'h0000FFFF
`define GPIO_SUPPORTED 1'b0
`define GPIO_BASE 34'h10060000
`define GPIO_RANGE 34'h000000FF
`define UART_SUPPORTED 1'b0
`define UART_BASE 34'h10000000
`define UART_RANGE 34'h00000007
`define PLIC_SUPPORTED 1'b0
`define PLIC_BASE 34'h0C000000
`define PLIC_RANGE 34'h03FFFFFF
`define SDC_SUPPORTED 1'b0
`define SDC_BASE 34'h00012100
`define SDC_RANGE 34'h0000001F
`define RESET_VECTOR 64'h0000000080000000
// Bus Interface width
`define AHBW 32
`define AHBW 64
// WFI Timeout Wait
`define WFI_TIMEOUT_BIT 16
// Peripheral Physiccal Addresses
// Peripheral memory space extends from BASE to BASE+RANGE
// Range should be a thermometer code with 0's in the upper bits and 1s in the lower bits
// *** each of these is `PA_BITS wide. is this paramaterizable INSIDE the config file?
`define BOOTROM_SUPPORTED 1'b1
`define BOOTROM_BASE 56'h00001000 // spec had been 0x1000 to 0x2FFF, but dh truncated to 0x1000 to 0x1FFF because upper half seems to be all zeros and this is easier for decoder
`define BOOTROM_RANGE 56'h00000FFF
`define RAM_SUPPORTED 1'b1
`define RAM_BASE 56'h80000000
`define RAM_RANGE 56'h7FFFFFFF
`define EXT_MEM_SUPPORTED 1'b0
`define EXT_MEM_BASE 56'h80000000
`define EXT_MEM_RANGE 56'h07FFFFFF
`define CLINT_SUPPORTED 1'b1
`define CLINT_BASE 56'h02000000
`define CLINT_RANGE 56'h0000FFFF
`define GPIO_SUPPORTED 1'b1
`define GPIO_BASE 56'h10060000
`define GPIO_RANGE 56'h000000FF
`define UART_SUPPORTED 1'b1
`define UART_BASE 56'h10000000
`define UART_RANGE 56'h00000007
`define PLIC_SUPPORTED 1'b1
`define PLIC_BASE 56'h0C000000
`define PLIC_RANGE 56'h03FFFFFF
`define SDC_SUPPORTED 1'b0
`define SDC_BASE 56'h00012100
`define SDC_RANGE 56'h0000001F
// Test modes
@ -119,17 +125,18 @@
`define UART_PRESCALE 1
// Interrupt configuration
`define PLIC_NUM_SRC 10
`define PLIC_NUM_SRC 10
// comment out the following if >=32 sources
`define PLIC_NUM_SRC_LT_32
`define PLIC_GPIO_ID 3
`define PLIC_UART_ID 10
`define TWO_BIT_PRELOAD "../config/rv32ic/twoBitPredictor.txt"
`define BTB_PRELOAD "../config/rv32ic/BTBPredictor.txt"
`define BPRED_ENABLED 0
`define TWO_BIT_PRELOAD "../config/shared/twoBitPredictor.txt"
`define BTB_PRELOAD "../config/shared/BTBPredictor.txt"
`define BPRED_ENABLED 1
`define BPTYPE "BPGSHARE" // BPLOCALPAg or BPGLOBAL or BPTWOBIT or BPGSHARE
`define TESTSBP 0
`define BPRED_SIZE 10
`define REPLAY 0
`define HPTW_WRITES_SUPPORTED 0

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -51,42 +51,45 @@
`define PMPCFG_ENTRIES (`PMP_ENTRIES/8)
// Floating point constants for Quad, Double, Single, and Half precisions
`define Q_LEN 128
`define Q_NE 15
`define Q_NF 112
`define Q_BIAS 16383
`define D_LEN 64
`define D_NE 11
`define D_NF 52
`define D_BIAS 1023
`define S_LEN 32
`define S_NE 8
`define S_NF 23
`define S_BIAS 127
`define H_LEN 16
`define H_NE 5
`define H_NF 10
`define H_BIAS 15
`define Q_LEN 32'd128
`define Q_NE 32'd15
`define Q_NF 32'd112
`define Q_BIAS 32'd16383
`define D_LEN 32'd64
`define D_NE 32'd11
`define D_NF 32'd52
`define D_BIAS 32'd1023
`define D_FMT 32'd1
`define S_LEN 32'd32
`define S_NE 32'd8
`define S_NF 32'd23
`define S_BIAS 32'd127
`define S_FMT 32'd1
`define H_LEN 32'd16
`define H_NE 32'd5
`define H_NF 32'd10
`define H_BIAS 32'd15
// Floating point length FLEN and number of exponent (NE) and fraction (NF) bits
`define FLEN (`Q_SUPPORTED ? `Q_LEN : `D_SUPPORTED ? `D_LEN : `F_SUPPORTED ? `S_LEN : `H_LEN)
`define NE (`Q_SUPPORTED ? `Q_NE : `D_SUPPORTED ? `D_NE : `F_SUPPORTED ? `S_NE : `H_NE)
`define NF (`Q_SUPPORTED ? `Q_NF : `D_SUPPORTED ? `D_NF : `F_SUPPORTED ? `S_NF : `H_NF)
`define FMT (`Q_SUPPORTED ? 3 : `D_SUPPORTED ? 1 : `F_SUPPORTED ? 0 : 2)
`define FMT (`Q_SUPPORTED ? 2'd3 : `D_SUPPORTED ? 2'd1 : `F_SUPPORTED ? 2'd0 : 2'd2)
`define BIAS (`Q_SUPPORTED ? `Q_BIAS : `D_SUPPORTED ? `D_BIAS : `F_SUPPORTED ? `S_BIAS : `H_BIAS)
// Floating point constants needed for FPU paramerterization
`define FPSIZES (`Q_SUPPORTED+`D_SUPPORTED+`F_SUPPORTED+`ZFH_SUPPORTED)
`define LEN1 ((`D_SUPPORTED & (`FLEN != `D_LEN)) ? `D_LEN : (`F_SUPPORTED & (`FLEN != `S_LEN)) ? `S_LEN : `H_LEN)
`define NE1 ((`D_SUPPORTED & (`FLEN != `D_LEN)) ? `D_NE : (`F_SUPPORTED & (`FLEN != `S_LEN)) ? `S_NE : `H_NE)
`define NF1 ((`D_SUPPORTED & (`FLEN != `D_LEN)) ? `D_NF : (`F_SUPPORTED & (`FLEN != `S_LEN)) ? `S_NF : `H_NF)
`define FMT1 ((`D_SUPPORTED & (`FLEN != `D_LEN)) ? 1 : (`F_SUPPORTED & (`FLEN != `S_LEN)) ? 0 : 2)
`define BIAS1 ((`D_SUPPORTED & (`FLEN != `D_LEN)) ? `D_BIAS : (`F_SUPPORTED & (`FLEN != `S_LEN)) ? `S_BIAS : `H_BIAS)
`define LEN2 ((`F_SUPPORTED & (`LEN1 != `S_LEN)) ? `S_LEN : `H_LEN)
`define FPSIZES ((32)'(`Q_SUPPORTED)+(32)'(`D_SUPPORTED)+(32)'(`F_SUPPORTED)+(32)'(`ZFH_SUPPORTED))
`define FMTBITS ((`FPSIZES>=3)+1)
`define LEN1 ((`D_SUPPORTED & (`FLEN != `D_LEN)) ? `D_LEN : (`F_SUPPORTED & (`FLEN != `S_LEN)) ? `S_LEN : `H_LEN)
`define NE1 ((`D_SUPPORTED & (`FLEN != `D_LEN)) ? `D_NE : (`F_SUPPORTED & (`FLEN != `S_LEN)) ? `S_NE : `H_NE)
`define NF1 ((`D_SUPPORTED & (`FLEN != `D_LEN)) ? `D_NF : (`F_SUPPORTED & (`FLEN != `S_LEN)) ? `S_NF : `H_NF)
`define FMT1 ((`D_SUPPORTED & (`FLEN != `D_LEN)) ? 2'd1 : (`F_SUPPORTED & (`FLEN != `S_LEN)) ? 2'd0 : 2'd2)
`define BIAS1 ((`D_SUPPORTED & (`FLEN != `D_LEN)) ? `D_BIAS : (`F_SUPPORTED & (`FLEN != `S_LEN)) ? `S_BIAS : `H_BIAS)
`define LEN2 ((`F_SUPPORTED & (`LEN1 != `S_LEN)) ? `S_LEN : `H_LEN)
`define NE2 ((`F_SUPPORTED & (`LEN1 != `S_LEN)) ? `S_NE : `H_NE)
`define NF2 ((`F_SUPPORTED & (`LEN1 != `S_LEN)) ? `S_NF : `H_NF)
`define FMT2 ((`F_SUPPORTED & (`LEN1 != `S_LEN)) ? 0 : 2)
`define BIAS2 ((`F_SUPPORTED & (`LEN1 != `S_LEN)) ? `S_BIAS : `H_BIAS)
`define NF2 ((`F_SUPPORTED & (`LEN1 != `S_LEN)) ? `S_NF : `H_NF)
`define FMT2 ((`F_SUPPORTED & (`LEN1 != `S_LEN)) ? 2'd0 : 2'd2)
`define BIAS2 ((`F_SUPPORTED & (`LEN1 != `S_LEN)) ? `S_BIAS : `H_BIAS)
// Disable spurious Verilator warnings

View File

@ -5,7 +5,7 @@ export PATH=$PATH:/usr/local/bin/
verilator=`which verilator`
basepath=$(dirname $0)/..
for config in rv32e rv64gc rv32gc rv32ic ; do
for config in rv64fp rv64fpquad rv32e rv64gc rv32gc rv32ic; do
echo "$config linting..."
if !($verilator --lint-only "$@" --top-module wallypipelinedsoc "-I$basepath/config/shared" "-I$basepath/config/$config" $basepath/src/*/*.sv $basepath/src/*/*/*.sv --relative-includes); then
echo "Exiting after $config lint due to errors or warnings"

View File

@ -46,7 +46,7 @@ configs = [
]
def getBuildrootTC(short):
INSTR_LIMIT = 4000000 # multiple of 100000; 4M is interesting because it gets into the kernel and enabling VM
MAX_EXPECTED = 246000000
MAX_EXPECTED = 246000000 # *** TODO: replace this with a search for the login prompt.
if short:
BRcmd="vsim > {} -c <<!\ndo wally-pipelined-batch.do buildroot buildroot $RISCV "+str(INSTR_LIMIT)+" 1 0\n!"
BRgrepstr=str(INSTR_LIMIT)+" instructions"

View File

@ -1 +0,0 @@
vsim -do wally-fp64.do

View File

@ -1,3 +0,0 @@
vsim -c <<!
do wally-fp64-batch.do rv64gc imperas64d
!

View File

@ -3,9 +3,10 @@
# cvtfp - test floating-point conversion unit (fcvtfp)
# cmp - test comparison unit's LT, LE, EQ opperations (fcmp)
# add - test addition
# fma - test fma
# sub - test subtraction
# div - test division
# sqrt - test square ro
# all - test everything
vsim -do "do fp.do rv64fp cmp"
vsim -do "do testfloat.do rv64fpquad cmp"

View File

@ -7,4 +7,4 @@
# sqrt - test square root
# all - test everything
vsim -c -do "do fp.do rv64fp fma"
vsim -c -do "do testfloat.do rv64fpquad all"

View File

@ -1,2 +1,2 @@
vsim -do "do wally-pipelined.do rv64gc imperas64d"
vsim -do "do wally-pipelined.do rv32gc arch32f"

View File

@ -32,7 +32,7 @@ vlib work
# start and run simulation
# remove +acc flag for faster sim during regressions if there is no need to access internal signals
# $num = the added words after the call
vlog +incdir+../config/$1 +incdir+../config/shared ../testbench/testbench-fp.sv ../src/fpu/*.sv -suppress 2583,7063,8607,2697
vlog +incdir+../config/$1 +incdir+../config/shared ../testbench/testbench-fp.sv ../src/fpu/*.sv ../src/generic/*.sv -suppress 2583,7063,8607,2697
vsim -voptargs=+acc work.testbenchfp -G TEST=$2

View File

@ -1,50 +0,0 @@
# wally-pipelined-batch.do
#
# Modification by Oklahoma State University & Harvey Mudd College
# Use with Testbench
# James Stine, 2008; David Harris 2021
# Go Cowboys!!!!!!
#
# Takes 1:10 to run RV64IC tests using gui
# Usage: do wally-pipelined-batch.do <config> <testcases>
# Example: do wally-pipelined-batch.do rv32ic imperas-32i
# Use this wally-pipelined-batch.do file to run this example.
# Either bring up ModelSim and type the following at the "ModelSim>" prompt:
# do wally-pipelined-batch.do
# or, to run from a shell, type the following at the shell prompt:
# vsim -do wally-pipelined-batch.do -c
# (omit the "-c" to see the GUI while running from the shell)
onbreak {resume}
# create library
if [file exists work_${1}_${2}] {
vdel -lib work_${1}_${2} -all
}
vlib work_${1}_${2}
# compile source files
# suppress spurious warnngs about
# "Extra checking for conflicts with always_comb done at vopt time"
# because vsim will run vopt
# default to config/rv64ic, but allow this to be overridden at the command line. For example:
# do wally-pipelined-batch.do ../config/rv32ic rv32ic
vlog -work work_${1}_${2} +incdir+../config/$1 +incdir+../config/shared ../testbench/testbench-f64.sv ../testbench/common/*.sv ../src/*/*.sv -suppress 2583
# start and run simulation
# remove +acc flag for faster sim during regressions if there is no need to access internal signals
vopt work_${1}_${2}.testbench -work work_${1}_${2} -G TEST=$2 -o testbenchopt
vsim -lib work_${1}_${2} testbenchopt
# Adding coverage increases runtime from 2:00 to 4:29. Can't run it all the time
#vopt work_$2.testbench -work work_$2 -o workopt_$2 +cover=sbectf
#vsim -coverage -lib work_$2 workopt_$2
run -all
#coverage report -file wally-pipelined-coverage.txt
# These aren't doing anything helpful
#coverage report -memory
#profile report -calltree -file wally-pipelined-calltree.rpt -cutoff 2
quit

View File

@ -1,54 +0,0 @@
# wally-pipelined.do
#
# Modification by Oklahoma State University & Harvey Mudd College
# Use with Testbench
# James Stine, 2008; David Harris 2021
# Go Cowboys!!!!!!
#
# Takes 1:10 to run RV64IC tests using gui
# run with vsim -do "do wally-pipelined.do rv64ic riscvarchtest-64m"
# Use this wally-pipelined.do file to run this example.
# Either bring up ModelSim and type the following at the "ModelSim>" prompt:
# do wally-pipelined.do
# or, to run from a shell, type the following at the shell prompt:
# vsim -do wally-pipelined.do -c
# (omit the "-c" to see the GUI while running from the shell)
onbreak {resume}
# create library
if [file exists work] {
vdel -all
}
vlib work
# compile source files
# suppress spurious warnngs about
# "Extra checking for conflicts with always_comb done at vopt time"
# because vsim will run vopt
# default to config/rv64ic, but allow this to be overridden at the command line. For example:
# do wally-pipelined.do ../config/rv32ic
#switch $argc {
# 0 {vlog +incdir+../config/rv64ic +incdir+../config/shared ../testbench/testbench.sv ../testbench/common/*.sv ../src/*/*.sv -suppress 2583}
# 1 {vlog +incdir+$1 +incdir+../config/shared ../testbench/testbench.sv ../testbench/common/*.sv ../src/*/*.sv -suppress 2583}
#}
# start and run simulation
# remove +acc flag for faster sim during regressions if there is no need to access internal signals
vlog +incdir+../config/rv64gc +incdir+../config/shared ../testbench/testbench-f64.sv ../testbench/common/*.sv ../src/*/*.sv -suppress 2583
vopt +acc work.testbench -G TEST=imperas64d -o workopt
vsim workopt
view wave
-- display input and output signals as hexidecimal values
do ./wave-dos/generic.do
-- Run the Simulation
#run 3600
run -all
#quit
#noview ../testbench/testbench-imperas.sv
noview ../testbench/testbench.sv
view wave

View File

@ -35,7 +35,7 @@ vlib wkdir/work_${1}_${2}
if {$2 eq "buildroot" || $2 eq "buildroot-checkpoint"} {
vlog -lint -work wkdir/work_${1}_${2} +incdir+../config/$1 +incdir+../config/shared ../testbench/testbench-linux.sv ../testbench/common/*.sv ../src/*/*.sv ../src/*/*/*.sv -suppress 2583
# start and run simulation
vopt wkdir/work_${1}_${2}.testbench -work wkdir/work_${1}_${2} -G RISCV_DIR=$3 -G INSTR_LIMIT=$4 -G INSTR_WAVEON=$5 -G CHECKPOINT=$6 -G DEBUG_TRACE=1 -o testbenchopt
vopt wkdir/work_${1}_${2}.testbench -work wkdir/work_${1}_${2} -G RISCV_DIR=$3 -G INSTR_LIMIT=$4 -G INSTR_WAVEON=$5 -G CHECKPOINT=$6 -o testbenchopt
vsim -lib wkdir/work_${1}_${2} testbenchopt -suppress 8852,12070,3084
run -all

View File

@ -34,7 +34,7 @@ vlib work
if {$2 eq "buildroot" || $2 eq "buildroot-checkpoint"} {
vlog -lint -work work_${1}_${2} +incdir+../config/$1 +incdir+../config/shared ../testbench/testbench-linux.sv ../testbench/common/*.sv ../src/*/*.sv ../src/*/*/*.sv -suppress 2583
# start and run simulation
vopt +acc work_${1}_${2}.testbench -work work_${1}_${2} -G RISCV_DIR=$3 -G INSTR_LIMIT=$4 -G INSTR_WAVEON=$5 -G CHECKPOINT=$6 -G DEBUG_TRACE=1 -o testbenchopt
vopt +acc work_${1}_${2}.testbench -work work_${1}_${2} -G RISCV_DIR=$3 -G INSTR_LIMIT=$4 -G INSTR_WAVEON=$5 -G CHECKPOINT=$6 -G NO_SPOOFING=0 -o testbenchopt
vsim -lib work_${1}_${2} testbenchopt -suppress 8852,12070,3084,3829
#-- Run the Simulation
@ -48,7 +48,7 @@ if {$2 eq "buildroot" || $2 eq "buildroot-checkpoint"} {
} elseif {$2 eq "buildroot-no-trace"} {
vlog -lint -work work_${1}_${2} +incdir+../config/$1 +incdir+../config/shared ../testbench/testbench-linux.sv ../testbench/common/*.sv ../src/*/*.sv ../src/*/*/*.sv -suppress 2583
# start and run simulation
vopt +acc work_${1}_${2}.testbench -work work_${1}_${2} -G RISCV_DIR=$3 -G INSTR_LIMIT=0 -G INSTR_WAVEON=0 -G CHECKPOINT=0 -G NO_IE_MTIME_CHECKPOINT=1 -G DEBUG_TRACE=0 -o testbenchopt
vopt +acc work_${1}_${2}.testbench -work work_${1}_${2} -G RISCV_DIR=$3 -G INSTR_LIMIT=0 -G INSTR_WAVEON=0 -G CHECKPOINT=0 -G NO_SPOOFING=1 -o testbenchopt
vsim -lib work_${1}_${2} testbenchopt -suppress 8852,12070,3084,3829
#-- Run the Simulation

View File

@ -76,8 +76,6 @@ add wave -noupdate -group CSRs /testbench/dut/core/priv/priv/csr/PMPCFG_ARRAY_RE
add wave -noupdate -group CSRs /testbench/dut/core/priv/priv/csr/SATP_REGW
add wave -noupdate -group CSRs /testbench/dut/core/priv/priv/csr/SCOUNTEREN_REGW
add wave -noupdate -group CSRs /testbench/dut/core/priv/priv/csr/SEPC_REGW
add wave -noupdate -group CSRs /testbench/dut/core/priv/priv/csr/SIE_REGW
add wave -noupdate -group CSRs /testbench/dut/core/priv/priv/csr/SIP_REGW
add wave -noupdate -group CSRs /testbench/dut/core/priv/priv/csr/SSTATUS_REGW
add wave -noupdate -group CSRs /testbench/dut/core/priv/priv/csr/STVEC_REGW
add wave -noupdate -group Bpred -color Orange /testbench/dut/core/ifu/bpred/bpred/Predictor/DirPredictor/GHR
@ -420,8 +418,6 @@ add wave -noupdate -group CLINT /testbench/dut/uncore/clint/clint/HRESPCLINT
add wave -noupdate -group CLINT /testbench/dut/uncore/clint/clint/HREADYCLINT
add wave -noupdate -group CLINT /testbench/dut/uncore/clint/clint/MTIME
add wave -noupdate -group CLINT /testbench/dut/uncore/clint/clint/MTIMECMP
add wave -noupdate -group CLINT /testbench/dut/uncore/clint/clint/TimerIntM
add wave -noupdate -group CLINT /testbench/dut/uncore/clint/clint/SwIntM
add wave -noupdate -group uart -expand -group {Bus Connection} /testbench/dut/uncore/uart/uart/HCLK
add wave -noupdate -group uart -expand -group {Bus Connection} /testbench/dut/uncore/uart/uart/HRESETn
add wave -noupdate -group uart -expand -group {Bus Connection} /testbench/dut/uncore/uart/uart/HSELUART

View File

@ -1,23 +0,0 @@
# Makefile
CC = gcc
CFLAGS = -O3
LIBS = -lm
LFLAGS = -L.
# Link against the riscv-isa-sim version of SoftFloat rather than
# the regular version to get RISC-V NaN behavior
IFLAGS = -I$(RISCV)/riscv-isa-sim/softfloat
LIBS = $(RISCV)/riscv-isa-sim/build/libsoftfloat.a
#IFLAGS = -I../../../addins/SoftFloat-3e/source/include/
#LIBS = ../../../addins/SoftFloat-3e/build/Linux-x86_64-GCC/softfloat.a
SRCS = $(wildcard *.c)
PROGS = $(patsubst %.c,%,$(SRCS))
all: $(PROGS)
%: %.c
$(CC) $(CFLAGS) $(IFLAGS) $(LFLAGS) -o $@ $< $(LIBS)
clean:
rm -f $(PROGS)

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,23 +0,0 @@
# fma.do
#
# run with vsim -do "do fma.do"
# add -c before -do for batch simulation
onbreak {resume}
# create library
vlib worklib
vlog -lint -sv -work worklib fma16.v testbench.v
vopt +acc worklib.testbench_fma16 -work worklib -o testbenchopt
vsim -lib worklib testbenchopt
add wave sim:/testbench_fma16/clk
add wave sim:/testbench_fma16/reset
add wave sim:/testbench_fma16/x
add wave sim:/testbench_fma16/y
add wave sim:/testbench_fma16/z
add wave sim:/testbench_fma16/result
add wave sim:/testbench_fma16/rexpected
run -all

View File

@ -1,268 +0,0 @@
// fma16.sv
// David_Harris@hmc.edu 26 February 2022
// 16-bit floating-point multiply-accumulate
// Operation: general purpose multiply, add, fma, with optional negation
// If mul=1, p = x * y. Else p = x.
// If add=1, result = p + z. Else result = p.
// If negr or negz = 1, negate result or z to handle negations and subtractions
// fadd: mul = 0, add = 1, negr = negz = 0
// fsub: mul = 0, add = 1, negr = 0, negz = 1
// fmul: mul = 1, add = 0, negr = 0, negz = 0
// fmadd: mul = 1, add = 1, negr = 0, negz = 0
// fmsub: mul = 1, add = 1, negr = 0, negz = 1
// fnmadd: mul = 1, add = 1, negr = 1, negz = 0
// fnmsub: mul = 1, add = 1, negr = 1, negz = 1
`define FFLEN 16
`define Nf 10
`define Ne 5
`define BIAS 15
`define EMIN (-(2**(`Ne-1)-1))
`define EMAX (2**(`Ne-1)-1)
`define NaN 16'h7E00
`define INF 15'h7C00
// rounding modes *** update
`define RZ 3'b00
`define RNE 3'b01
`define RM 3'b10
`define RP 3'b11
module fma16(
input logic [`FFLEN-1:0] x, y, z,
input logic mul, add, negr, negz,
input logic [1:0] roundmode, // 00: rz, 01: rne, 10: rp, 11: rn
output logic [`FFLEN-1:0] result);
logic [`Nf:0] xm, ym, zm; // U1.Nf
logic [`Ne-1:0] xe, ye, ze; // B_Ne
logic xs, ys, zs;
logic zs1; // sign before optional negation
logic [2*`Nf+1:0] pm; // U2.2Nf
logic [`Ne:0] pe; // B_Ne+1
logic ps; // sign of product
logic [22:0] rm;
logic [`Ne+1:0] re;
logic rs;
logic xzero, yzero, zzero, xinf, yinf, zinf, xnan, ynan, znan;
logic [`Ne+1:0] re2;
unpack16 unpack(x, y, z, xm, ym, zm, xe, ye, ze, xs, ys, zs1, xzero, yzero, zzero, xinf, yinf, zinf, xnan, ynan, znan); // unpack inputs
//signadj16 signadj(negr, negz, xs, ys, zs1, ps, zs); // handle negations
mult16 mult16(mul, xm, ym, xe, ye, xs, ys, pm, pe, ps); // p = x * y
add16 add16(add, pm, zm, pe, ze, ps, zs, negz, rm, re, re2, rs); // r = z + p
postproc16 post(roundmode, xzero, yzero, zzero, xinf, yinf, zinf, xnan, ynan, znan, rm, zm, re, ze, rs, zs, ps, re2, result); // normalize, round, pack
endmodule
module mult16(
input logic mul,
input logic [`Nf:0] xm, ym,
input logic [`Ne-1:0] xe, ye,
input logic xs, ys,
output logic [2*`Nf+1:0] pm,
output logic [`Ne:0] pe,
output logic ps);
// only multiply if mul = 1
assign pm = mul ? xm * ym : {1'b0, xm, 10'b0}; // multiply mantiassas
assign pe = mul ? xe + ye - `BIAS : {1'b0, xe}; // add exponents, account for bias
assign ps = xs ^ ys; // negative if X xor Y are negative
endmodule
module add16(
input logic add,
input logic [2*`Nf+1:0] pm, // U2.2Nf
input logic [`Nf:0] zm, // U1.Nf
input logic [`Ne:0] pe, // B_Ne+1
input logic [`Ne-1:0] ze, // B_Ne
input logic ps, zs,
input logic negz,
output logic [22:0] rm,
output logic [`Ne+1:0] re, // B_Ne+2
output logic [`Ne+1:0] re2,
output logic rs);
logic [`Nf*3+7:0] paligned, zaligned, zalignedaddsub, r, r2, rnormed, rnormed2; // U(Nf+6).(2Nf+2) aligned significands
logic signed [`Ne:0] ExpDiff; // Q(Ne+2).0
logic [`Ne:0] AlignCnt; // U(Ne+3) bits to right shift Z for alignment *** check size.
logic [`Nf-1:0] prezsticky;
logic zsticky;
logic effectivesub;
logic rs0;
logic [`Ne:0] leadingzeros, NormCnt; // *** should paramterize size
logic [`Ne:0] re1;
// Alignment shift
assign paligned = {{(`Nf+4){1'b0}}, pm, 2'b00}; // constant shift to prepend leading and trailing 0s.
assign ExpDiff = pe - {1'b0, ze}; // Compute exponent difference as signed number
always_comb // AlignCount mux; see Muller page 254
if (ExpDiff <= (-2*`Nf - 1)) begin AlignCnt = 3*`Nf + 7; re = {1'b0, pe}; end
else if (ExpDiff <= 2) begin AlignCnt = `Nf + 4 - ExpDiff; re = {1'b0, pe}; end
else if (ExpDiff <= `Nf+3) begin AlignCnt = `Nf + 4 - ExpDiff; re = {2'b0, ze}; end
else begin AlignCnt = 0; re = {2'b0, ze}; end
// Shift Zm right by AlignCnt. Produce 3Nf+8 bits of Zaligned in U(Nf+6).(2Nf+2) and Nf bits becoming sticky
assign {zaligned, prezsticky} = {zm, {(3*`Nf+7){1'b0}}} >> AlignCnt; //Right shift
assign zsticky = |prezsticky; // Sticky bit if any of the discarded bits were 1
// Effective subtraction
assign effectivesub = ps ^ zs ^ negz; // subtract |z| from |p|
assign zalignedaddsub = effectivesub ? ~zaligned : zaligned; // invert zaligned for subtraction
// Adder
assign r = paligned + zalignedaddsub + {{`Nf*3+7{1'b0}}, effectivesub}; // add aligned significands
assign rs0 = r[`Nf*3+7]; // sign of the initial result
assign r2 = rs0 ? ~r+1 : r; // invert sum if negative; could optimize with end-around carry?
// Sign Logic
assign rs = ps ^ rs0; // flip the sign if necessary
// Leading zero counter
lzc lzc(r2, leadingzeros); // count number of leading zeros in 2Nf+5 lower digits of r2
assign re1 = pe +2 - leadingzeros; // *** declare, # of bits
// Normalization shift
always_comb // NormCount mux
if (ExpDiff < 3) begin
if (re1 >= `EMIN) begin NormCnt = `Nf + 3 + leadingzeros; re2 = {1'b0, re1}; end
else begin NormCnt = `Nf + 5 + pe - `EMIN; re2 = `EMIN; end
end else begin NormCnt = AlignCnt; re = {2'b00, ze}; end
assign rnormed = r2 << NormCnt; // *** update sticky
/* temporarily comment out to start synth
// One-bit secondary normalization
if (ExpDiff <= 2) begin rnormed2 = rnormed; re2 = re; end // no secondary normalization
else begin // *** handle sticky
if (rnormed[***]) begin rnormed2 = rnormed >> 1; re2 = re+1; end
else if (rnormed[***-1]) begin rnormed2 = rnormed; re2 = re; end
else begin rnormed2 = rnormed << 1; re2 = re-1; end
end
// round
assign l = rnormed2[***]; // least significant bit
assign r = rnormed2[***-1]; // rounding bit
assign s = ***; // sticky bit
always_comb
case (roundmode)
RZ: roundup = 0;
RP: roundup = ~rs & (r | s);
RM: roundup = rs & (r | s);
RNE: roundup = r & (s | l);
default: roundup = 0;
endcase
assign {re3, rrounded} = {re2, rnormed2[***]} + roundup; // increment if necessary
*/
// *** need to handle rounding to MAXNUM vs. INFINITY
// add or pass product through
/* assign rm = add ? arm : {1'b0, pm};
assign re = add ? are : {1'b0, pe};
assign rs = add ? ars : ps; */
endmodule
module lzc(
input logic [`Nf*3+7:0] r2,
output logic [`Ne:0] leadingzeros
);
endmodule
module postproc16(
input logic [1:0] roundmode,
input logic xzero, yzero, zzero, xinf, yinf, zinf, xnan, ynan, znan,
input logic [22:0] rm,
input logic [`Nf:0] zm, // U1.Nf
input logic [6:0] re,
input logic [`Ne-1:0] ze, // B_Ne
input logic rs, zs, ps,
input logic [`Ne+1:0] re2,
output logic [15:0] result);
logic [9:0] uf, uff;
logic [6:0] ue;
logic [6:0] ueb, uebiased;
logic invalid;
// Special cases
// *** not handling signaling NaN
// *** also add overflow/underflow/inexact
always_comb begin
if (xnan | ynan | znan) begin result = `NaN; invalid = 0; end // propagate NANs
else if ((xinf | yinf) & zinf & (ps ^ zs)) begin result = `NaN; invalid = 1; end // infinity - infinity
else if (xzero & yinf | xinf & yzero) begin result = `NaN; invalid = 1; end // zero times infinity
else if (xinf | yinf) begin result = {ps, `INF}; invalid = 0; end // X or Y
else if (zinf) begin result = {zs, `INF}; invalid = 0; end // infinite Z
else if (xzero | yzero) begin result = {zs, ze, zm[`Nf-1:0]}; invalid = 0; end
else if (re2 >= `EMAX) begin result = {rs, `INF}; invalid = 0; end
else begin result = {rs, re[`Ne-1:0], rm[`Nf-1:0]}; invalid = 0; end
end
always_comb
if (rm[21]) begin // normalization right shift by 1 and bump up exponent;
ue = re + 7'b1;
uf = rm[20:11];
end else begin // no normalization shift needed
ue = re;
uf = rm[19:10];
end
// overflow
always_comb begin
ueb = ue-7'd15;
if (ue >= 7'd46) begin // overflow
/* uebiased = 7'd30;
uff = 10'h3ff; */
end else begin
uebiased = ue-7'd15;
uff = uf;
end
end
assign result = {rs, uebiased[4:0], uff};
// add special case handling for zeros, NaN, Infinity
endmodule
module signadj16(
input logic negr, negz,
input logic xs, ys, zs1,
output logic ps, zs);
assign ps = xs ^ ys; // sign of product
assign zs = zs1 ^ negz; // sign of addend
endmodule
module unpack16(
input logic [15:0] x, y, z,
output logic [10:0] xm, ym, zm,
output logic [4:0] xe, ye, ze,
output logic xs, ys, zs,
output logic xzero, yzero, zzero, xinf, yinf, zinf, xnan, ynan, znan);
unpacknum16 upx(x, xm, xe, xs, xzero, xinf, xnan);
unpacknum16 upy(y, ym, ye, ys, yzero, yinf, ynan);
unpacknum16 upz(z, zm, ze, zs, zzero, zinf, znan);
endmodule
module unpacknum16(
input logic [15:0] num,
output logic [10:0] m,
output logic [4:0] e,
output logic s,
output logic zero, inf, nan);
logic [9:0] f; // fraction without leading 1
logic [4:0] eb; // biased exponent
assign {s, eb, f} = num; // pull bit fields out of floating-point number
assign m = {1'b1, f}; // prepend leading 1 to fraction
assign e = eb; // leave bias in exponent ***
assign zero = (e == 0 && f == 0);
assign inf = (e == 31 && f == 0);
assign nan = (e == 31 && f != 0);
endmodule

View File

@ -1,24 +0,0 @@
// fma16.sv
// David_Harris@hmc.edu 26 February 2022
// 16-bit floating-point multiply-accumulate
// Operation: general purpose multiply, add, fma, with optional negation
// If mul=1, p = x * y. Else p = x.
// If add=1, result = p + z. Else result = p.
// If negr or negz = 1, negate result or z to handle negations and subtractions
// fadd: mul = 0, add = 1, negr = negz = 0
// fsub: mul = 0, add = 1, negr = 0, negz = 1
// fmul: mul = 1, add = 0, negr = 0, negz = 0
// fmadd: mul = 1, add = 1, negr = 0, negz = 0
// fmsub: mul = 1, add = 1, negr = 0, negz = 1
// fnmadd: mul = 1, add = 1, negr = 1, negz = 0
// fnmsub: mul = 1, add = 1, negr = 1, negz = 1
module fma16(
input logic [15:0] x, y, z,
input logic mul, add, negr, negz,
input logic [1:0] roundmode, // 00: rz, 01: rne, 10: rp, 11: rn
output logic [15:0] result);
endmodule

View File

@ -1,240 +0,0 @@
#include <stdio.h>
#include <stdint.h>
#include "softfloat.h"
#include "softfloat_types.h"
typedef union sp {
float32_t v;
float f;
} sp;
// lists of tests, terminated with 0x8000
uint16_t easyExponents[] = {15, 0x8000};
uint16_t medExponents[] = {1, 14, 15, 16, 20, 30, 0x8000};
uint16_t allExponents[] = {1, 15, 16, 30, 31, 0x8000};
uint16_t easyFracts[] = {0, 0x200, 0x8000}; // 1.0 and 1.1
uint16_t medFracts[] = {0, 0x200, 0x001, 0x3FF, 0x8000};
uint16_t zeros[] = {0x0000, 0x8000};
uint16_t infs[] = {0x7C00, 0xFC00};
uint16_t nans[] = {0x7D00, 0x7D01};
void softfloatInit(void) {
softfloat_roundingMode = softfloat_round_minMag;
softfloat_exceptionFlags = 0;
softfloat_detectTininess = softfloat_tininess_beforeRounding;
}
float convFloat(float16_t f16) {
float32_t f32;
float res;
sp r;
f32 = f16_to_f32(f16);
r.v = f32;
res = r.f;
return res;
}
void genCase(FILE *fptr, float16_t x, float16_t y, float16_t z, int mul, int add, int negp, int negz, int roundingMode, int zeroAllowed, int infAllowed, int nanAllowed) {
float16_t result;
int op, flagVals;
char calc[80], flags[80];
float32_t x32, y32, z32, r32;
float xf, yf, zf, rf;
float16_t smallest;
if (!mul) y.v = 0x3C00; // force y to 1 to avoid multiply
if (!add) z.v = 0x0000; // force z to 0 to avoid add
if (negp) x.v ^= 0x8000; // flip sign of x to negate p
if (negz) z.v ^= 0x8000; // flip sign of z to negate z
op = roundingMode << 4 | mul<<3 | add<<2 | negp<<1 | negz;
// printf("op = %02x rm %d mul %d add %d negp %d negz %d\n", op, roundingMode, mul, add, negp, negz);
softfloat_exceptionFlags = 0; // clear exceptions
result = f16_mulAdd(x, y, z);
sprintf(flags, "NV: %d OF: %d UF: %d NX: %d",
(softfloat_exceptionFlags >> 4) % 2,
(softfloat_exceptionFlags >> 2) % 2,
(softfloat_exceptionFlags >> 1) % 2,
(softfloat_exceptionFlags) % 2);
// pack these four flags into one nibble, discarding DZ flag
flagVals = softfloat_exceptionFlags & 0x7 | ((softfloat_exceptionFlags >> 1) & 0x8);
// convert to floats for printing
xf = convFloat(x);
yf = convFloat(y);
zf = convFloat(z);
rf = convFloat(result);
if (mul)
if (add) sprintf(calc, "%f * %f + %f = %f", xf, yf, zf, rf);
else sprintf(calc, "%f * %f = %f", xf, yf, rf);
else sprintf(calc, "%f + %f = %f", xf, zf, rf);
// omit denorms, which aren't required for this project
smallest.v = 0x0400;
float16_t resultmag = result;
resultmag.v &= 0x7FFF; // take absolute value
if (f16_lt(resultmag, smallest) && (resultmag.v != 0x0000)) fprintf (fptr, "// skip denorm: ");
if (resultmag.v == 0x0000 && !zeroAllowed) fprintf(fptr, "// skip zero: ");
if ((resultmag.v == 0x7C00 || resultmag.v == 0x7BFF) && !infAllowed) fprintf(fptr, "// Skip inf: ");
if (resultmag.v > 0x7C00 && !nanAllowed) fprintf(fptr, "// Skip NaN: ");
fprintf(fptr, "%04x_%04x_%04x_%02x_%04x_%01x // %s %s\n", x.v, y.v, z.v, op, result.v, flagVals, calc, flags);
}
void prepTests(uint16_t *e, uint16_t *f, char *testName, char *desc, float16_t *cases,
FILE *fptr, int *numCases) {
int i, j;
fprintf(fptr, desc); fprintf(fptr, "\n");
*numCases=0;
for (i=0; e[i] != 0x8000; i++)
for (j=0; f[j] != 0x8000; j++) {
cases[*numCases].v = f[j] | e[i]<<10;
*numCases = *numCases + 1;
}
}
void genMulTests(uint16_t *e, uint16_t *f, int sgn, char *testName, char *desc, int roundingMode, int zeroAllowed, int infAllowed, int nanAllowed) {
int i, j, k, numCases;
float16_t x, y, z;
float16_t cases[100000];
FILE *fptr;
char fn[80];
sprintf(fn, "work/%s.tv", testName);
fptr = fopen(fn, "w");
prepTests(e, f, testName, desc, cases, fptr, &numCases);
z.v = 0x0000;
for (i=0; i < numCases; i++) {
x.v = cases[i].v;
for (j=0; j<numCases; j++) {
y.v = cases[j].v;
for (k=0; k<=sgn; k++) {
y.v ^= (k<<15);
genCase(fptr, x, y, z, 1, 0, 0, 0, roundingMode, zeroAllowed, infAllowed, nanAllowed);
}
}
}
fclose(fptr);
}
void genAddTests(uint16_t *e, uint16_t *f, int sgn, char *testName, char *desc, int roundingMode, int zeroAllowed, int infAllowed, int nanAllowed) {
int i, j, k, numCases;
float16_t x, y, z;
float16_t cases[100000];
FILE *fptr;
char fn[80];
sprintf(fn, "work/%s.tv", testName);
fptr = fopen(fn, "w");
prepTests(e, f, testName, desc, cases, fptr, &numCases);
y.v = 0x0000;
for (i=0; i < numCases; i++) {
x.v = cases[i].v;
for (j=0; j<numCases; j++) {
z.v = cases[j].v;
for (k=0; k<=sgn; k++) {
z.v ^= (k<<15);
genCase(fptr, x, y, z, 0, 1, 0, 0, roundingMode, zeroAllowed, infAllowed, nanAllowed);
}
}
}
fclose(fptr);
}
void genFMATests(uint16_t *e, uint16_t *f, int sgn, char *testName, char *desc, int roundingMode, int zeroAllowed, int infAllowed, int nanAllowed) {
int i, j, k, l, numCases;
float16_t x, y, z;
float16_t cases[100000];
FILE *fptr;
char fn[80];
sprintf(fn, "work/%s.tv", testName);
fptr = fopen(fn, "w");
prepTests(e, f, testName, desc, cases, fptr, &numCases);
for (i=0; i < numCases; i++) {
x.v = cases[i].v;
for (j=0; j<numCases; j++) {
y.v = cases[j].v;
for (k=0; k<numCases; k++) {
z.v = cases[k].v;
for (l=0; l<=sgn; l++) {
z.v ^= (l<<15);
genCase(fptr, x, y, z, 1, 1, 0, 0, roundingMode, zeroAllowed, infAllowed, nanAllowed);
}
}
}
}
fclose(fptr);
}
void genSpecialTests(uint16_t *e, uint16_t *f, int sgn, char *testName, char *desc, int roundingMode, int zeroAllowed, int infAllowed, int nanAllowed) {
int i, j, k, sx, sy, sz, numCases;
float16_t x, y, z;
float16_t cases[100000];
FILE *fptr;
char fn[80];
sprintf(fn, "work/%s.tv", testName);
fptr = fopen(fn, "w");
prepTests(e, f, testName, desc, cases, fptr, &numCases);
cases[numCases].v = 0x0000; // add +0 case
cases[numCases+1].v = 0x8000; // add -0 case
numCases += 2;
for (i=0; i < numCases; i++) {
x.v = cases[i].v;
for (j=0; j<numCases; j++) {
y.v = cases[j].v;
for (k=0; k<numCases; k++) {
z.v = cases[k].v;
for (sx=0; sx<=sgn; sx++) {
x.v ^= (sx<<15);
for (sy=0; sy<=sgn; sy++) {
y.v ^= (sy<<15);
for (sz=0; sz<=sgn; sz++) {
z.v ^= (sz<<15);
genCase(fptr, x, y, z, 1, 1, 0, 0, roundingMode, zeroAllowed, infAllowed, nanAllowed);
}
}
}
}
}
}
fclose(fptr);
}
int main()
{
softfloatInit(); // configure softfloat modes
// Test cases: multiplication
genMulTests(easyExponents, easyFracts, 0, "fmul_0", "// Multiply with exponent of 0, significand of 1.0 and 1.1, RZ", 0, 0, 0, 0);
genMulTests(medExponents, medFracts, 0, "fmul_1", "// Multiply with various exponents and unsigned fractions, RZ", 0, 0, 0, 0);
genMulTests(medExponents, medFracts, 1, "fmul_2", "// Multiply with various exponents and signed fractions, RZ", 0, 0, 0, 0);
// Test cases: addition
genAddTests(easyExponents, easyFracts, 0, "fadd_0", "// Add with exponent of 0, significand of 1.0 and 1.1, RZ", 0, 0, 0, 0);
genAddTests(medExponents, medFracts, 0, "fadd_1", "// Add with various exponents and unsigned fractions, RZ", 0, 0, 0, 0);
genAddTests(medExponents, medFracts, 1, "fadd_2", "// Add with various exponents and signed fractions, RZ", 0, 0, 0, 0);
// Test cases: FMA
genFMATests(easyExponents, easyFracts, 0, "fma_0", "// FMA with exponent of 0, significand of 1.0 and 1.1, RZ", 0, 0, 0, 0);
genFMATests(medExponents, medFracts, 0, "fma_1", "// FMA with various exponents and unsigned fractions, RZ", 0, 0, 0, 0);
genFMATests(medExponents, medFracts, 1, "fma_2", "// FMA with various exponents and signed fractions, RZ", 0, 0, 0, 0);
// Test cases: Zero, Infinity, NaN
genSpecialTests(allExponents, medFracts, 1, "fma_special_rz", "// FMA with special cases, RZ", 0, 1, 1, 1);
// Full test cases with other rounding modes
softfloat_roundingMode = softfloat_round_near_even;
genSpecialTests(allExponents, medFracts, 1, "fma_special_rne", "// FMA with special cases, RNE", 1, 1, 1, 1);
softfloat_roundingMode = softfloat_round_min;
genSpecialTests(allExponents, medFracts, 1, "fma_special_rm", "// FMA with special cases, RM", 2, 1, 1, 1);
softfloat_roundingMode = softfloat_round_max;
genSpecialTests(allExponents, medFracts, 1, "fma_special_rp", "// FMA with special cases, RP", 3, 1, 1, 1);
return 0;
}

View File

@ -1,8 +0,0 @@
#!/bin/bash
# check for warnings in Verilog code
# The verilator lint tool is faster and better than Modelsim so it is best to run this first.
export PATH=$PATH:/usr/local/bin/
verilator=`which verilator`
basepath=$(dirname $0)/..
$verilator --lint-only --top-module fma16 fma16.v

View File

@ -1,2 +0,0 @@
vsim -do "do fma.do"

View File

@ -1 +0,0 @@
vsim -c -do "do fma.do"

View File

@ -1 +0,0 @@
make -C ../../../synthDC synth DESIGN=fma16

View File

@ -1,52 +0,0 @@
/* verilator lint_off STMTDLY */
module testbench_fma16;
reg clk, reset;
reg [15:0] x, y, z, rexpected;
wire [15:0] result;
reg [7:0] ctrl;
reg [3:0] flagsexpected;
reg mul, add, negp, negz;
reg [1:0] roundmode;
reg [31:0] vectornum, errors;
reg [75:0] testvectors[10000:0];
// instantiate device under test
fma16 dut(x, y, z, mul, add, negp, negz, roundmode, result);
// generate clock
always
begin
clk = 1; #5; clk = 0; #5;
end
// at start of test, load vectors and pulse reset
initial
begin
$readmemh("work/fmul_0.tv", testvectors);
vectornum = 0; errors = 0;
reset = 1; #22; reset = 0;
end
// apply test vectors on rising edge of clk
always @(posedge clk)
begin
#1; {x, y, z, ctrl, rexpected, flagsexpected} = testvectors[vectornum];
{roundmode, mul, add, negp, negz} = ctrl[5:0];
end
// check results on falling edge of clk
always @(negedge clk)
if (~reset) begin // skip during reset
if (result !== rexpected) begin // check result // *** should also add tests on flags eventually
$display("Error: inputs %h * %h + %h", x, y, z);
$display(" result = %h (%h expected)", result, rexpected);
errors = errors + 1;
end
vectornum = vectornum + 1;
if (testvectors[vectornum] === 'x) begin
$display("%d tests completed with %d errors",
vectornum, errors);
$stop;
end
end
endmodule

File diff suppressed because it is too large Load Diff

View File

@ -1,130 +0,0 @@
#!/usr/bin/perl -w
# torturegen.pl
# David_Harris@hmc.edu 19 April 2022
# Convert TestFloat cases into format for fma16 project torture test
# Strip out cases involving denorms
use strict;
my @basenames = ("add", "mul", "mulAdd");
my @roundingmodes = ("rz", "rd", "ru", "rne");
my @names = ();
foreach my $name (@basenames) {
foreach my $mode (@roundingmodes) {
push(@names, "f16_${name}_$mode.tv");
}
}
open(TORTURE, ">work/torture.tv") || die("Can't write torture.tv");
my $datestring = localtime();
print(TORTURE "// Torture tests generated $datestring by $0\n");
foreach my $tv (@names) {
open(TV, "work/$tv") || die("Can't read $tv");
my $type = &getType($tv); # is it mul, add, mulAdd
my $rm = &getRm($tv); # rounding mode
# if ($rm != 0) { next; } # only do rz
print (TORTURE "\n////////// Testcases from $tv of type $type rounding mode $rm\n");
print ("\n////////// Testcases from $tv of type $type rounding mode $rm\n");
my $linecount = 0;
my $babyTorture = 0;
while (<TV>) {
my $line = $_;
$linecount++;
my $density = 10;
if ($type eq "mulAdd") {$density = 500;}
if ($babyTorture) {
$density = 100;
if ($type eq "mulAdd") {$density = 50000;}
}
if ((($linecount + $rm) % $density) != 0) { next }; # too many tests to use
chomp($line); # strip off newline
my @parts = split(/_/, $line);
my ($x, $y, $z, $op, $w, $flags);
$x = $parts[0];
if ($type eq "add") { $y = "0000"; } else {$y = $parts[1]};
if ($type eq "mul") { $z = "3CFF"; } elsif ($type eq "add") {$z = $parts[1]} else { $z = $parts[2]};
$op = $rm << 4;
if ($type eq "mul" || $type eq "mulAdd") { $op = $op + 8; }
if ($type eq "add" || $type eq "mulAdd") { $op = $op + 4; }
my $opname = sprintf("%02x", $op);
if ($type eq "mulAdd") {$w = $parts[3];} else {$w = $parts[2]};
if ($type eq "mulAdd") {$flags = $parts[4];} else {$flags = $parts[3]};
$flags = substr($flags, -1); # take last character
if (&fpval($w) eq "NaN") { $w = "7e00"; }
my $vec = "${x}_${y}_${z}_${opname}_${w}_${flags}";
my $skip = "";
if (&isdenorm($x) || &isdenorm($y) || &isdenorm($z) || &isdenorm($w)) {
$skip = "Skipped denorm";
}
my $summary = &summary($x, $y, $z, $w, $type);
if ($skip ne "") {
print TORTURE "// $skip $tv line $linecount $line $summary\n"
}
else { print TORTURE "$vec // $tv line $linecount $line $summary\n";}
}
close(TV);
}
close(TORTURE);
sub fpval {
my $val = shift;
$val = hex($val); # convert hex string to number
my $frac = $val & 0x3FF;
my $exp = ($val >> 10) & 0x1F;
my $sign = $val >> 15;
my $res;
if ($exp == 31 && $frac != 0) { return "NaN"; }
elsif ($exp == 31) { $res = "INF"; }
elsif ($val == 0) { $res = 0; }
elsif ($exp == 0) { $res = "Denorm"; }
else { $res = sprintf("1.%011b x 2^%d", $frac, $exp-15); }
if ($sign == 1) { $res = "-$res"; }
return $res;
}
sub summary {
my $x = shift; my $y = shift; my $z = shift; my $w = shift; my $type = shift;
my $xv = &fpval($x);
my $yv = &fpval($y);
my $zv = &fpval($z);
my $wv = &fpval($w);
if ($type eq "add") { return "$xv + $zv = $wv"; }
elsif ($type eq "mul") { return "$xv * $yv = $wv"; }
else {return "$xv * $yv + $zv = $wv"; }
}
sub getType {
my $tv = shift;
if ($tv =~ /mulAdd/) { return("mulAdd"); }
elsif ($tv =~ /mul/) { return "mul"; }
else { return "add"; }
}
sub getRm {
my $tv = shift;
if ($tv =~ /rz/) { return 0; }
elsif ($tv =~ /rne/) { return 1; }
elsif ($tv =~ /rd/) {return 2; }
elsif ($tv =~ /ru/) { return 3; }
else { return "bad"; }
}
sub isdenorm {
my $fp = shift;
my $val = hex($fp);
my $expv = $val >> 10;
$expv = $expv & 0x1F;
my $denorm = 0;
if ($expv == 0 && $val != 0) { $denorm = 1;}
# my $e0 = ($expv == 0);
# my $vn0 = ($val != 0);
# my $denorm = 0; #($exp == 0 && $val != 0); # denorm exponent but not all zero
# print("Num $fp Exp $expv Denorm $denorm Done\n");
return $denorm;
}

View File

@ -1,62 +0,0 @@
onerror {resume}
quietly WaveActivateNextPane {} 0
add wave -noupdate /testbench_fma16/clk
add wave -noupdate /testbench_fma16/reset
add wave -noupdate /testbench_fma16/x
add wave -noupdate /testbench_fma16/y
add wave -noupdate /testbench_fma16/z
add wave -noupdate /testbench_fma16/result
add wave -noupdate /testbench_fma16/rexpected
add wave -noupdate /testbench_fma16/dut/x
add wave -noupdate /testbench_fma16/dut/y
add wave -noupdate /testbench_fma16/dut/z
add wave -noupdate /testbench_fma16/dut/mul
add wave -noupdate /testbench_fma16/dut/add
add wave -noupdate /testbench_fma16/dut/negr
add wave -noupdate /testbench_fma16/dut/negz
add wave -noupdate /testbench_fma16/dut/roundmode
add wave -noupdate /testbench_fma16/dut/result
add wave -noupdate /testbench_fma16/dut/XManE
add wave -noupdate /testbench_fma16/dut/YManE
add wave -noupdate /testbench_fma16/dut/ZManE
add wave -noupdate /testbench_fma16/dut/XExpE
add wave -noupdate /testbench_fma16/dut/YExpE
add wave -noupdate /testbench_fma16/dut/ZExpE
add wave -noupdate /testbench_fma16/dut/PExpE
add wave -noupdate /testbench_fma16/dut/Ne
add wave -noupdate /testbench_fma16/dut/upOneExt
add wave -noupdate /testbench_fma16/dut/XSgnE
add wave -noupdate /testbench_fma16/dut/YSgnE
add wave -noupdate /testbench_fma16/dut/ZSgnE
add wave -noupdate /testbench_fma16/dut/PSgnE
add wave -noupdate /testbench_fma16/dut/ProdManE
add wave -noupdate /testbench_fma16/dut/NfracS
add wave -noupdate /testbench_fma16/dut/ProdManAl
add wave -noupdate /testbench_fma16/dut/ZManExt
add wave -noupdate /testbench_fma16/dut/ZManAl
add wave -noupdate /testbench_fma16/dut/Nfrac
add wave -noupdate /testbench_fma16/dut/res
add wave -noupdate -radix decimal /testbench_fma16/dut/AlignCnt
add wave -noupdate /testbench_fma16/dut/NSamt
add wave -noupdate /testbench_fma16/dut/ZExpGreater
add wave -noupdate /testbench_fma16/dut/ACLess
add wave -noupdate /testbench_fma16/dut/upOne
add wave -noupdate /testbench_fma16/dut/KillProd
TreeUpdate [SetDefaultTree]
WaveRestoreCursors {{Cursor 1} {3746 ns} 1} {{Cursor 2} {4169 ns} 0}
quietly wave cursor active 2
configure wave -namecolwidth 237
configure wave -valuecolwidth 64
configure wave -justifyvalue left
configure wave -signalnamewidth 0
configure wave -snapdistance 10
configure wave -datasetprefix 0
configure wave -rowmargin 4
configure wave -childrowmargin 2
configure wave -gridoffset 0
configure wave -gridperiod 1
configure wave -griddelta 40
configure wave -timeline 0
configure wave -timelineunits ns
update
WaveRestoreZoom {4083 ns} {4235 ns}

View File

@ -1,758 +0,0 @@
// The following module make up the basic building blocks that
// are used by the cla64, cla_sub64, and cla52.
module INVBLOCK ( GIN, GOUT );
input GIN;
output GOUT;
assign GOUT = ~ GIN;
endmodule // INVBLOCK
module XXOR1 ( A, B, GIN, SUM );
input A;
input B;
input GIN;
output SUM;
assign SUM = ( ~ (A ^ B)) ^ GIN;
endmodule // XXOR1
module BLOCK0 ( A, B, POUT, GOUT );
input A;
input B;
output POUT;
output GOUT;
assign POUT = ~ (A | B);
assign GOUT = ~ (A & B);
endmodule // BLOCK0
module BLOCK1 ( PIN1, PIN2, GIN1, GIN2, POUT, GOUT );
input PIN1;
input PIN2;
input GIN1;
input GIN2;
output POUT;
output GOUT;
assign POUT = ~ (PIN1 | PIN2);
assign GOUT = ~ (GIN2 & (PIN2 | GIN1));
endmodule // BLOCK1
module BLOCK2 ( PIN1, PIN2, GIN1, GIN2, POUT, GOUT );
input PIN1;
input PIN2;
input GIN1;
input GIN2;
output POUT;
output GOUT;
assign POUT = ~ (PIN1 & PIN2);
assign GOUT = ~ (GIN2 | (PIN2 & GIN1));
endmodule // BLOCK2
module BLOCK1A ( PIN2, GIN1, GIN2, GOUT );
input PIN2;
input GIN1;
input GIN2;
output GOUT;
assign GOUT = ~ (GIN2 & (PIN2 | GIN1));
endmodule // BLOCK1A
module BLOCK2A ( PIN2, GIN1, GIN2, GOUT );
input PIN2;
input GIN1;
input GIN2;
output GOUT;
assign GOUT = ~ (GIN2 | (PIN2 & GIN1));
endmodule
//***KEP all 0:63, 0:64 ect changed - changed due to lint warning
module PRESTAGE_64 ( A, B, CIN, POUT, GOUT );
input [63:0] A;
input [63:0] B;
input CIN;
output [63:0] POUT;
output [64:0] GOUT;
BLOCK0 U10 (A[0] , B[0] , POUT[0] , GOUT[1] );
BLOCK0 U11 (A[1] , B[1] , POUT[1] , GOUT[2] );
BLOCK0 U12 (A[2] , B[2] , POUT[2] , GOUT[3] );
BLOCK0 U13 (A[3] , B[3] , POUT[3] , GOUT[4] );
BLOCK0 U14 (A[4] , B[4] , POUT[4] , GOUT[5] );
BLOCK0 U15 (A[5] , B[5] , POUT[5] , GOUT[6] );
BLOCK0 U16 (A[6] , B[6] , POUT[6] , GOUT[7] );
BLOCK0 U17 (A[7] , B[7] , POUT[7] , GOUT[8] );
BLOCK0 U18 (A[8] , B[8] , POUT[8] , GOUT[9] );
BLOCK0 U19 (A[9] , B[9] , POUT[9] , GOUT[10] );
BLOCK0 U110 (A[10] , B[10] , POUT[10] , GOUT[11] );
BLOCK0 U111 (A[11] , B[11] , POUT[11] , GOUT[12] );
BLOCK0 U112 (A[12] , B[12] , POUT[12] , GOUT[13] );
BLOCK0 U113 (A[13] , B[13] , POUT[13] , GOUT[14] );
BLOCK0 U114 (A[14] , B[14] , POUT[14] , GOUT[15] );
BLOCK0 U115 (A[15] , B[15] , POUT[15] , GOUT[16] );
BLOCK0 U116 (A[16] , B[16] , POUT[16] , GOUT[17] );
BLOCK0 U117 (A[17] , B[17] , POUT[17] , GOUT[18] );
BLOCK0 U118 (A[18] , B[18] , POUT[18] , GOUT[19] );
BLOCK0 U119 (A[19] , B[19] , POUT[19] , GOUT[20] );
BLOCK0 U120 (A[20] , B[20] , POUT[20] , GOUT[21] );
BLOCK0 U121 (A[21] , B[21] , POUT[21] , GOUT[22] );
BLOCK0 U122 (A[22] , B[22] , POUT[22] , GOUT[23] );
BLOCK0 U123 (A[23] , B[23] , POUT[23] , GOUT[24] );
BLOCK0 U124 (A[24] , B[24] , POUT[24] , GOUT[25] );
BLOCK0 U125 (A[25] , B[25] , POUT[25] , GOUT[26] );
BLOCK0 U126 (A[26] , B[26] , POUT[26] , GOUT[27] );
BLOCK0 U127 (A[27] , B[27] , POUT[27] , GOUT[28] );
BLOCK0 U128 (A[28] , B[28] , POUT[28] , GOUT[29] );
BLOCK0 U129 (A[29] , B[29] , POUT[29] , GOUT[30] );
BLOCK0 U130 (A[30] , B[30] , POUT[30] , GOUT[31] );
BLOCK0 U131 (A[31] , B[31] , POUT[31] , GOUT[32] );
BLOCK0 U132 (A[32] , B[32] , POUT[32] , GOUT[33] );
BLOCK0 U133 (A[33] , B[33] , POUT[33] , GOUT[34] );
BLOCK0 U134 (A[34] , B[34] , POUT[34] , GOUT[35] );
BLOCK0 U135 (A[35] , B[35] , POUT[35] , GOUT[36] );
BLOCK0 U136 (A[36] , B[36] , POUT[36] , GOUT[37] );
BLOCK0 U137 (A[37] , B[37] , POUT[37] , GOUT[38] );
BLOCK0 U138 (A[38] , B[38] , POUT[38] , GOUT[39] );
BLOCK0 U139 (A[39] , B[39] , POUT[39] , GOUT[40] );
BLOCK0 U140 (A[40] , B[40] , POUT[40] , GOUT[41] );
BLOCK0 U141 (A[41] , B[41] , POUT[41] , GOUT[42] );
BLOCK0 U142 (A[42] , B[42] , POUT[42] , GOUT[43] );
BLOCK0 U143 (A[43] , B[43] , POUT[43] , GOUT[44] );
BLOCK0 U144 (A[44] , B[44] , POUT[44] , GOUT[45] );
BLOCK0 U145 (A[45] , B[45] , POUT[45] , GOUT[46] );
BLOCK0 U146 (A[46] , B[46] , POUT[46] , GOUT[47] );
BLOCK0 U147 (A[47] , B[47] , POUT[47] , GOUT[48] );
BLOCK0 U148 (A[48] , B[48] , POUT[48] , GOUT[49] );
BLOCK0 U149 (A[49] , B[49] , POUT[49] , GOUT[50] );
BLOCK0 U150 (A[50] , B[50] , POUT[50] , GOUT[51] );
BLOCK0 U151 (A[51] , B[51] , POUT[51] , GOUT[52] );
BLOCK0 U152 (A[52] , B[52] , POUT[52] , GOUT[53] );
BLOCK0 U153 (A[53] , B[53] , POUT[53] , GOUT[54] );
BLOCK0 U154 (A[54] , B[54] , POUT[54] , GOUT[55] );
BLOCK0 U155 (A[55] , B[55] , POUT[55] , GOUT[56] );
BLOCK0 U156 (A[56] , B[56] , POUT[56] , GOUT[57] );
BLOCK0 U157 (A[57] , B[57] , POUT[57] , GOUT[58] );
BLOCK0 U158 (A[58] , B[58] , POUT[58] , GOUT[59] );
BLOCK0 U159 (A[59] , B[59] , POUT[59] , GOUT[60] );
BLOCK0 U160 (A[60] , B[60] , POUT[60] , GOUT[61] );
BLOCK0 U161 (A[61] , B[61] , POUT[61] , GOUT[62] );
BLOCK0 U162 (A[62] , B[62] , POUT[62] , GOUT[63] );
BLOCK0 U163 (A[63] , B[63] , POUT[63] , GOUT[64] );
INVBLOCK U2 (CIN , GOUT[0] );
endmodule // PRESTAGE_64
module DBLC_0_64 ( PIN, GIN, POUT, GOUT );
input [63:0] PIN;
input [64:0] GIN;
output [62:0] POUT;
output [64:0] GOUT;
INVBLOCK U10 (GIN[0] , GOUT[0] );
BLOCK1A U21 (PIN[0] , GIN[0] , GIN[1] , GOUT[1] );
BLOCK1 U32 (PIN[0] , PIN[1] , GIN[1] , GIN[2] , POUT[0] , GOUT[2] );
BLOCK1 U33 (PIN[1] , PIN[2] , GIN[2] , GIN[3] , POUT[1] , GOUT[3] );
BLOCK1 U34 (PIN[2] , PIN[3] , GIN[3] , GIN[4] , POUT[2] , GOUT[4] );
BLOCK1 U35 (PIN[3] , PIN[4] , GIN[4] , GIN[5] , POUT[3] , GOUT[5] );
BLOCK1 U36 (PIN[4] , PIN[5] , GIN[5] , GIN[6] , POUT[4] , GOUT[6] );
BLOCK1 U37 (PIN[5] , PIN[6] , GIN[6] , GIN[7] , POUT[5] , GOUT[7] );
BLOCK1 U38 (PIN[6] , PIN[7] , GIN[7] , GIN[8] , POUT[6] , GOUT[8] );
BLOCK1 U39 (PIN[7] , PIN[8] , GIN[8] , GIN[9] , POUT[7] , GOUT[9] );
BLOCK1 U310 (PIN[8] , PIN[9] , GIN[9] , GIN[10] , POUT[8] , GOUT[10] );
BLOCK1 U311 (PIN[9] , PIN[10] , GIN[10] , GIN[11] , POUT[9] , GOUT[11] );
BLOCK1 U312 (PIN[10] , PIN[11] , GIN[11] , GIN[12] , POUT[10] , GOUT[12] );
BLOCK1 U313 (PIN[11] , PIN[12] , GIN[12] , GIN[13] , POUT[11] , GOUT[13] );
BLOCK1 U314 (PIN[12] , PIN[13] , GIN[13] , GIN[14] , POUT[12] , GOUT[14] );
BLOCK1 U315 (PIN[13] , PIN[14] , GIN[14] , GIN[15] , POUT[13] , GOUT[15] );
BLOCK1 U316 (PIN[14] , PIN[15] , GIN[15] , GIN[16] , POUT[14] , GOUT[16] );
BLOCK1 U317 (PIN[15] , PIN[16] , GIN[16] , GIN[17] , POUT[15] , GOUT[17] );
BLOCK1 U318 (PIN[16] , PIN[17] , GIN[17] , GIN[18] , POUT[16] , GOUT[18] );
BLOCK1 U319 (PIN[17] , PIN[18] , GIN[18] , GIN[19] , POUT[17] , GOUT[19] );
BLOCK1 U320 (PIN[18] , PIN[19] , GIN[19] , GIN[20] , POUT[18] , GOUT[20] );
BLOCK1 U321 (PIN[19] , PIN[20] , GIN[20] , GIN[21] , POUT[19] , GOUT[21] );
BLOCK1 U322 (PIN[20] , PIN[21] , GIN[21] , GIN[22] , POUT[20] , GOUT[22] );
BLOCK1 U323 (PIN[21] , PIN[22] , GIN[22] , GIN[23] , POUT[21] , GOUT[23] );
BLOCK1 U324 (PIN[22] , PIN[23] , GIN[23] , GIN[24] , POUT[22] , GOUT[24] );
BLOCK1 U325 (PIN[23] , PIN[24] , GIN[24] , GIN[25] , POUT[23] , GOUT[25] );
BLOCK1 U326 (PIN[24] , PIN[25] , GIN[25] , GIN[26] , POUT[24] , GOUT[26] );
BLOCK1 U327 (PIN[25] , PIN[26] , GIN[26] , GIN[27] , POUT[25] , GOUT[27] );
BLOCK1 U328 (PIN[26] , PIN[27] , GIN[27] , GIN[28] , POUT[26] , GOUT[28] );
BLOCK1 U329 (PIN[27] , PIN[28] , GIN[28] , GIN[29] , POUT[27] , GOUT[29] );
BLOCK1 U330 (PIN[28] , PIN[29] , GIN[29] , GIN[30] , POUT[28] , GOUT[30] );
BLOCK1 U331 (PIN[29] , PIN[30] , GIN[30] , GIN[31] , POUT[29] , GOUT[31] );
BLOCK1 U332 (PIN[30] , PIN[31] , GIN[31] , GIN[32] , POUT[30] , GOUT[32] );
BLOCK1 U333 (PIN[31] , PIN[32] , GIN[32] , GIN[33] , POUT[31] , GOUT[33] );
BLOCK1 U334 (PIN[32] , PIN[33] , GIN[33] , GIN[34] , POUT[32] , GOUT[34] );
BLOCK1 U335 (PIN[33] , PIN[34] , GIN[34] , GIN[35] , POUT[33] , GOUT[35] );
BLOCK1 U336 (PIN[34] , PIN[35] , GIN[35] , GIN[36] , POUT[34] , GOUT[36] );
BLOCK1 U337 (PIN[35] , PIN[36] , GIN[36] , GIN[37] , POUT[35] , GOUT[37] );
BLOCK1 U338 (PIN[36] , PIN[37] , GIN[37] , GIN[38] , POUT[36] , GOUT[38] );
BLOCK1 U339 (PIN[37] , PIN[38] , GIN[38] , GIN[39] , POUT[37] , GOUT[39] );
BLOCK1 U340 (PIN[38] , PIN[39] , GIN[39] , GIN[40] , POUT[38] , GOUT[40] );
BLOCK1 U341 (PIN[39] , PIN[40] , GIN[40] , GIN[41] , POUT[39] , GOUT[41] );
BLOCK1 U342 (PIN[40] , PIN[41] , GIN[41] , GIN[42] , POUT[40] , GOUT[42] );
BLOCK1 U343 (PIN[41] , PIN[42] , GIN[42] , GIN[43] , POUT[41] , GOUT[43] );
BLOCK1 U344 (PIN[42] , PIN[43] , GIN[43] , GIN[44] , POUT[42] , GOUT[44] );
BLOCK1 U345 (PIN[43] , PIN[44] , GIN[44] , GIN[45] , POUT[43] , GOUT[45] );
BLOCK1 U346 (PIN[44] , PIN[45] , GIN[45] , GIN[46] , POUT[44] , GOUT[46] );
BLOCK1 U347 (PIN[45] , PIN[46] , GIN[46] , GIN[47] , POUT[45] , GOUT[47] );
BLOCK1 U348 (PIN[46] , PIN[47] , GIN[47] , GIN[48] , POUT[46] , GOUT[48] );
BLOCK1 U349 (PIN[47] , PIN[48] , GIN[48] , GIN[49] , POUT[47] , GOUT[49] );
BLOCK1 U350 (PIN[48] , PIN[49] , GIN[49] , GIN[50] , POUT[48] , GOUT[50] );
BLOCK1 U351 (PIN[49] , PIN[50] , GIN[50] , GIN[51] , POUT[49] , GOUT[51] );
BLOCK1 U352 (PIN[50] , PIN[51] , GIN[51] , GIN[52] , POUT[50] , GOUT[52] );
BLOCK1 U353 (PIN[51] , PIN[52] , GIN[52] , GIN[53] , POUT[51] , GOUT[53] );
BLOCK1 U354 (PIN[52] , PIN[53] , GIN[53] , GIN[54] , POUT[52] , GOUT[54] );
BLOCK1 U355 (PIN[53] , PIN[54] , GIN[54] , GIN[55] , POUT[53] , GOUT[55] );
BLOCK1 U356 (PIN[54] , PIN[55] , GIN[55] , GIN[56] , POUT[54] , GOUT[56] );
BLOCK1 U357 (PIN[55] , PIN[56] , GIN[56] , GIN[57] , POUT[55] , GOUT[57] );
BLOCK1 U358 (PIN[56] , PIN[57] , GIN[57] , GIN[58] , POUT[56] , GOUT[58] );
BLOCK1 U359 (PIN[57] , PIN[58] , GIN[58] , GIN[59] , POUT[57] , GOUT[59] );
BLOCK1 U360 (PIN[58] , PIN[59] , GIN[59] , GIN[60] , POUT[58] , GOUT[60] );
BLOCK1 U361 (PIN[59] , PIN[60] , GIN[60] , GIN[61] , POUT[59] , GOUT[61] );
BLOCK1 U362 (PIN[60] , PIN[61] , GIN[61] , GIN[62] , POUT[60] , GOUT[62] );
BLOCK1 U363 (PIN[61] , PIN[62] , GIN[62] , GIN[63] , POUT[61] , GOUT[63] );
BLOCK1 U364 (PIN[62] , PIN[63] , GIN[63] , GIN[64] , POUT[62] , GOUT[64] );
endmodule // DBLC_0_64
module DBLC_1_64 ( PIN, GIN, POUT, GOUT );
input [62:0] PIN;
input [64:0] GIN;
output [60:0] POUT;
output [64:0] GOUT;
INVBLOCK U10 (GIN[0] , GOUT[0] );
INVBLOCK U11 (GIN[1] , GOUT[1] );
BLOCK2A U22 (PIN[0] , GIN[0] , GIN[2] , GOUT[2] );
BLOCK2A U23 (PIN[1] , GIN[1] , GIN[3] , GOUT[3] );
BLOCK2 U34 (PIN[0] , PIN[2] , GIN[2] , GIN[4] , POUT[0] , GOUT[4] );
BLOCK2 U35 (PIN[1] , PIN[3] , GIN[3] , GIN[5] , POUT[1] , GOUT[5] );
BLOCK2 U36 (PIN[2] , PIN[4] , GIN[4] , GIN[6] , POUT[2] , GOUT[6] );
BLOCK2 U37 (PIN[3] , PIN[5] , GIN[5] , GIN[7] , POUT[3] , GOUT[7] );
BLOCK2 U38 (PIN[4] , PIN[6] , GIN[6] , GIN[8] , POUT[4] , GOUT[8] );
BLOCK2 U39 (PIN[5] , PIN[7] , GIN[7] , GIN[9] , POUT[5] , GOUT[9] );
BLOCK2 U310 (PIN[6] , PIN[8] , GIN[8] , GIN[10] , POUT[6] , GOUT[10] );
BLOCK2 U311 (PIN[7] , PIN[9] , GIN[9] , GIN[11] , POUT[7] , GOUT[11] );
BLOCK2 U312 (PIN[8] , PIN[10] , GIN[10] , GIN[12] , POUT[8] , GOUT[12] );
BLOCK2 U313 (PIN[9] , PIN[11] , GIN[11] , GIN[13] , POUT[9] , GOUT[13] );
BLOCK2 U314 (PIN[10] , PIN[12] , GIN[12] , GIN[14] , POUT[10] , GOUT[14] );
BLOCK2 U315 (PIN[11] , PIN[13] , GIN[13] , GIN[15] , POUT[11] , GOUT[15] );
BLOCK2 U316 (PIN[12] , PIN[14] , GIN[14] , GIN[16] , POUT[12] , GOUT[16] );
BLOCK2 U317 (PIN[13] , PIN[15] , GIN[15] , GIN[17] , POUT[13] , GOUT[17] );
BLOCK2 U318 (PIN[14] , PIN[16] , GIN[16] , GIN[18] , POUT[14] , GOUT[18] );
BLOCK2 U319 (PIN[15] , PIN[17] , GIN[17] , GIN[19] , POUT[15] , GOUT[19] );
BLOCK2 U320 (PIN[16] , PIN[18] , GIN[18] , GIN[20] , POUT[16] , GOUT[20] );
BLOCK2 U321 (PIN[17] , PIN[19] , GIN[19] , GIN[21] , POUT[17] , GOUT[21] );
BLOCK2 U322 (PIN[18] , PIN[20] , GIN[20] , GIN[22] , POUT[18] , GOUT[22] );
BLOCK2 U323 (PIN[19] , PIN[21] , GIN[21] , GIN[23] , POUT[19] , GOUT[23] );
BLOCK2 U324 (PIN[20] , PIN[22] , GIN[22] , GIN[24] , POUT[20] , GOUT[24] );
BLOCK2 U325 (PIN[21] , PIN[23] , GIN[23] , GIN[25] , POUT[21] , GOUT[25] );
BLOCK2 U326 (PIN[22] , PIN[24] , GIN[24] , GIN[26] , POUT[22] , GOUT[26] );
BLOCK2 U327 (PIN[23] , PIN[25] , GIN[25] , GIN[27] , POUT[23] , GOUT[27] );
BLOCK2 U328 (PIN[24] , PIN[26] , GIN[26] , GIN[28] , POUT[24] , GOUT[28] );
BLOCK2 U329 (PIN[25] , PIN[27] , GIN[27] , GIN[29] , POUT[25] , GOUT[29] );
BLOCK2 U330 (PIN[26] , PIN[28] , GIN[28] , GIN[30] , POUT[26] , GOUT[30] );
BLOCK2 U331 (PIN[27] , PIN[29] , GIN[29] , GIN[31] , POUT[27] , GOUT[31] );
BLOCK2 U332 (PIN[28] , PIN[30] , GIN[30] , GIN[32] , POUT[28] , GOUT[32] );
BLOCK2 U333 (PIN[29] , PIN[31] , GIN[31] , GIN[33] , POUT[29] , GOUT[33] );
BLOCK2 U334 (PIN[30] , PIN[32] , GIN[32] , GIN[34] , POUT[30] , GOUT[34] );
BLOCK2 U335 (PIN[31] , PIN[33] , GIN[33] , GIN[35] , POUT[31] , GOUT[35] );
BLOCK2 U336 (PIN[32] , PIN[34] , GIN[34] , GIN[36] , POUT[32] , GOUT[36] );
BLOCK2 U337 (PIN[33] , PIN[35] , GIN[35] , GIN[37] , POUT[33] , GOUT[37] );
BLOCK2 U338 (PIN[34] , PIN[36] , GIN[36] , GIN[38] , POUT[34] , GOUT[38] );
BLOCK2 U339 (PIN[35] , PIN[37] , GIN[37] , GIN[39] , POUT[35] , GOUT[39] );
BLOCK2 U340 (PIN[36] , PIN[38] , GIN[38] , GIN[40] , POUT[36] , GOUT[40] );
BLOCK2 U341 (PIN[37] , PIN[39] , GIN[39] , GIN[41] , POUT[37] , GOUT[41] );
BLOCK2 U342 (PIN[38] , PIN[40] , GIN[40] , GIN[42] , POUT[38] , GOUT[42] );
BLOCK2 U343 (PIN[39] , PIN[41] , GIN[41] , GIN[43] , POUT[39] , GOUT[43] );
BLOCK2 U344 (PIN[40] , PIN[42] , GIN[42] , GIN[44] , POUT[40] , GOUT[44] );
BLOCK2 U345 (PIN[41] , PIN[43] , GIN[43] , GIN[45] , POUT[41] , GOUT[45] );
BLOCK2 U346 (PIN[42] , PIN[44] , GIN[44] , GIN[46] , POUT[42] , GOUT[46] );
BLOCK2 U347 (PIN[43] , PIN[45] , GIN[45] , GIN[47] , POUT[43] , GOUT[47] );
BLOCK2 U348 (PIN[44] , PIN[46] , GIN[46] , GIN[48] , POUT[44] , GOUT[48] );
BLOCK2 U349 (PIN[45] , PIN[47] , GIN[47] , GIN[49] , POUT[45] , GOUT[49] );
BLOCK2 U350 (PIN[46] , PIN[48] , GIN[48] , GIN[50] , POUT[46] , GOUT[50] );
BLOCK2 U351 (PIN[47] , PIN[49] , GIN[49] , GIN[51] , POUT[47] , GOUT[51] );
BLOCK2 U352 (PIN[48] , PIN[50] , GIN[50] , GIN[52] , POUT[48] , GOUT[52] );
BLOCK2 U353 (PIN[49] , PIN[51] , GIN[51] , GIN[53] , POUT[49] , GOUT[53] );
BLOCK2 U354 (PIN[50] , PIN[52] , GIN[52] , GIN[54] , POUT[50] , GOUT[54] );
BLOCK2 U355 (PIN[51] , PIN[53] , GIN[53] , GIN[55] , POUT[51] , GOUT[55] );
BLOCK2 U356 (PIN[52] , PIN[54] , GIN[54] , GIN[56] , POUT[52] , GOUT[56] );
BLOCK2 U357 (PIN[53] , PIN[55] , GIN[55] , GIN[57] , POUT[53] , GOUT[57] );
BLOCK2 U358 (PIN[54] , PIN[56] , GIN[56] , GIN[58] , POUT[54] , GOUT[58] );
BLOCK2 U359 (PIN[55] , PIN[57] , GIN[57] , GIN[59] , POUT[55] , GOUT[59] );
BLOCK2 U360 (PIN[56] , PIN[58] , GIN[58] , GIN[60] , POUT[56] , GOUT[60] );
BLOCK2 U361 (PIN[57] , PIN[59] , GIN[59] , GIN[61] , POUT[57] , GOUT[61] );
BLOCK2 U362 (PIN[58] , PIN[60] , GIN[60] , GIN[62] , POUT[58] , GOUT[62] );
BLOCK2 U363 (PIN[59] , PIN[61] , GIN[61] , GIN[63] , POUT[59] , GOUT[63] );
BLOCK2 U364 (PIN[60] , PIN[62] , GIN[62] , GIN[64] , POUT[60] , GOUT[64] );
endmodule // DBLC_1_64
module DBLC_2_64 ( PIN, GIN, POUT, GOUT );
input [60:0] PIN;
input [64:0] GIN;
output [56:0] POUT;
output [64:0] GOUT;
INVBLOCK U10 (GIN[0] , GOUT[0] );
INVBLOCK U11 (GIN[1] , GOUT[1] );
INVBLOCK U12 (GIN[2] , GOUT[2] );
INVBLOCK U13 (GIN[3] , GOUT[3] );
BLOCK1A U24 (PIN[0] , GIN[0] , GIN[4] , GOUT[4] );
BLOCK1A U25 (PIN[1] , GIN[1] , GIN[5] , GOUT[5] );
BLOCK1A U26 (PIN[2] , GIN[2] , GIN[6] , GOUT[6] );
BLOCK1A U27 (PIN[3] , GIN[3] , GIN[7] , GOUT[7] );
BLOCK1 U38 (PIN[0] , PIN[4] , GIN[4] , GIN[8] , POUT[0] , GOUT[8] );
BLOCK1 U39 (PIN[1] , PIN[5] , GIN[5] , GIN[9] , POUT[1] , GOUT[9] );
BLOCK1 U310 (PIN[2] , PIN[6] , GIN[6] , GIN[10] , POUT[2] , GOUT[10] );
BLOCK1 U311 (PIN[3] , PIN[7] , GIN[7] , GIN[11] , POUT[3] , GOUT[11] );
BLOCK1 U312 (PIN[4] , PIN[8] , GIN[8] , GIN[12] , POUT[4] , GOUT[12] );
BLOCK1 U313 (PIN[5] , PIN[9] , GIN[9] , GIN[13] , POUT[5] , GOUT[13] );
BLOCK1 U314 (PIN[6] , PIN[10] , GIN[10] , GIN[14] , POUT[6] , GOUT[14] );
BLOCK1 U315 (PIN[7] , PIN[11] , GIN[11] , GIN[15] , POUT[7] , GOUT[15] );
BLOCK1 U316 (PIN[8] , PIN[12] , GIN[12] , GIN[16] , POUT[8] , GOUT[16] );
BLOCK1 U317 (PIN[9] , PIN[13] , GIN[13] , GIN[17] , POUT[9] , GOUT[17] );
BLOCK1 U318 (PIN[10] , PIN[14] , GIN[14] , GIN[18] , POUT[10] , GOUT[18] );
BLOCK1 U319 (PIN[11] , PIN[15] , GIN[15] , GIN[19] , POUT[11] , GOUT[19] );
BLOCK1 U320 (PIN[12] , PIN[16] , GIN[16] , GIN[20] , POUT[12] , GOUT[20] );
BLOCK1 U321 (PIN[13] , PIN[17] , GIN[17] , GIN[21] , POUT[13] , GOUT[21] );
BLOCK1 U322 (PIN[14] , PIN[18] , GIN[18] , GIN[22] , POUT[14] , GOUT[22] );
BLOCK1 U323 (PIN[15] , PIN[19] , GIN[19] , GIN[23] , POUT[15] , GOUT[23] );
BLOCK1 U324 (PIN[16] , PIN[20] , GIN[20] , GIN[24] , POUT[16] , GOUT[24] );
BLOCK1 U325 (PIN[17] , PIN[21] , GIN[21] , GIN[25] , POUT[17] , GOUT[25] );
BLOCK1 U326 (PIN[18] , PIN[22] , GIN[22] , GIN[26] , POUT[18] , GOUT[26] );
BLOCK1 U327 (PIN[19] , PIN[23] , GIN[23] , GIN[27] , POUT[19] , GOUT[27] );
BLOCK1 U328 (PIN[20] , PIN[24] , GIN[24] , GIN[28] , POUT[20] , GOUT[28] );
BLOCK1 U329 (PIN[21] , PIN[25] , GIN[25] , GIN[29] , POUT[21] , GOUT[29] );
BLOCK1 U330 (PIN[22] , PIN[26] , GIN[26] , GIN[30] , POUT[22] , GOUT[30] );
BLOCK1 U331 (PIN[23] , PIN[27] , GIN[27] , GIN[31] , POUT[23] , GOUT[31] );
BLOCK1 U332 (PIN[24] , PIN[28] , GIN[28] , GIN[32] , POUT[24] , GOUT[32] );
BLOCK1 U333 (PIN[25] , PIN[29] , GIN[29] , GIN[33] , POUT[25] , GOUT[33] );
BLOCK1 U334 (PIN[26] , PIN[30] , GIN[30] , GIN[34] , POUT[26] , GOUT[34] );
BLOCK1 U335 (PIN[27] , PIN[31] , GIN[31] , GIN[35] , POUT[27] , GOUT[35] );
BLOCK1 U336 (PIN[28] , PIN[32] , GIN[32] , GIN[36] , POUT[28] , GOUT[36] );
BLOCK1 U337 (PIN[29] , PIN[33] , GIN[33] , GIN[37] , POUT[29] , GOUT[37] );
BLOCK1 U338 (PIN[30] , PIN[34] , GIN[34] , GIN[38] , POUT[30] , GOUT[38] );
BLOCK1 U339 (PIN[31] , PIN[35] , GIN[35] , GIN[39] , POUT[31] , GOUT[39] );
BLOCK1 U340 (PIN[32] , PIN[36] , GIN[36] , GIN[40] , POUT[32] , GOUT[40] );
BLOCK1 U341 (PIN[33] , PIN[37] , GIN[37] , GIN[41] , POUT[33] , GOUT[41] );
BLOCK1 U342 (PIN[34] , PIN[38] , GIN[38] , GIN[42] , POUT[34] , GOUT[42] );
BLOCK1 U343 (PIN[35] , PIN[39] , GIN[39] , GIN[43] , POUT[35] , GOUT[43] );
BLOCK1 U344 (PIN[36] , PIN[40] , GIN[40] , GIN[44] , POUT[36] , GOUT[44] );
BLOCK1 U345 (PIN[37] , PIN[41] , GIN[41] , GIN[45] , POUT[37] , GOUT[45] );
BLOCK1 U346 (PIN[38] , PIN[42] , GIN[42] , GIN[46] , POUT[38] , GOUT[46] );
BLOCK1 U347 (PIN[39] , PIN[43] , GIN[43] , GIN[47] , POUT[39] , GOUT[47] );
BLOCK1 U348 (PIN[40] , PIN[44] , GIN[44] , GIN[48] , POUT[40] , GOUT[48] );
BLOCK1 U349 (PIN[41] , PIN[45] , GIN[45] , GIN[49] , POUT[41] , GOUT[49] );
BLOCK1 U350 (PIN[42] , PIN[46] , GIN[46] , GIN[50] , POUT[42] , GOUT[50] );
BLOCK1 U351 (PIN[43] , PIN[47] , GIN[47] , GIN[51] , POUT[43] , GOUT[51] );
BLOCK1 U352 (PIN[44] , PIN[48] , GIN[48] , GIN[52] , POUT[44] , GOUT[52] );
BLOCK1 U353 (PIN[45] , PIN[49] , GIN[49] , GIN[53] , POUT[45] , GOUT[53] );
BLOCK1 U354 (PIN[46] , PIN[50] , GIN[50] , GIN[54] , POUT[46] , GOUT[54] );
BLOCK1 U355 (PIN[47] , PIN[51] , GIN[51] , GIN[55] , POUT[47] , GOUT[55] );
BLOCK1 U356 (PIN[48] , PIN[52] , GIN[52] , GIN[56] , POUT[48] , GOUT[56] );
BLOCK1 U357 (PIN[49] , PIN[53] , GIN[53] , GIN[57] , POUT[49] , GOUT[57] );
BLOCK1 U358 (PIN[50] , PIN[54] , GIN[54] , GIN[58] , POUT[50] , GOUT[58] );
BLOCK1 U359 (PIN[51] , PIN[55] , GIN[55] , GIN[59] , POUT[51] , GOUT[59] );
BLOCK1 U360 (PIN[52] , PIN[56] , GIN[56] , GIN[60] , POUT[52] , GOUT[60] );
BLOCK1 U361 (PIN[53] , PIN[57] , GIN[57] , GIN[61] , POUT[53] , GOUT[61] );
BLOCK1 U362 (PIN[54] , PIN[58] , GIN[58] , GIN[62] , POUT[54] , GOUT[62] );
BLOCK1 U363 (PIN[55] , PIN[59] , GIN[59] , GIN[63] , POUT[55] , GOUT[63] );
BLOCK1 U364 (PIN[56] , PIN[60] , GIN[60] , GIN[64] , POUT[56] , GOUT[64] );
endmodule // DBLC_2_64
module DBLC_3_64 ( PIN, GIN, POUT, GOUT );
input [56:0] PIN;
input [64:0] GIN;
output [48:0] POUT;
output [64:0] GOUT;
INVBLOCK U10 (GIN[0] , GOUT[0] );
INVBLOCK U11 (GIN[1] , GOUT[1] );
INVBLOCK U12 (GIN[2] , GOUT[2] );
INVBLOCK U13 (GIN[3] , GOUT[3] );
INVBLOCK U14 (GIN[4] , GOUT[4] );
INVBLOCK U15 (GIN[5] , GOUT[5] );
INVBLOCK U16 (GIN[6] , GOUT[6] );
INVBLOCK U17 (GIN[7] , GOUT[7] );
BLOCK2A U28 (PIN[0] , GIN[0] , GIN[8] , GOUT[8] );
BLOCK2A U29 (PIN[1] , GIN[1] , GIN[9] , GOUT[9] );
BLOCK2A U210 (PIN[2] , GIN[2] , GIN[10] , GOUT[10] );
BLOCK2A U211 (PIN[3] , GIN[3] , GIN[11] , GOUT[11] );
BLOCK2A U212 (PIN[4] , GIN[4] , GIN[12] , GOUT[12] );
BLOCK2A U213 (PIN[5] , GIN[5] , GIN[13] , GOUT[13] );
BLOCK2A U214 (PIN[6] , GIN[6] , GIN[14] , GOUT[14] );
BLOCK2A U215 (PIN[7] , GIN[7] , GIN[15] , GOUT[15] );
BLOCK2 U316 (PIN[0] , PIN[8] , GIN[8] , GIN[16] , POUT[0] , GOUT[16] );
BLOCK2 U317 (PIN[1] , PIN[9] , GIN[9] , GIN[17] , POUT[1] , GOUT[17] );
BLOCK2 U318 (PIN[2] , PIN[10] , GIN[10] , GIN[18] , POUT[2] , GOUT[18] );
BLOCK2 U319 (PIN[3] , PIN[11] , GIN[11] , GIN[19] , POUT[3] , GOUT[19] );
BLOCK2 U320 (PIN[4] , PIN[12] , GIN[12] , GIN[20] , POUT[4] , GOUT[20] );
BLOCK2 U321 (PIN[5] , PIN[13] , GIN[13] , GIN[21] , POUT[5] , GOUT[21] );
BLOCK2 U322 (PIN[6] , PIN[14] , GIN[14] , GIN[22] , POUT[6] , GOUT[22] );
BLOCK2 U323 (PIN[7] , PIN[15] , GIN[15] , GIN[23] , POUT[7] , GOUT[23] );
BLOCK2 U324 (PIN[8] , PIN[16] , GIN[16] , GIN[24] , POUT[8] , GOUT[24] );
BLOCK2 U325 (PIN[9] , PIN[17] , GIN[17] , GIN[25] , POUT[9] , GOUT[25] );
BLOCK2 U326 (PIN[10] , PIN[18] , GIN[18] , GIN[26] , POUT[10] , GOUT[26] );
BLOCK2 U327 (PIN[11] , PIN[19] , GIN[19] , GIN[27] , POUT[11] , GOUT[27] );
BLOCK2 U328 (PIN[12] , PIN[20] , GIN[20] , GIN[28] , POUT[12] , GOUT[28] );
BLOCK2 U329 (PIN[13] , PIN[21] , GIN[21] , GIN[29] , POUT[13] , GOUT[29] );
BLOCK2 U330 (PIN[14] , PIN[22] , GIN[22] , GIN[30] , POUT[14] , GOUT[30] );
BLOCK2 U331 (PIN[15] , PIN[23] , GIN[23] , GIN[31] , POUT[15] , GOUT[31] );
BLOCK2 U332 (PIN[16] , PIN[24] , GIN[24] , GIN[32] , POUT[16] , GOUT[32] );
BLOCK2 U333 (PIN[17] , PIN[25] , GIN[25] , GIN[33] , POUT[17] , GOUT[33] );
BLOCK2 U334 (PIN[18] , PIN[26] , GIN[26] , GIN[34] , POUT[18] , GOUT[34] );
BLOCK2 U335 (PIN[19] , PIN[27] , GIN[27] , GIN[35] , POUT[19] , GOUT[35] );
BLOCK2 U336 (PIN[20] , PIN[28] , GIN[28] , GIN[36] , POUT[20] , GOUT[36] );
BLOCK2 U337 (PIN[21] , PIN[29] , GIN[29] , GIN[37] , POUT[21] , GOUT[37] );
BLOCK2 U338 (PIN[22] , PIN[30] , GIN[30] , GIN[38] , POUT[22] , GOUT[38] );
BLOCK2 U339 (PIN[23] , PIN[31] , GIN[31] , GIN[39] , POUT[23] , GOUT[39] );
BLOCK2 U340 (PIN[24] , PIN[32] , GIN[32] , GIN[40] , POUT[24] , GOUT[40] );
BLOCK2 U341 (PIN[25] , PIN[33] , GIN[33] , GIN[41] , POUT[25] , GOUT[41] );
BLOCK2 U342 (PIN[26] , PIN[34] , GIN[34] , GIN[42] , POUT[26] , GOUT[42] );
BLOCK2 U343 (PIN[27] , PIN[35] , GIN[35] , GIN[43] , POUT[27] , GOUT[43] );
BLOCK2 U344 (PIN[28] , PIN[36] , GIN[36] , GIN[44] , POUT[28] , GOUT[44] );
BLOCK2 U345 (PIN[29] , PIN[37] , GIN[37] , GIN[45] , POUT[29] , GOUT[45] );
BLOCK2 U346 (PIN[30] , PIN[38] , GIN[38] , GIN[46] , POUT[30] , GOUT[46] );
BLOCK2 U347 (PIN[31] , PIN[39] , GIN[39] , GIN[47] , POUT[31] , GOUT[47] );
BLOCK2 U348 (PIN[32] , PIN[40] , GIN[40] , GIN[48] , POUT[32] , GOUT[48] );
BLOCK2 U349 (PIN[33] , PIN[41] , GIN[41] , GIN[49] , POUT[33] , GOUT[49] );
BLOCK2 U350 (PIN[34] , PIN[42] , GIN[42] , GIN[50] , POUT[34] , GOUT[50] );
BLOCK2 U351 (PIN[35] , PIN[43] , GIN[43] , GIN[51] , POUT[35] , GOUT[51] );
BLOCK2 U352 (PIN[36] , PIN[44] , GIN[44] , GIN[52] , POUT[36] , GOUT[52] );
BLOCK2 U353 (PIN[37] , PIN[45] , GIN[45] , GIN[53] , POUT[37] , GOUT[53] );
BLOCK2 U354 (PIN[38] , PIN[46] , GIN[46] , GIN[54] , POUT[38] , GOUT[54] );
BLOCK2 U355 (PIN[39] , PIN[47] , GIN[47] , GIN[55] , POUT[39] , GOUT[55] );
BLOCK2 U356 (PIN[40] , PIN[48] , GIN[48] , GIN[56] , POUT[40] , GOUT[56] );
BLOCK2 U357 (PIN[41] , PIN[49] , GIN[49] , GIN[57] , POUT[41] , GOUT[57] );
BLOCK2 U358 (PIN[42] , PIN[50] , GIN[50] , GIN[58] , POUT[42] , GOUT[58] );
BLOCK2 U359 (PIN[43] , PIN[51] , GIN[51] , GIN[59] , POUT[43] , GOUT[59] );
BLOCK2 U360 (PIN[44] , PIN[52] , GIN[52] , GIN[60] , POUT[44] , GOUT[60] );
BLOCK2 U361 (PIN[45] , PIN[53] , GIN[53] , GIN[61] , POUT[45] , GOUT[61] );
BLOCK2 U362 (PIN[46] , PIN[54] , GIN[54] , GIN[62] , POUT[46] , GOUT[62] );
BLOCK2 U363 (PIN[47] , PIN[55] , GIN[55] , GIN[63] , POUT[47] , GOUT[63] );
BLOCK2 U364 (PIN[48] , PIN[56] , GIN[56] , GIN[64] , POUT[48] , GOUT[64] );
endmodule // DBLC_3_64
module DBLC_4_64 ( PIN, GIN, POUT, GOUT );
input [48:0] PIN;
input [64:0] GIN;
output [32:0] POUT;
output [64:0] GOUT;
INVBLOCK U10 (GIN[0] , GOUT[0] );
INVBLOCK U11 (GIN[1] , GOUT[1] );
INVBLOCK U12 (GIN[2] , GOUT[2] );
INVBLOCK U13 (GIN[3] , GOUT[3] );
INVBLOCK U14 (GIN[4] , GOUT[4] );
INVBLOCK U15 (GIN[5] , GOUT[5] );
INVBLOCK U16 (GIN[6] , GOUT[6] );
INVBLOCK U17 (GIN[7] , GOUT[7] );
INVBLOCK U18 (GIN[8] , GOUT[8] );
INVBLOCK U19 (GIN[9] , GOUT[9] );
INVBLOCK U110 (GIN[10] , GOUT[10] );
INVBLOCK U111 (GIN[11] , GOUT[11] );
INVBLOCK U112 (GIN[12] , GOUT[12] );
INVBLOCK U113 (GIN[13] , GOUT[13] );
INVBLOCK U114 (GIN[14] , GOUT[14] );
INVBLOCK U115 (GIN[15] , GOUT[15] );
BLOCK1A U216 (PIN[0] , GIN[0] , GIN[16] , GOUT[16] );
BLOCK1A U217 (PIN[1] , GIN[1] , GIN[17] , GOUT[17] );
BLOCK1A U218 (PIN[2] , GIN[2] , GIN[18] , GOUT[18] );
BLOCK1A U219 (PIN[3] , GIN[3] , GIN[19] , GOUT[19] );
BLOCK1A U220 (PIN[4] , GIN[4] , GIN[20] , GOUT[20] );
BLOCK1A U221 (PIN[5] , GIN[5] , GIN[21] , GOUT[21] );
BLOCK1A U222 (PIN[6] , GIN[6] , GIN[22] , GOUT[22] );
BLOCK1A U223 (PIN[7] , GIN[7] , GIN[23] , GOUT[23] );
BLOCK1A U224 (PIN[8] , GIN[8] , GIN[24] , GOUT[24] );
BLOCK1A U225 (PIN[9] , GIN[9] , GIN[25] , GOUT[25] );
BLOCK1A U226 (PIN[10] , GIN[10] , GIN[26] , GOUT[26] );
BLOCK1A U227 (PIN[11] , GIN[11] , GIN[27] , GOUT[27] );
BLOCK1A U228 (PIN[12] , GIN[12] , GIN[28] , GOUT[28] );
BLOCK1A U229 (PIN[13] , GIN[13] , GIN[29] , GOUT[29] );
BLOCK1A U230 (PIN[14] , GIN[14] , GIN[30] , GOUT[30] );
BLOCK1A U231 (PIN[15] , GIN[15] , GIN[31] , GOUT[31] );
BLOCK1 U332 (PIN[0] , PIN[16] , GIN[16] , GIN[32] , POUT[0] , GOUT[32] );
BLOCK1 U333 (PIN[1] , PIN[17] , GIN[17] , GIN[33] , POUT[1] , GOUT[33] );
BLOCK1 U334 (PIN[2] , PIN[18] , GIN[18] , GIN[34] , POUT[2] , GOUT[34] );
BLOCK1 U335 (PIN[3] , PIN[19] , GIN[19] , GIN[35] , POUT[3] , GOUT[35] );
BLOCK1 U336 (PIN[4] , PIN[20] , GIN[20] , GIN[36] , POUT[4] , GOUT[36] );
BLOCK1 U337 (PIN[5] , PIN[21] , GIN[21] , GIN[37] , POUT[5] , GOUT[37] );
BLOCK1 U338 (PIN[6] , PIN[22] , GIN[22] , GIN[38] , POUT[6] , GOUT[38] );
BLOCK1 U339 (PIN[7] , PIN[23] , GIN[23] , GIN[39] , POUT[7] , GOUT[39] );
BLOCK1 U340 (PIN[8] , PIN[24] , GIN[24] , GIN[40] , POUT[8] , GOUT[40] );
BLOCK1 U341 (PIN[9] , PIN[25] , GIN[25] , GIN[41] , POUT[9] , GOUT[41] );
BLOCK1 U342 (PIN[10] , PIN[26] , GIN[26] , GIN[42] , POUT[10] , GOUT[42] );
BLOCK1 U343 (PIN[11] , PIN[27] , GIN[27] , GIN[43] , POUT[11] , GOUT[43] );
BLOCK1 U344 (PIN[12] , PIN[28] , GIN[28] , GIN[44] , POUT[12] , GOUT[44] );
BLOCK1 U345 (PIN[13] , PIN[29] , GIN[29] , GIN[45] , POUT[13] , GOUT[45] );
BLOCK1 U346 (PIN[14] , PIN[30] , GIN[30] , GIN[46] , POUT[14] , GOUT[46] );
BLOCK1 U347 (PIN[15] , PIN[31] , GIN[31] , GIN[47] , POUT[15] , GOUT[47] );
BLOCK1 U348 (PIN[16] , PIN[32] , GIN[32] , GIN[48] , POUT[16] , GOUT[48] );
BLOCK1 U349 (PIN[17] , PIN[33] , GIN[33] , GIN[49] , POUT[17] , GOUT[49] );
BLOCK1 U350 (PIN[18] , PIN[34] , GIN[34] , GIN[50] , POUT[18] , GOUT[50] );
BLOCK1 U351 (PIN[19] , PIN[35] , GIN[35] , GIN[51] , POUT[19] , GOUT[51] );
BLOCK1 U352 (PIN[20] , PIN[36] , GIN[36] , GIN[52] , POUT[20] , GOUT[52] );
BLOCK1 U353 (PIN[21] , PIN[37] , GIN[37] , GIN[53] , POUT[21] , GOUT[53] );
BLOCK1 U354 (PIN[22] , PIN[38] , GIN[38] , GIN[54] , POUT[22] , GOUT[54] );
BLOCK1 U355 (PIN[23] , PIN[39] , GIN[39] , GIN[55] , POUT[23] , GOUT[55] );
BLOCK1 U356 (PIN[24] , PIN[40] , GIN[40] , GIN[56] , POUT[24] , GOUT[56] );
BLOCK1 U357 (PIN[25] , PIN[41] , GIN[41] , GIN[57] , POUT[25] , GOUT[57] );
BLOCK1 U358 (PIN[26] , PIN[42] , GIN[42] , GIN[58] , POUT[26] , GOUT[58] );
BLOCK1 U359 (PIN[27] , PIN[43] , GIN[43] , GIN[59] , POUT[27] , GOUT[59] );
BLOCK1 U360 (PIN[28] , PIN[44] , GIN[44] , GIN[60] , POUT[28] , GOUT[60] );
BLOCK1 U361 (PIN[29] , PIN[45] , GIN[45] , GIN[61] , POUT[29] , GOUT[61] );
BLOCK1 U362 (PIN[30] , PIN[46] , GIN[46] , GIN[62] , POUT[30] , GOUT[62] );
BLOCK1 U363 (PIN[31] , PIN[47] , GIN[47] , GIN[63] , POUT[31] , GOUT[63] );
BLOCK1 U364 (PIN[32] , PIN[48] , GIN[48] , GIN[64] , POUT[32] , GOUT[64] );
endmodule // DBLC_4_64
module DBLC_5_64 ( PIN, GIN, POUT, GOUT );
input [32:0] PIN;
input [64:0] GIN;
output [0:0] POUT;
output [64:0] GOUT;
INVBLOCK U10 (GIN[0] , GOUT[0] );
INVBLOCK U11 (GIN[1] , GOUT[1] );
INVBLOCK U12 (GIN[2] , GOUT[2] );
INVBLOCK U13 (GIN[3] , GOUT[3] );
INVBLOCK U14 (GIN[4] , GOUT[4] );
INVBLOCK U15 (GIN[5] , GOUT[5] );
INVBLOCK U16 (GIN[6] , GOUT[6] );
INVBLOCK U17 (GIN[7] , GOUT[7] );
INVBLOCK U18 (GIN[8] , GOUT[8] );
INVBLOCK U19 (GIN[9] , GOUT[9] );
INVBLOCK U110 (GIN[10] , GOUT[10] );
INVBLOCK U111 (GIN[11] , GOUT[11] );
INVBLOCK U112 (GIN[12] , GOUT[12] );
INVBLOCK U113 (GIN[13] , GOUT[13] );
INVBLOCK U114 (GIN[14] , GOUT[14] );
INVBLOCK U115 (GIN[15] , GOUT[15] );
INVBLOCK U116 (GIN[16] , GOUT[16] );
INVBLOCK U117 (GIN[17] , GOUT[17] );
INVBLOCK U118 (GIN[18] , GOUT[18] );
INVBLOCK U119 (GIN[19] , GOUT[19] );
INVBLOCK U120 (GIN[20] , GOUT[20] );
INVBLOCK U121 (GIN[21] , GOUT[21] );
INVBLOCK U122 (GIN[22] , GOUT[22] );
INVBLOCK U123 (GIN[23] , GOUT[23] );
INVBLOCK U124 (GIN[24] , GOUT[24] );
INVBLOCK U125 (GIN[25] , GOUT[25] );
INVBLOCK U126 (GIN[26] , GOUT[26] );
INVBLOCK U127 (GIN[27] , GOUT[27] );
INVBLOCK U128 (GIN[28] , GOUT[28] );
INVBLOCK U129 (GIN[29] , GOUT[29] );
INVBLOCK U130 (GIN[30] , GOUT[30] );
INVBLOCK U131 (GIN[31] , GOUT[31] );
BLOCK2A U232 (PIN[0] , GIN[0] , GIN[32] , GOUT[32] );
BLOCK2A U233 (PIN[1] , GIN[1] , GIN[33] , GOUT[33] );
BLOCK2A U234 (PIN[2] , GIN[2] , GIN[34] , GOUT[34] );
BLOCK2A U235 (PIN[3] , GIN[3] , GIN[35] , GOUT[35] );
BLOCK2A U236 (PIN[4] , GIN[4] , GIN[36] , GOUT[36] );
BLOCK2A U237 (PIN[5] , GIN[5] , GIN[37] , GOUT[37] );
BLOCK2A U238 (PIN[6] , GIN[6] , GIN[38] , GOUT[38] );
BLOCK2A U239 (PIN[7] , GIN[7] , GIN[39] , GOUT[39] );
BLOCK2A U240 (PIN[8] , GIN[8] , GIN[40] , GOUT[40] );
BLOCK2A U241 (PIN[9] , GIN[9] , GIN[41] , GOUT[41] );
BLOCK2A U242 (PIN[10] , GIN[10] , GIN[42] , GOUT[42] );
BLOCK2A U243 (PIN[11] , GIN[11] , GIN[43] , GOUT[43] );
BLOCK2A U244 (PIN[12] , GIN[12] , GIN[44] , GOUT[44] );
BLOCK2A U245 (PIN[13] , GIN[13] , GIN[45] , GOUT[45] );
BLOCK2A U246 (PIN[14] , GIN[14] , GIN[46] , GOUT[46] );
BLOCK2A U247 (PIN[15] , GIN[15] , GIN[47] , GOUT[47] );
BLOCK2A U248 (PIN[16] , GIN[16] , GIN[48] , GOUT[48] );
BLOCK2A U249 (PIN[17] , GIN[17] , GIN[49] , GOUT[49] );
BLOCK2A U250 (PIN[18] , GIN[18] , GIN[50] , GOUT[50] );
BLOCK2A U251 (PIN[19] , GIN[19] , GIN[51] , GOUT[51] );
BLOCK2A U252 (PIN[20] , GIN[20] , GIN[52] , GOUT[52] );
BLOCK2A U253 (PIN[21] , GIN[21] , GIN[53] , GOUT[53] );
BLOCK2A U254 (PIN[22] , GIN[22] , GIN[54] , GOUT[54] );
BLOCK2A U255 (PIN[23] , GIN[23] , GIN[55] , GOUT[55] );
BLOCK2A U256 (PIN[24] , GIN[24] , GIN[56] , GOUT[56] );
BLOCK2A U257 (PIN[25] , GIN[25] , GIN[57] , GOUT[57] );
BLOCK2A U258 (PIN[26] , GIN[26] , GIN[58] , GOUT[58] );
BLOCK2A U259 (PIN[27] , GIN[27] , GIN[59] , GOUT[59] );
BLOCK2A U260 (PIN[28] , GIN[28] , GIN[60] , GOUT[60] );
BLOCK2A U261 (PIN[29] , GIN[29] , GIN[61] , GOUT[61] );
BLOCK2A U262 (PIN[30] , GIN[30] , GIN[62] , GOUT[62] );
BLOCK2A U263 (PIN[31] , GIN[31] , GIN[63] , GOUT[63] );
BLOCK2 U364 (PIN[0] , PIN[32] , GIN[32] , GIN[64] , POUT[0] , GOUT[64] );
endmodule // DBLC_5_64
module XORSTAGE_64 ( A, B, PBIT, CARRY, SUM, COUT );
input [63:0] A;
input [63:0] B;
input PBIT;
input [64:0] CARRY;
output [63:0] SUM;
output COUT;
XXOR1 U20 (A[0] , B[0] , CARRY[0] , SUM[0] );
XXOR1 U21 (A[1] , B[1] , CARRY[1] , SUM[1] );
XXOR1 U22 (A[2] , B[2] , CARRY[2] , SUM[2] );
XXOR1 U23 (A[3] , B[3] , CARRY[3] , SUM[3] );
XXOR1 U24 (A[4] , B[4] , CARRY[4] , SUM[4] );
XXOR1 U25 (A[5] , B[5] , CARRY[5] , SUM[5] );
XXOR1 U26 (A[6] , B[6] , CARRY[6] , SUM[6] );
XXOR1 U27 (A[7] , B[7] , CARRY[7] , SUM[7] );
XXOR1 U28 (A[8] , B[8] , CARRY[8] , SUM[8] );
XXOR1 U29 (A[9] , B[9] , CARRY[9] , SUM[9] );
XXOR1 U210 (A[10] , B[10] , CARRY[10] , SUM[10] );
XXOR1 U211 (A[11] , B[11] , CARRY[11] , SUM[11] );
XXOR1 U212 (A[12] , B[12] , CARRY[12] , SUM[12] );
XXOR1 U213 (A[13] , B[13] , CARRY[13] , SUM[13] );
XXOR1 U214 (A[14] , B[14] , CARRY[14] , SUM[14] );
XXOR1 U215 (A[15] , B[15] , CARRY[15] , SUM[15] );
XXOR1 U216 (A[16] , B[16] , CARRY[16] , SUM[16] );
XXOR1 U217 (A[17] , B[17] , CARRY[17] , SUM[17] );
XXOR1 U218 (A[18] , B[18] , CARRY[18] , SUM[18] );
XXOR1 U219 (A[19] , B[19] , CARRY[19] , SUM[19] );
XXOR1 U220 (A[20] , B[20] , CARRY[20] , SUM[20] );
XXOR1 U221 (A[21] , B[21] , CARRY[21] , SUM[21] );
XXOR1 U222 (A[22] , B[22] , CARRY[22] , SUM[22] );
XXOR1 U223 (A[23] , B[23] , CARRY[23] , SUM[23] );
XXOR1 U224 (A[24] , B[24] , CARRY[24] , SUM[24] );
XXOR1 U225 (A[25] , B[25] , CARRY[25] , SUM[25] );
XXOR1 U226 (A[26] , B[26] , CARRY[26] , SUM[26] );
XXOR1 U227 (A[27] , B[27] , CARRY[27] , SUM[27] );
XXOR1 U228 (A[28] , B[28] , CARRY[28] , SUM[28] );
XXOR1 U229 (A[29] , B[29] , CARRY[29] , SUM[29] );
XXOR1 U230 (A[30] , B[30] , CARRY[30] , SUM[30] );
XXOR1 U231 (A[31] , B[31] , CARRY[31] , SUM[31] );
XXOR1 U232 (A[32] , B[32] , CARRY[32] , SUM[32] );
XXOR1 U233 (A[33] , B[33] , CARRY[33] , SUM[33] );
XXOR1 U234 (A[34] , B[34] , CARRY[34] , SUM[34] );
XXOR1 U235 (A[35] , B[35] , CARRY[35] , SUM[35] );
XXOR1 U236 (A[36] , B[36] , CARRY[36] , SUM[36] );
XXOR1 U237 (A[37] , B[37] , CARRY[37] , SUM[37] );
XXOR1 U238 (A[38] , B[38] , CARRY[38] , SUM[38] );
XXOR1 U239 (A[39] , B[39] , CARRY[39] , SUM[39] );
XXOR1 U240 (A[40] , B[40] , CARRY[40] , SUM[40] );
XXOR1 U241 (A[41] , B[41] , CARRY[41] , SUM[41] );
XXOR1 U242 (A[42] , B[42] , CARRY[42] , SUM[42] );
XXOR1 U243 (A[43] , B[43] , CARRY[43] , SUM[43] );
XXOR1 U244 (A[44] , B[44] , CARRY[44] , SUM[44] );
XXOR1 U245 (A[45] , B[45] , CARRY[45] , SUM[45] );
XXOR1 U246 (A[46] , B[46] , CARRY[46] , SUM[46] );
XXOR1 U247 (A[47] , B[47] , CARRY[47] , SUM[47] );
XXOR1 U248 (A[48] , B[48] , CARRY[48] , SUM[48] );
XXOR1 U249 (A[49] , B[49] , CARRY[49] , SUM[49] );
XXOR1 U250 (A[50] , B[50] , CARRY[50] , SUM[50] );
XXOR1 U251 (A[51] , B[51] , CARRY[51] , SUM[51] );
XXOR1 U252 (A[52] , B[52] , CARRY[52] , SUM[52] );
XXOR1 U253 (A[53] , B[53] , CARRY[53] , SUM[53] );
XXOR1 U254 (A[54] , B[54] , CARRY[54] , SUM[54] );
XXOR1 U255 (A[55] , B[55] , CARRY[55] , SUM[55] );
XXOR1 U256 (A[56] , B[56] , CARRY[56] , SUM[56] );
XXOR1 U257 (A[57] , B[57] , CARRY[57] , SUM[57] );
XXOR1 U258 (A[58] , B[58] , CARRY[58] , SUM[58] );
XXOR1 U259 (A[59] , B[59] , CARRY[59] , SUM[59] );
XXOR1 U260 (A[60] , B[60] , CARRY[60] , SUM[60] );
XXOR1 U261 (A[61] , B[61] , CARRY[61] , SUM[61] );
XXOR1 U262 (A[62] , B[62] , CARRY[62] , SUM[62] );
XXOR1 U263 (A[63] , B[63] , CARRY[63] , SUM[63] );
BLOCK1A U1 (PBIT , CARRY[0] , CARRY[64] , COUT );
endmodule // XORSTAGE_64
module DBLCTREE_64 ( PIN, GIN, GOUT, POUT );
input [63:0] PIN;
input [64:0] GIN;
output [64:0] GOUT;
output [0:0] POUT;
wire [62:0] INTPROP_0;
wire [64:0] INTGEN_0;
wire [60:0] INTPROP_1;
wire [64:0] INTGEN_1;
wire [56:0] INTPROP_2;
wire [64:0] INTGEN_2;
wire [48:0] INTPROP_3;
wire [64:0] INTGEN_3;
wire [32:0] INTPROP_4;
wire [64:0] INTGEN_4;
DBLC_0_64 U_0 (.PIN(PIN) , .GIN(GIN) , .POUT(INTPROP_0) , .GOUT(INTGEN_0) );
DBLC_1_64 U_1 (.PIN(INTPROP_0) , .GIN(INTGEN_0) , .POUT(INTPROP_1) , .GOUT(INTGEN_1) );
DBLC_2_64 U_2 (.PIN(INTPROP_1) , .GIN(INTGEN_1) , .POUT(INTPROP_2) , .GOUT(INTGEN_2) );
DBLC_3_64 U_3 (.PIN(INTPROP_2) , .GIN(INTGEN_2) , .POUT(INTPROP_3) , .GOUT(INTGEN_3) );
DBLC_4_64 U_4 (.PIN(INTPROP_3) , .GIN(INTGEN_3) , .POUT(INTPROP_4) , .GOUT(INTGEN_4) );
DBLC_5_64 U_5 (.PIN(INTPROP_4) , .GIN(INTGEN_4) , .POUT(POUT) , .GOUT(GOUT) );
endmodule // DBLCTREE_64
module DBLCADDER_64_64 ( OPA, OPB, CIN, SUM, COUT );
input [63:0] OPA;
input [63:0] OPB;
input CIN;
output [63:0] SUM;
output COUT;
wire [63:0] INTPROP;
wire [64:0] INTGEN;
wire [0:0] PBIT;
wire [64:0] CARRY;
PRESTAGE_64 U1 (OPA , OPB , CIN , INTPROP , INTGEN );
DBLCTREE_64 U2 (INTPROP , INTGEN , CARRY , PBIT );
XORSTAGE_64 U3 (OPA[63:0] , OPB[63:0] , PBIT[0] , CARRY[64:0] , SUM , COUT );
endmodule

View File

@ -1,332 +0,0 @@
// This module implements a 12-bit carry lookahead adder. It is used
// for rounding in the floating point adder.
module cla12 (S, CO, X, Y);
input [11:0] X;
input [11:0] Y;
output [11:0] S;
output CO;
wire [63:0] A,B,Q;//***KEP was 0:63 - changed due to lint warning
wire LOGIC0;
wire CIN;
wire CO_64;
assign LOGIC0 = 0;
assign CIN = 0;
DBLCADDER_64_64 U1 (A , B , CIN, Q , CO_64);
assign A[0] = X[0];
assign B[0] = Y[0];
assign A[1] = X[1];
assign B[1] = Y[1];
assign A[2] = X[2];
assign B[2] = Y[2];
assign A[3] = X[3];
assign B[3] = Y[3];
assign A[4] = X[4];
assign B[4] = Y[4];
assign A[5] = X[5];
assign B[5] = Y[5];
assign A[6] = X[6];
assign B[6] = Y[6];
assign A[7] = X[7];
assign B[7] = Y[7];
assign A[8] = X[8];
assign B[8] = Y[8];
assign A[9] = X[9];
assign B[9] = Y[9];
assign A[10] = X[10];
assign B[10] = Y[10];
assign A[11] = X[11];
assign B[11] = Y[11];
assign A[12] = LOGIC0;
assign B[12] = LOGIC0;
assign A[13] = LOGIC0;
assign B[13] = LOGIC0;
assign A[14] = LOGIC0;
assign B[14] = LOGIC0;
assign A[15] = LOGIC0;
assign B[15] = LOGIC0;
assign A[16] = LOGIC0;
assign B[16] = LOGIC0;
assign A[17] = LOGIC0;
assign B[17] = LOGIC0;
assign A[18] = LOGIC0;
assign B[18] = LOGIC0;
assign A[19] = LOGIC0;
assign B[19] = LOGIC0;
assign A[20] = LOGIC0;
assign B[20] = LOGIC0;
assign A[21] = LOGIC0;
assign B[21] = LOGIC0;
assign A[22] = LOGIC0;
assign B[22] = LOGIC0;
assign A[23] = LOGIC0;
assign B[23] = LOGIC0;
assign A[24] = LOGIC0;
assign B[24] = LOGIC0;
assign A[25] = LOGIC0;
assign B[25] = LOGIC0;
assign A[26] = LOGIC0;
assign B[26] = LOGIC0;
assign A[27] = LOGIC0;
assign B[27] = LOGIC0;
assign A[28] = LOGIC0;
assign B[28] = LOGIC0;
assign A[29] = LOGIC0;
assign B[29] = LOGIC0;
assign A[30] = LOGIC0;
assign B[30] = LOGIC0;
assign A[31] = LOGIC0;
assign B[31] = LOGIC0;
assign A[32] = LOGIC0;
assign B[32] = LOGIC0;
assign A[33] = LOGIC0;
assign B[33] = LOGIC0;
assign A[34] = LOGIC0;
assign B[34] = LOGIC0;
assign A[35] = LOGIC0;
assign B[35] = LOGIC0;
assign A[36] = LOGIC0;
assign B[36] = LOGIC0;
assign A[37] = LOGIC0;
assign B[37] = LOGIC0;
assign A[38] = LOGIC0;
assign B[38] = LOGIC0;
assign A[39] = LOGIC0;
assign B[39] = LOGIC0;
assign A[40] = LOGIC0;
assign B[40] = LOGIC0;
assign A[41] = LOGIC0;
assign B[41] = LOGIC0;
assign A[42] = LOGIC0;
assign B[42] = LOGIC0;
assign A[43] = LOGIC0;
assign B[43] = LOGIC0;
assign A[44] = LOGIC0;
assign B[44] = LOGIC0;
assign A[45] = LOGIC0;
assign B[45] = LOGIC0;
assign A[46] = LOGIC0;
assign B[46] = LOGIC0;
assign A[47] = LOGIC0;
assign B[47] = LOGIC0;
assign A[48] = LOGIC0;
assign B[48] = LOGIC0;
assign A[49] = LOGIC0;
assign B[49] = LOGIC0;
assign A[50] = LOGIC0;
assign B[50] = LOGIC0;
assign A[51] = LOGIC0;
assign B[51] = LOGIC0;
assign A[52] = LOGIC0;
assign B[52] = LOGIC0;
assign A[53] = LOGIC0;
assign B[53] = LOGIC0;
assign A[54] = LOGIC0;
assign B[54] = LOGIC0;
assign A[55] = LOGIC0;
assign B[55] = LOGIC0;
assign A[56] = LOGIC0;
assign B[56] = LOGIC0;
assign A[57] = LOGIC0;
assign B[57] = LOGIC0;
assign A[58] = LOGIC0;
assign B[58] = LOGIC0;
assign A[59] = LOGIC0;
assign B[59] = LOGIC0;
assign A[60] = LOGIC0;
assign B[60] = LOGIC0;
assign A[61] = LOGIC0;
assign B[61] = LOGIC0;
assign A[62] = LOGIC0;
assign B[62] = LOGIC0;
assign A[63] = LOGIC0;
assign B[63] = LOGIC0;
assign S[0] = Q[0];
assign S[1] = Q[1];
assign S[2] = Q[2];
assign S[3] = Q[3];
assign S[4] = Q[4];
assign S[5] = Q[5];
assign S[6] = Q[6];
assign S[7] = Q[7];
assign S[8] = Q[8];
assign S[9] = Q[9];
assign S[10] = Q[10];
assign S[11] = Q[11];
assign CO = Q[12];
endmodule //cla52
// This module implements a 12-bit carry lookahead subtractor. It is used
// for rounding in the floating point adder.
module cla_sub12 (S, X, Y);
input [11:0] X;
input [11:0] Y;
output [11:0] S;
wire [63:0] A,B,Q,Bbar;//***KEP was 0:63 - changed due to lint warning
wire CO;
wire LOGIC0;
wire VDD;
logic CO_12;
assign Bbar = ~B;
assign LOGIC0 = 0;
assign VDD = 1;
DBLCADDER_64_64 U1 (A , Bbar , VDD, Q , CO);
assign A[0] = X[0];
assign B[0] = Y[0];
assign A[1] = X[1];
assign B[1] = Y[1];
assign A[2] = X[2];
assign B[2] = Y[2];
assign A[3] = X[3];
assign B[3] = Y[3];
assign A[4] = X[4];
assign B[4] = Y[4];
assign A[5] = X[5];
assign B[5] = Y[5];
assign A[6] = X[6];
assign B[6] = Y[6];
assign A[7] = X[7];
assign B[7] = Y[7];
assign A[8] = X[8];
assign B[8] = Y[8];
assign A[9] = X[9];
assign B[9] = Y[9];
assign A[10] = X[10];
assign B[10] = Y[10];
assign A[11] = X[11];
assign B[11] = Y[11];
assign A[12] = LOGIC0;
assign B[12] = LOGIC0;
assign A[13] = LOGIC0;
assign B[13] = LOGIC0;
assign A[14] = LOGIC0;
assign B[14] = LOGIC0;
assign A[15] = LOGIC0;
assign B[15] = LOGIC0;
assign A[16] = LOGIC0;
assign B[16] = LOGIC0;
assign A[17] = LOGIC0;
assign B[17] = LOGIC0;
assign A[18] = LOGIC0;
assign B[18] = LOGIC0;
assign A[19] = LOGIC0;
assign B[19] = LOGIC0;
assign A[20] = LOGIC0;
assign B[20] = LOGIC0;
assign A[21] = LOGIC0;
assign B[21] = LOGIC0;
assign A[22] = LOGIC0;
assign B[22] = LOGIC0;
assign A[23] = LOGIC0;
assign B[23] = LOGIC0;
assign A[24] = LOGIC0;
assign B[24] = LOGIC0;
assign A[25] = LOGIC0;
assign B[25] = LOGIC0;
assign A[26] = LOGIC0;
assign B[26] = LOGIC0;
assign A[27] = LOGIC0;
assign B[27] = LOGIC0;
assign A[28] = LOGIC0;
assign B[28] = LOGIC0;
assign A[29] = LOGIC0;
assign B[29] = LOGIC0;
assign A[30] = LOGIC0;
assign B[30] = LOGIC0;
assign A[31] = LOGIC0;
assign B[31] = LOGIC0;
assign A[32] = LOGIC0;
assign B[32] = LOGIC0;
assign A[33] = LOGIC0;
assign B[33] = LOGIC0;
assign A[34] = LOGIC0;
assign B[34] = LOGIC0;
assign A[35] = LOGIC0;
assign B[35] = LOGIC0;
assign A[36] = LOGIC0;
assign B[36] = LOGIC0;
assign A[37] = LOGIC0;
assign B[37] = LOGIC0;
assign A[38] = LOGIC0;
assign B[38] = LOGIC0;
assign A[39] = LOGIC0;
assign B[39] = LOGIC0;
assign A[40] = LOGIC0;
assign B[40] = LOGIC0;
assign A[41] = LOGIC0;
assign B[41] = LOGIC0;
assign A[42] = LOGIC0;
assign B[42] = LOGIC0;
assign A[43] = LOGIC0;
assign B[43] = LOGIC0;
assign A[44] = LOGIC0;
assign B[44] = LOGIC0;
assign A[45] = LOGIC0;
assign B[45] = LOGIC0;
assign A[46] = LOGIC0;
assign B[46] = LOGIC0;
assign A[47] = LOGIC0;
assign B[47] = LOGIC0;
assign A[48] = LOGIC0;
assign B[48] = LOGIC0;
assign A[49] = LOGIC0;
assign B[49] = LOGIC0;
assign A[50] = LOGIC0;
assign B[50] = LOGIC0;
assign A[51] = LOGIC0;
assign B[51] = LOGIC0;
assign A[52] = LOGIC0;
assign B[52] = LOGIC0;
assign A[53] = LOGIC0;
assign B[53] = LOGIC0;
assign A[54] = LOGIC0;
assign B[54] = LOGIC0;
assign A[55] = LOGIC0;
assign B[55] = LOGIC0;
assign A[56] = LOGIC0;
assign B[56] = LOGIC0;
assign A[57] = LOGIC0;
assign B[57] = LOGIC0;
assign A[58] = LOGIC0;
assign B[58] = LOGIC0;
assign A[59] = LOGIC0;
assign B[59] = LOGIC0;
assign A[60] = LOGIC0;
assign B[60] = LOGIC0;
assign A[61] = LOGIC0;
assign B[61] = LOGIC0;
assign A[62] = LOGIC0;
assign B[62] = LOGIC0;
assign A[63] = LOGIC0;
assign B[63] = LOGIC0;
assign S[0] = Q[0];
assign S[1] = Q[1];
assign S[2] = Q[2];
assign S[3] = Q[3];
assign S[4] = Q[4];
assign S[5] = Q[5];
assign S[6] = Q[6];
assign S[7] = Q[7];
assign S[8] = Q[8];
assign S[9] = Q[9];
assign S[10] = Q[10];
assign S[11] = Q[11];
assign CO_12 = Q[12];
endmodule //cla_sub52

View File

@ -1,409 +0,0 @@
// This module implements a 52-bit carry lookahead adder. It is used
// for rounding in the floating point adder.
module cla52 (S, CO, X, Y);
input [51:0] X;
input [51:0] Y;
output [51:0] S;
output CO;
wire [63:0] A,B,Q;//***KEP was 0:63 - changed due to lint warning
wire LOGIC0;
wire CIN;
wire CO_64;
assign LOGIC0 = 0;
assign CIN = 0;
DBLCADDER_64_64 U1 (A , B , CIN, Q , CO_64);
assign A[0] = X[0];
assign B[0] = Y[0];
assign A[1] = X[1];
assign B[1] = Y[1];
assign A[2] = X[2];
assign B[2] = Y[2];
assign A[3] = X[3];
assign B[3] = Y[3];
assign A[4] = X[4];
assign B[4] = Y[4];
assign A[5] = X[5];
assign B[5] = Y[5];
assign A[6] = X[6];
assign B[6] = Y[6];
assign A[7] = X[7];
assign B[7] = Y[7];
assign A[8] = X[8];
assign B[8] = Y[8];
assign A[9] = X[9];
assign B[9] = Y[9];
assign A[10] = X[10];
assign B[10] = Y[10];
assign A[11] = X[11];
assign B[11] = Y[11];
assign A[12] = X[12];
assign B[12] = Y[12];
assign A[13] = X[13];
assign B[13] = Y[13];
assign A[14] = X[14];
assign B[14] = Y[14];
assign A[15] = X[15];
assign B[15] = Y[15];
assign A[16] = X[16];
assign B[16] = Y[16];
assign A[17] = X[17];
assign B[17] = Y[17];
assign A[18] = X[18];
assign B[18] = Y[18];
assign A[19] = X[19];
assign B[19] = Y[19];
assign A[20] = X[20];
assign B[20] = Y[20];
assign A[21] = X[21];
assign B[21] = Y[21];
assign A[22] = X[22];
assign B[22] = Y[22];
assign A[23] = X[23];
assign B[23] = Y[23];
assign A[24] = X[24];
assign B[24] = Y[24];
assign A[25] = X[25];
assign B[25] = Y[25];
assign A[26] = X[26];
assign B[26] = Y[26];
assign A[27] = X[27];
assign B[27] = Y[27];
assign A[28] = X[28];
assign B[28] = Y[28];
assign A[29] = X[29];
assign B[29] = Y[29];
assign A[30] = X[30];
assign B[30] = Y[30];
assign A[31] = X[31];
assign B[31] = Y[31];
assign A[32] = X[32];
assign B[32] = Y[32];
assign A[33] = X[33];
assign B[33] = Y[33];
assign A[34] = X[34];
assign B[34] = Y[34];
assign A[35] = X[35];
assign B[35] = Y[35];
assign A[36] = X[36];
assign B[36] = Y[36];
assign A[37] = X[37];
assign B[37] = Y[37];
assign A[38] = X[38];
assign B[38] = Y[38];
assign A[39] = X[39];
assign B[39] = Y[39];
assign A[40] = X[40];
assign B[40] = Y[40];
assign A[41] = X[41];
assign B[41] = Y[41];
assign A[42] = X[42];
assign B[42] = Y[42];
assign A[43] = X[43];
assign B[43] = Y[43];
assign A[44] = X[44];
assign B[44] = Y[44];
assign A[45] = X[45];
assign B[45] = Y[45];
assign A[46] = X[46];
assign B[46] = Y[46];
assign A[47] = X[47];
assign B[47] = Y[47];
assign A[48] = X[48];
assign B[48] = Y[48];
assign A[49] = X[49];
assign B[49] = Y[49];
assign A[50] = X[50];
assign B[50] = Y[50];
assign A[51] = X[51];
assign B[51] = Y[51];
assign A[52] = LOGIC0;
assign B[52] = LOGIC0;
assign A[53] = LOGIC0;
assign B[53] = LOGIC0;
assign A[54] = LOGIC0;
assign B[54] = LOGIC0;
assign A[55] = LOGIC0;
assign B[55] = LOGIC0;
assign A[56] = LOGIC0;
assign B[56] = LOGIC0;
assign A[57] = LOGIC0;
assign B[57] = LOGIC0;
assign A[58] = LOGIC0;
assign B[58] = LOGIC0;
assign A[59] = LOGIC0;
assign B[59] = LOGIC0;
assign A[60] = LOGIC0;
assign B[60] = LOGIC0;
assign A[61] = LOGIC0;
assign B[61] = LOGIC0;
assign A[62] = LOGIC0;
assign B[62] = LOGIC0;
assign A[63] = LOGIC0;
assign B[63] = LOGIC0;
assign S[0] = Q[0];
assign S[1] = Q[1];
assign S[2] = Q[2];
assign S[3] = Q[3];
assign S[4] = Q[4];
assign S[5] = Q[5];
assign S[6] = Q[6];
assign S[7] = Q[7];
assign S[8] = Q[8];
assign S[9] = Q[9];
assign S[10] = Q[10];
assign S[11] = Q[11];
assign S[12] = Q[12];
assign S[13] = Q[13];
assign S[14] = Q[14];
assign S[15] = Q[15];
assign S[16] = Q[16];
assign S[17] = Q[17];
assign S[18] = Q[18];
assign S[19] = Q[19];
assign S[20] = Q[20];
assign S[21] = Q[21];
assign S[22] = Q[22];
assign S[23] = Q[23];
assign S[24] = Q[24];
assign S[25] = Q[25];
assign S[26] = Q[26];
assign S[27] = Q[27];
assign S[28] = Q[28];
assign S[29] = Q[29];
assign S[30] = Q[30];
assign S[31] = Q[31];
assign S[32] = Q[32];
assign S[33] = Q[33];
assign S[34] = Q[34];
assign S[35] = Q[35];
assign S[36] = Q[36];
assign S[37] = Q[37];
assign S[38] = Q[38];
assign S[39] = Q[39];
assign S[40] = Q[40];
assign S[41] = Q[41];
assign S[42] = Q[42];
assign S[43] = Q[43];
assign S[44] = Q[44];
assign S[45] = Q[45];
assign S[46] = Q[46];
assign S[47] = Q[47];
assign S[48] = Q[48];
assign S[49] = Q[49];
assign S[50] = Q[50];
assign S[51] = Q[51];
assign CO = Q[52];
endmodule //cla52
// This module implements a 52-bit carry lookahead subtractor. It is used
// for rounding in the floating point adder.
module cla_sub52 (S, X, Y);
input [51:0] X;
input [51:0] Y;
output [51:0] S;
wire [63:0] A,B,Q,Bbar;//***KEP was 0:63 - changed due to lint warning
wire LOGIC0;
wire CIN;
wire CO_52;
wire CO_64;
assign Bbar = ~B;
assign LOGIC0 = 0;
assign CIN = 0;
DBLCADDER_64_64 U1 (A , Bbar , CIN, Q , CO_64);
assign A[0] = X[0];
assign B[0] = Y[0];
assign A[1] = X[1];
assign B[1] = Y[1];
assign A[2] = X[2];
assign B[2] = Y[2];
assign A[3] = X[3];
assign B[3] = Y[3];
assign A[4] = X[4];
assign B[4] = Y[4];
assign A[5] = X[5];
assign B[5] = Y[5];
assign A[6] = X[6];
assign B[6] = Y[6];
assign A[7] = X[7];
assign B[7] = Y[7];
assign A[8] = X[8];
assign B[8] = Y[8];
assign A[9] = X[9];
assign B[9] = Y[9];
assign A[10] = X[10];
assign B[10] = Y[10];
assign A[11] = X[11];
assign B[11] = Y[11];
assign A[12] = X[12];
assign B[12] = Y[12];
assign A[13] = X[13];
assign B[13] = Y[13];
assign A[14] = X[14];
assign B[14] = Y[14];
assign A[15] = X[15];
assign B[15] = Y[15];
assign A[16] = X[16];
assign B[16] = Y[16];
assign A[17] = X[17];
assign B[17] = Y[17];
assign A[18] = X[18];
assign B[18] = Y[18];
assign A[19] = X[19];
assign B[19] = Y[19];
assign A[20] = X[20];
assign B[20] = Y[20];
assign A[21] = X[21];
assign B[21] = Y[21];
assign A[22] = X[22];
assign B[22] = Y[22];
assign A[23] = X[23];
assign B[23] = Y[23];
assign A[24] = X[24];
assign B[24] = Y[24];
assign A[25] = X[25];
assign B[25] = Y[25];
assign A[26] = X[26];
assign B[26] = Y[26];
assign A[27] = X[27];
assign B[27] = Y[27];
assign A[28] = X[28];
assign B[28] = Y[28];
assign A[29] = X[29];
assign B[29] = Y[29];
assign A[30] = X[30];
assign B[30] = Y[30];
assign A[31] = X[31];
assign B[31] = Y[31];
assign A[32] = X[32];
assign B[32] = Y[32];
assign A[33] = X[33];
assign B[33] = Y[33];
assign A[34] = X[34];
assign B[34] = Y[34];
assign A[35] = X[35];
assign B[35] = Y[35];
assign A[36] = X[36];
assign B[36] = Y[36];
assign A[37] = X[37];
assign B[37] = Y[37];
assign A[38] = X[38];
assign B[38] = Y[38];
assign A[39] = X[39];
assign B[39] = Y[39];
assign A[40] = X[40];
assign B[40] = Y[40];
assign A[41] = X[41];
assign B[41] = Y[41];
assign A[42] = X[42];
assign B[42] = Y[42];
assign A[43] = X[43];
assign B[43] = Y[43];
assign A[44] = X[44];
assign B[44] = Y[44];
assign A[45] = X[45];
assign B[45] = Y[45];
assign A[46] = X[46];
assign B[46] = Y[46];
assign A[47] = X[47];
assign B[47] = Y[47];
assign A[48] = X[48];
assign B[48] = Y[48];
assign A[49] = X[49];
assign B[49] = Y[49];
assign A[50] = X[50];
assign B[50] = Y[50];
assign A[51] = X[51];
assign B[51] = Y[51];
assign A[52] = LOGIC0;
assign B[52] = LOGIC0;
assign A[53] = LOGIC0;
assign B[53] = LOGIC0;
assign A[54] = LOGIC0;
assign B[54] = LOGIC0;
assign A[55] = LOGIC0;
assign B[55] = LOGIC0;
assign A[56] = LOGIC0;
assign B[56] = LOGIC0;
assign A[57] = LOGIC0;
assign B[57] = LOGIC0;
assign A[58] = LOGIC0;
assign B[58] = LOGIC0;
assign A[59] = LOGIC0;
assign B[59] = LOGIC0;
assign A[60] = LOGIC0;
assign B[60] = LOGIC0;
assign A[61] = LOGIC0;
assign B[61] = LOGIC0;
assign A[62] = LOGIC0;
assign B[62] = LOGIC0;
assign A[63] = LOGIC0;
assign B[63] = LOGIC0;
assign S[0] = Q[0];
assign S[1] = Q[1];
assign S[2] = Q[2];
assign S[3] = Q[3];
assign S[4] = Q[4];
assign S[5] = Q[5];
assign S[6] = Q[6];
assign S[7] = Q[7];
assign S[8] = Q[8];
assign S[9] = Q[9];
assign S[10] = Q[10];
assign S[11] = Q[11];
assign S[12] = Q[12];
assign S[13] = Q[13];
assign S[14] = Q[14];
assign S[15] = Q[15];
assign S[16] = Q[16];
assign S[17] = Q[17];
assign S[18] = Q[18];
assign S[19] = Q[19];
assign S[20] = Q[20];
assign S[21] = Q[21];
assign S[22] = Q[22];
assign S[23] = Q[23];
assign S[24] = Q[24];
assign S[25] = Q[25];
assign S[26] = Q[26];
assign S[27] = Q[27];
assign S[28] = Q[28];
assign S[29] = Q[29];
assign S[30] = Q[30];
assign S[31] = Q[31];
assign S[32] = Q[32];
assign S[33] = Q[33];
assign S[34] = Q[34];
assign S[35] = Q[35];
assign S[36] = Q[36];
assign S[37] = Q[37];
assign S[38] = Q[38];
assign S[39] = Q[39];
assign S[40] = Q[40];
assign S[41] = Q[41];
assign S[42] = Q[42];
assign S[43] = Q[43];
assign S[44] = Q[44];
assign S[45] = Q[45];
assign S[46] = Q[46];
assign S[47] = Q[47];
assign S[48] = Q[48];
assign S[49] = Q[49];
assign S[50] = Q[50];
assign S[51] = Q[51];
assign CO_52 = Q[52];
endmodule //cla_sub52

View File

@ -1,420 +0,0 @@
// This module implements a 64-bit carry lookehead adder/subtractor.
// It is used to perform the primary addition in the floating point
// adder
module cla64 (S, X, Y, Sub);
input [63:0] X;
input [63:0] Y;
input Sub;
output [63:0] S;
wire CO;
wire [63:0] A,B,Q, Bbar; //***KEP was 0:63 - changed due to lint warning
DBLCADDER_64_64 U1 (A , Bbar , Sub , Q , CO );
assign A[0] = X[0];
assign B[0] = Y[0];
assign A[1] = X[1];
assign B[1] = Y[1];
assign A[2] = X[2];
assign B[2] = Y[2];
assign A[3] = X[3];
assign B[3] = Y[3];
assign A[4] = X[4];
assign B[4] = Y[4];
assign A[5] = X[5];
assign B[5] = Y[5];
assign A[6] = X[6];
assign B[6] = Y[6];
assign A[7] = X[7];
assign B[7] = Y[7];
assign A[8] = X[8];
assign B[8] = Y[8];
assign A[9] = X[9];
assign B[9] = Y[9];
assign A[10] = X[10];
assign B[10] = Y[10];
assign A[11] = X[11];
assign B[11] = Y[11];
assign A[12] = X[12];
assign B[12] = Y[12];
assign A[13] = X[13];
assign B[13] = Y[13];
assign A[14] = X[14];
assign B[14] = Y[14];
assign A[15] = X[15];
assign B[15] = Y[15];
assign A[16] = X[16];
assign B[16] = Y[16];
assign A[17] = X[17];
assign B[17] = Y[17];
assign A[18] = X[18];
assign B[18] = Y[18];
assign A[19] = X[19];
assign B[19] = Y[19];
assign A[20] = X[20];
assign B[20] = Y[20];
assign A[21] = X[21];
assign B[21] = Y[21];
assign A[22] = X[22];
assign B[22] = Y[22];
assign A[23] = X[23];
assign B[23] = Y[23];
assign A[24] = X[24];
assign B[24] = Y[24];
assign A[25] = X[25];
assign B[25] = Y[25];
assign A[26] = X[26];
assign B[26] = Y[26];
assign A[27] = X[27];
assign B[27] = Y[27];
assign A[28] = X[28];
assign B[28] = Y[28];
assign A[29] = X[29];
assign B[29] = Y[29];
assign A[30] = X[30];
assign B[30] = Y[30];
assign A[31] = X[31];
assign B[31] = Y[31];
assign A[32] = X[32];
assign B[32] = Y[32];
assign A[33] = X[33];
assign B[33] = Y[33];
assign A[34] = X[34];
assign B[34] = Y[34];
assign A[35] = X[35];
assign B[35] = Y[35];
assign A[36] = X[36];
assign B[36] = Y[36];
assign A[37] = X[37];
assign B[37] = Y[37];
assign A[38] = X[38];
assign B[38] = Y[38];
assign A[39] = X[39];
assign B[39] = Y[39];
assign A[40] = X[40];
assign B[40] = Y[40];
assign A[41] = X[41];
assign B[41] = Y[41];
assign A[42] = X[42];
assign B[42] = Y[42];
assign A[43] = X[43];
assign B[43] = Y[43];
assign A[44] = X[44];
assign B[44] = Y[44];
assign A[45] = X[45];
assign B[45] = Y[45];
assign A[46] = X[46];
assign B[46] = Y[46];
assign A[47] = X[47];
assign B[47] = Y[47];
assign A[48] = X[48];
assign B[48] = Y[48];
assign A[49] = X[49];
assign B[49] = Y[49];
assign A[50] = X[50];
assign B[50] = Y[50];
assign A[51] = X[51];
assign B[51] = Y[51];
assign A[52] = X[52];
assign B[52] = Y[52];
assign A[53] = X[53];
assign B[53] = Y[53];
assign A[54] = X[54];
assign B[54] = Y[54];
assign A[55] = X[55];
assign B[55] = Y[55];
assign A[56] = X[56];
assign B[56] = Y[56];
assign A[57] = X[57];
assign B[57] = Y[57];
assign A[58] = X[58];
assign B[58] = Y[58];
assign A[59] = X[59];
assign B[59] = Y[59];
assign A[60] = X[60];
assign B[60] = Y[60];
assign A[61] = X[61];
assign B[61] = Y[61];
assign A[62] = X[62];
assign B[62] = Y[62];
assign A[63] = X[63];
assign B[63] = Y[63];
assign S[0] = Q[0];
assign S[1] = Q[1];
assign S[2] = Q[2];
assign S[3] = Q[3];
assign S[4] = Q[4];
assign S[5] = Q[5];
assign S[6] = Q[6];
assign S[7] = Q[7];
assign S[8] = Q[8];
assign S[9] = Q[9];
assign S[10] = Q[10];
assign S[11] = Q[11];
assign S[12] = Q[12];
assign S[13] = Q[13];
assign S[14] = Q[14];
assign S[15] = Q[15];
assign S[16] = Q[16];
assign S[17] = Q[17];
assign S[18] = Q[18];
assign S[19] = Q[19];
assign S[20] = Q[20];
assign S[21] = Q[21];
assign S[22] = Q[22];
assign S[23] = Q[23];
assign S[24] = Q[24];
assign S[25] = Q[25];
assign S[26] = Q[26];
assign S[27] = Q[27];
assign S[28] = Q[28];
assign S[29] = Q[29];
assign S[30] = Q[30];
assign S[31] = Q[31];
assign S[32] = Q[32];
assign S[33] = Q[33];
assign S[34] = Q[34];
assign S[35] = Q[35];
assign S[36] = Q[36];
assign S[37] = Q[37];
assign S[38] = Q[38];
assign S[39] = Q[39];
assign S[40] = Q[40];
assign S[41] = Q[41];
assign S[42] = Q[42];
assign S[43] = Q[43];
assign S[44] = Q[44];
assign S[45] = Q[45];
assign S[46] = Q[46];
assign S[47] = Q[47];
assign S[48] = Q[48];
assign S[49] = Q[49];
assign S[50] = Q[50];
assign S[51] = Q[51];
assign S[52] = Q[52];
assign S[53] = Q[53];
assign S[54] = Q[54];
assign S[55] = Q[55];
assign S[56] = Q[56];
assign S[57] = Q[57];
assign S[58] = Q[58];
assign S[59] = Q[59];
assign S[60] = Q[60];
assign S[61] = Q[61];
assign S[62] = Q[62];
assign S[63] = Q[63];
assign Bbar = B ^ {64{Sub}};
endmodule // cla64
// This module performs 64-bit subtraction. It is used to get the two's complement
// of main addition or subtraction in the floating point adder.
module cla_sub64 (S, X, Y);
input [63:0] X;
input [63:0] Y;
output [63:0] S;
wire CO;
wire VDD = 1'b1;
wire [63:0] A,B,Q, Bbar; //***KEP was 0:63 - changed due to lint warning
DBLCADDER_64_64 U1 (A , Bbar , VDD, Q , CO );
assign A[0] = X[0];
assign B[0] = Y[0];
assign A[1] = X[1];
assign B[1] = Y[1];
assign A[2] = X[2];
assign B[2] = Y[2];
assign A[3] = X[3];
assign B[3] = Y[3];
assign A[4] = X[4];
assign B[4] = Y[4];
assign A[5] = X[5];
assign B[5] = Y[5];
assign A[6] = X[6];
assign B[6] = Y[6];
assign A[7] = X[7];
assign B[7] = Y[7];
assign A[8] = X[8];
assign B[8] = Y[8];
assign A[9] = X[9];
assign B[9] = Y[9];
assign A[10] = X[10];
assign B[10] = Y[10];
assign A[11] = X[11];
assign B[11] = Y[11];
assign A[12] = X[12];
assign B[12] = Y[12];
assign A[13] = X[13];
assign B[13] = Y[13];
assign A[14] = X[14];
assign B[14] = Y[14];
assign A[15] = X[15];
assign B[15] = Y[15];
assign A[16] = X[16];
assign B[16] = Y[16];
assign A[17] = X[17];
assign B[17] = Y[17];
assign A[18] = X[18];
assign B[18] = Y[18];
assign A[19] = X[19];
assign B[19] = Y[19];
assign A[20] = X[20];
assign B[20] = Y[20];
assign A[21] = X[21];
assign B[21] = Y[21];
assign A[22] = X[22];
assign B[22] = Y[22];
assign A[23] = X[23];
assign B[23] = Y[23];
assign A[24] = X[24];
assign B[24] = Y[24];
assign A[25] = X[25];
assign B[25] = Y[25];
assign A[26] = X[26];
assign B[26] = Y[26];
assign A[27] = X[27];
assign B[27] = Y[27];
assign A[28] = X[28];
assign B[28] = Y[28];
assign A[29] = X[29];
assign B[29] = Y[29];
assign A[30] = X[30];
assign B[30] = Y[30];
assign A[31] = X[31];
assign B[31] = Y[31];
assign A[32] = X[32];
assign B[32] = Y[32];
assign A[33] = X[33];
assign B[33] = Y[33];
assign A[34] = X[34];
assign B[34] = Y[34];
assign A[35] = X[35];
assign B[35] = Y[35];
assign A[36] = X[36];
assign B[36] = Y[36];
assign A[37] = X[37];
assign B[37] = Y[37];
assign A[38] = X[38];
assign B[38] = Y[38];
assign A[39] = X[39];
assign B[39] = Y[39];
assign A[40] = X[40];
assign B[40] = Y[40];
assign A[41] = X[41];
assign B[41] = Y[41];
assign A[42] = X[42];
assign B[42] = Y[42];
assign A[43] = X[43];
assign B[43] = Y[43];
assign A[44] = X[44];
assign B[44] = Y[44];
assign A[45] = X[45];
assign B[45] = Y[45];
assign A[46] = X[46];
assign B[46] = Y[46];
assign A[47] = X[47];
assign B[47] = Y[47];
assign A[48] = X[48];
assign B[48] = Y[48];
assign A[49] = X[49];
assign B[49] = Y[49];
assign A[50] = X[50];
assign B[50] = Y[50];
assign A[51] = X[51];
assign B[51] = Y[51];
assign A[52] = X[52];
assign B[52] = Y[52];
assign A[53] = X[53];
assign B[53] = Y[53];
assign A[54] = X[54];
assign B[54] = Y[54];
assign A[55] = X[55];
assign B[55] = Y[55];
assign A[56] = X[56];
assign B[56] = Y[56];
assign A[57] = X[57];
assign B[57] = Y[57];
assign A[58] = X[58];
assign B[58] = Y[58];
assign A[59] = X[59];
assign B[59] = Y[59];
assign A[60] = X[60];
assign B[60] = Y[60];
assign A[61] = X[61];
assign B[61] = Y[61];
assign A[62] = X[62];
assign B[62] = Y[62];
assign A[63] = X[63];
assign B[63] = Y[63];
assign S[0] = Q[0];
assign S[1] = Q[1];
assign S[2] = Q[2];
assign S[3] = Q[3];
assign S[4] = Q[4];
assign S[5] = Q[5];
assign S[6] = Q[6];
assign S[7] = Q[7];
assign S[8] = Q[8];
assign S[9] = Q[9];
assign S[10] = Q[10];
assign S[11] = Q[11];
assign S[12] = Q[12];
assign S[13] = Q[13];
assign S[14] = Q[14];
assign S[15] = Q[15];
assign S[16] = Q[16];
assign S[17] = Q[17];
assign S[18] = Q[18];
assign S[19] = Q[19];
assign S[20] = Q[20];
assign S[21] = Q[21];
assign S[22] = Q[22];
assign S[23] = Q[23];
assign S[24] = Q[24];
assign S[25] = Q[25];
assign S[26] = Q[26];
assign S[27] = Q[27];
assign S[28] = Q[28];
assign S[29] = Q[29];
assign S[30] = Q[30];
assign S[31] = Q[31];
assign S[32] = Q[32];
assign S[33] = Q[33];
assign S[34] = Q[34];
assign S[35] = Q[35];
assign S[36] = Q[36];
assign S[37] = Q[37];
assign S[38] = Q[38];
assign S[39] = Q[39];
assign S[40] = Q[40];
assign S[41] = Q[41];
assign S[42] = Q[42];
assign S[43] = Q[43];
assign S[44] = Q[44];
assign S[45] = Q[45];
assign S[46] = Q[46];
assign S[47] = Q[47];
assign S[48] = Q[48];
assign S[49] = Q[49];
assign S[50] = Q[50];
assign S[51] = Q[51];
assign S[52] = Q[52];
assign S[53] = Q[53];
assign S[54] = Q[54];
assign S[55] = Q[55];
assign S[56] = Q[56];
assign S[57] = Q[57];
assign S[58] = Q[58];
assign S[59] = Q[59];
assign S[60] = Q[60];
assign S[61] = Q[61];
assign S[62] = Q[62];
assign S[63] = Q[63];
assign Bbar = ~B;
endmodule // cla_sub64

View File

@ -1,83 +0,0 @@
// Exception logic for the floating point adder. Note: We may
// actually want to move to where the result is computed.
module exception (
input logic [2:0] op_type, // Function opcode
input logic XSgnE, YSgnE,
// input logic [52:0] XManE, YManE,
input logic XDenormE, YDenormE,
input logic XNormE, YNormE,
input logic XZeroE, YZeroE,
input logic XInfE, YInfE,
input logic XNaNE, YNaNE,
input logic XSNaNE, YSNaNE,
output logic [3:0] Ztype, // Indicates type of result (Z)
output logic Invalid, // Invalid operation exception
output logic Denorm, // Denormalized logic
output logic Sub // The effective operation is subtraction
);
wire ZQNaN; // '1' if result Z is a quiet NaN
wire ZPInf; // '1' if result Z positive infnity
wire ZNInf; // '1' if result Z negative infnity
wire add_sub; // '1' if operation is add or subtract
wire converts; // See if there are any converts
// Is this instruction a convert
assign converts = op_type[1];
// An "Invalid Operation" exception occurs if (A or B is a signalling NaN)
// or (A and B are both Infinite and the "effective operation" is
// subtraction).
assign add_sub = ~op_type[1];
assign Invalid = (XSNaNE | YSNaNE | (add_sub & XInfE & YInfE & (XSgnE^YSgnE^op_type[0]))) & ~converts;
// The Denorm flag is set if (A is denormlized and the operation is not integer
// conversion ) or (if B is normalized and the operation is addition or subtraction).
assign Denorm = XDenormE | YDenormE & add_sub;
// The result is a quiet NaN if (an "Invalid Operation" exception occurs)
// or (A is a NaN) or (B is a NaN and the operation uses B).
assign ZQNaN = Invalid | XNaNE | (YNaNE & add_sub);
// The result is +Inf if ((A is +Inf) or (B is -Inf and the operation is
// subtraction) or (B is +Inf and the operation is addition)) and (the
// result is not a quiet NaN).
assign ZPInf = (XInfE&XSgnE | add_sub&YInfE&(~YSgnE^op_type[0]))&~ZQNaN;
// The result is -Inf if ((A is -Inf) or (B is +Inf and the operation is
// subtraction) or (B is -Inf and the operation is addition)) and the
// result is not a quiet NaN.
assign ZNInf = (XInfE&~XSgnE | add_sub&YInfE&(YSgnE^op_type[0]))&~ZQNaN;
// Set the type of the result as follows:
// (needs optimization - got lazy or was late)
// Ztype Result
// 0000 Normal
// 0001 Quiet NaN
// 0010 Negative Infinity
// 0011 Positive Infinity
// 0100 +Bzero and +Azero (and vice-versa)
// 0101 +Bzero and -Azero (and vice-versa)
// 1000 Convert SP to DP (and vice-versa)
assign Ztype[0] = (ZQNaN | ZPInf) |
((XZeroE & YZeroE & (XSgnE^YSgnE^op_type[0]))
& ~converts);
assign Ztype[1] = (ZNInf | ZPInf) |
(((XZeroE & YZeroE & XSgnE & YSgnE & ~op_type[0]) |
(XZeroE & YZeroE & XSgnE & ~YSgnE & op_type[0]))
& ~converts);
assign Ztype[2] = ((XZeroE & YZeroE & ~op_type[1])
& ~converts);
assign Ztype[3] = (op_type[1] & ~op_type[0]);
// Determine if the effective operation is subtraction
assign Sub = add_sub & (XSgnE^YSgnE^op_type[0]);
endmodule // exception

View File

@ -1,426 +0,0 @@
//
// File name : fpadd
// Title : Floating-Point Adder/Subtractor
// project : FPU
// Library : fpadd
// Author(s) : James E. Stine, Jr., Brett Mathis
// Purpose : definition of main unit to floating-point add/sub
// notes :
//
// Copyright Oklahoma State University
// Copyright AFRL
//
// Basic and Denormalized Operations
//
// Step 1: Load operands, set flags, and convert SP to DP
// Step 2: Check for special inputs ( +/- Infinity, NaN)
// Step 3: Compare exponents. Swap the operands of exp1 < exp2
// or of (exp1 = exp2 AND mnt1 < mnt2)
// Step 4: Shift the mantissa corresponding to the smaller exponent,
// and extend precision by three bits to the right.
// Step 5: Add or subtract the mantissas.
// Step 6: Normalize the result.//
// Shift left until normalized. Normalized when the value to the
// left of the binrary point is 1.
// Step 7: Round the result.//
// Step 8: Put sum onto output.
//
module faddcvt(
input logic clk,
input logic reset,
input logic FlushM, // flush the memory stage
input logic StallM, // stall the memory stage
input logic [63:0] FSrcXE, // 1st input operand (A)
input logic [63:0] FSrcYE, // 2nd input operand (B)
input logic [2:0] FOpCtrlE, FOpCtrlM, // Function opcode
input logic FmtE, FmtM, // Result Precision (0 for double, 1 for single)
input logic [2:0] FrmM, // Rounding mode - specify values
input logic XSgnE, YSgnE,
input logic [52:0] XManE, YManE,
input logic [10:0] XExpE, YExpE,
input logic XSgnM, YSgnM,
input logic [52:0] XManM, YManM,
input logic [10:0] XExpM, YExpM,
input logic XDenormE, YDenormE,
input logic XNormE, YNormE,
input logic XNormM, YNormM,
input logic XZeroE, YZeroE,
input logic XInfE, YInfE,
input logic XNaNE, YNaNE,
input logic XSNaNE, YSNaNE,
output logic [63:0] FAddResM, // Result of operation
output logic [4:0] FAddFlgM); // IEEE exception flags
logic [63:0] AddSumE, AddSumM;
logic [63:0] AddSumTcE, AddSumTcM;
logic [3:0] AddSelInvE, AddSelInvM;
logic [10:0] AddExpPostSumE,AddExpPostSumM;
logic AddCorrSignE, AddCorrSignM;
logic AddOpANormE, AddOpANormM;
logic AddOpBNormE, AddOpBNormM;
logic AddInvalidE, AddInvalidM;
logic AddDenormInE, AddDenormInM;
logic AddSwapE, AddSwapM;
logic AddSignAE, AddSignAM;
logic [11:0] AddExp1DenormE, AddExp2DenormE, AddExp1DenormM, AddExp2DenormM;
logic [10:0] AddExponentE, AddExponentM;
fpuaddcvt1 fpadd1 (.FOpCtrlE, .FmtE, .AddExponentE,
.AddExpPostSumE, .AddExp1DenormE, .AddExp2DenormE, .AddSumE, .AddSumTcE, .AddSelInvE,
.XSgnE, .YSgnE,.XManE, .YManE, .XExpE, .YExpE, .XDenormE, .YDenormE, .XNormE, .YNormE, .XZeroE, .YZeroE, .XInfE, .YInfE, .XNaNE, .YNaNE, .XSNaNE, .YSNaNE,
.AddCorrSignE, .AddSignAE, .AddOpANormE, .AddOpBNormE, .AddInvalidE,
.AddDenormInE, .AddSwapE);
// E/M pipeline registers
flopenrc #(64) EMRegAdd1(clk, reset, FlushM, ~StallM, AddSumE, AddSumM);
flopenrc #(64) EMRegAdd2(clk, reset, FlushM, ~StallM, AddSumTcE, AddSumTcM);
flopenrc #(11) EMRegAdd3(clk, reset, FlushM, ~StallM, AddExpPostSumE, AddExpPostSumM);
flopenrc #(12) EMRegAdd6(clk, reset, FlushM, ~StallM, AddExp1DenormE, AddExp1DenormM);
flopenrc #(12) EMRegAdd7(clk, reset, FlushM, ~StallM, AddExp2DenormE, AddExp2DenormM);
flopenrc #(11) EMRegAdd8(clk, reset, FlushM, ~StallM, AddExponentE, AddExponentM);
flopenrc #(11) EMRegAdd9(clk, reset, FlushM, ~StallM,
{AddSelInvE, AddCorrSignE, AddOpANormE, AddOpBNormE, AddInvalidE, AddDenormInE, AddSwapE, AddSignAE},
{AddSelInvM, AddCorrSignM, AddOpANormM, AddOpBNormM, AddInvalidM, AddDenormInM, AddSwapM, AddSignAM});
fpuaddcvt2 fpadd2 (.FrmM, .FOpCtrlM, .FmtM, .AddSumM, .AddSumTcM, .XNormM, .YNormM,
.AddExp1DenormM, .AddExp2DenormM, .AddExponentM, .AddExpPostSumM, .AddSelInvM, .XSgnM, .YSgnM, .XManM, .YManM, .XExpM, .YExpM,
.AddOpANormM, .AddOpBNormM, .AddInvalidM, .AddDenormInM,
.AddSignAM, .AddCorrSignM, .AddSwapM, .FAddResM, .FAddFlgM);
endmodule
module fpuaddcvt1 (
input logic [2:0] FOpCtrlE, // Function opcode
input logic FmtE, // Result Precision (1 for double, 0 for single)
input logic XSgnE, YSgnE,
input logic [10:0] XExpE, YExpE,
input logic [52:0] XManE, YManE,
input logic XDenormE, YDenormE,
input logic XNormE, YNormE,
input logic XZeroE, YZeroE,
input logic XInfE, YInfE,
input logic XNaNE, YNaNE,
input logic XSNaNE, YSNaNE,
output logic [10:0] AddExponentE,
output logic [10:0] AddExpPostSumE,
output logic [11:0] AddExp1DenormE, AddExp2DenormE,//KEP used to be [10:0]
output logic [63:0] AddSumE, AddSumTcE,
output logic [3:0] AddSelInvE,
output logic AddCorrSignE,
output logic AddSignAE,
output logic AddOpANormE, AddOpBNormE,
output logic AddInvalidE,
output logic AddDenormInE,
output logic AddSwapE
);
logic [5:0] ZP_mantissaA;
logic [5:0] ZP_mantissaB;
wire ZV_mantissaA;
wire ZV_mantissaB;
wire P;
assign P = ~(FmtE^FOpCtrlE[1]);
wire [63:0] IntValue;
wire [11:0] exp1, exp2;
wire [11:0] exp_diff1, exp_diff2;
wire [11:0] exp_shift;
wire [51:0] mantissaA;
wire [56:0] mantissaA1;
wire [63:0] mantissaA3;
wire [51:0] mantissaB;
wire [56:0] mantissaB1, mantissaB2;
wire [63:0] mantissaB3;
wire exp_gt63;
wire Sticky_out;
wire sub;
wire zeroB;
wire [5:0] align_shift;
// Test for exceptions and return the "Invalid Operation" and
// "Denormalized" Input Flags. The "AddSelInvE" is used in
// the third pipeline stage to select the result. Also, AddOp1NormE
// and AddOp2NormE are one if FSrcXE and FSrcYE are not zero or denormalized.
// sub is one if the effective operation is subtaction.
exception exc1 (.Ztype(AddSelInvE), .Invalid(AddInvalidE), .Denorm(AddDenormInE), .Sub(sub),
.XSgnE, .YSgnE, .XDenormE, .YDenormE, .XNormE, .YNormE, .XZeroE, .YZeroE, .XInfE, .YInfE, .XNaNE, .YNaNE, .XSNaNE, .YSNaNE,
.op_type(FOpCtrlE));
// Perform Exponent Subtraction (used for alignment). For performance
// both exponent subtractions are performed in parallel. This was
// changed to a behavior level to allow the tools to try to optimize
// the two parallel additions. The input values are zero-extended to 12
// bits prior to performing the addition.
assign exp1 = {1'b0, XExpE};
assign exp2 = {1'b0, YExpE};
assign exp_diff1 = exp1 - exp2;
assign exp_diff2 = AddDenormInE ? ({YSgnE, YExpE} - {XSgnE, XExpE}): exp2 - exp1;
// The second operand (B) should be set to zero, if FOpCtrlE does not
// specify addition or subtraction
assign zeroB = FOpCtrlE[1];
// Swapped operands if zeroB is not one and exp1 < exp2.
// Swapping causes exp2 to be used for the result exponent.
// Only the exponent of the larger operand is used to determine
// the final result.
assign AddSwapE = exp_diff1[11] & ~zeroB;
assign AddExponentE = AddSwapE ? YExpE : XExpE;
assign AddExpPostSumE = AddSwapE ? YExpE : XExpE;
assign mantissaA = AddSwapE ? YManE[51:0] : XManE[51:0];
assign mantissaB = AddSwapE ? XManE[51:0] : YManE[51:0];
assign AddSignAE = AddSwapE ? YSgnE : XSgnE;
// Leading-Zero Detector. Determine the size of the shift needed for
// normalization. If sum_corrected is all zeros, the exp_valid is
// zero; otherwise, it is one.
// modified to 52 bits to detect leading zeroes on denormalized mantissas
// lz52 lz_norm_1 (ZP_mantissaA, ZV_mantissaA, mantissaA);
// lz52 lz_norm_2 (ZP_mantissaB, ZV_mantissaB, mantissaB);
logic [8:0] i;
logic [8:0] j;
always_comb begin
i = 0;
while (~mantissaA[52-i] & $unsigned(i) <= $unsigned(52)) i = i+1; // search for leading one
ZP_mantissaA = i;
end
always_comb begin
j = 0;
while (~mantissaB[52-j] & $unsigned(j) <= $unsigned(52)) j = j+1; // search for leading one
ZP_mantissaB = j;
end
// Denormalized exponents created by subtracting the leading zeroes from the original exponents
assign AddExp1DenormE = AddSwapE ? (exp1 - {6'b0, ZP_mantissaB}) : (exp1 - {6'b0, ZP_mantissaA}); //KEP extended ZP_mantissa
assign AddExp2DenormE = AddSwapE ? (exp2 - {6'b0, ZP_mantissaA}) : (exp2 - {6'b0, ZP_mantissaB});
// Determine the alignment shift and limit it to 63. If any bit from
// exp_shift[6] to exp_shift[11] is one, then shift is set to all ones.
assign exp_shift = AddSwapE ? exp_diff2 : exp_diff1;
assign exp_gt63 = exp_shift[11] | exp_shift[10] | exp_shift[9]
| exp_shift[8] | exp_shift[7] | exp_shift[6];
assign align_shift = exp_shift[5:0] | {6{exp_gt63}}; //KEP used to be all of exp_shift
// Unpack the 52-bit mantissas to 57-bit numbers of the form.
// 001.M[51]M[50] ... M[1]M[0]00
// Unless the number has an exponent of zero, in which case it
// is unpacked as
// 000.00 ... 00
// This effectively flushes denormalized values to zero.
// The three bits of to the left of the binary point prevent overflow
// and loss of sign information. The two bits to the right of the
// original mantissa form the "guard" and "round" bits that are used
// to round the result.
assign AddOpANormE = AddSwapE ? YNormE : XNormE;
assign AddOpBNormE = AddSwapE ? XNormE : YNormE;
assign mantissaA1 = {2'h0, AddOpANormE, mantissaA[51:0]&{52{AddOpANormE}}, 2'h0};
assign mantissaB1 = {2'h0, AddOpBNormE, mantissaB[51:0]&{52{AddOpBNormE}}, 2'h0};
// Perform mantissa alignment using a 57-bit barrel shifter
// If any of the bits shifted out are one, Sticky_out is set.
// The size of the barrel shifter could be reduced by two bits
// by not adding the leading two zeros until after the shift.
barrel_shifter_r57 bs1 (mantissaB2, Sticky_out, mantissaB1, align_shift);
// Place either the sign-extened 32-bit value or the original 64-bit value
// into IntValue (to be used for integer to floating point conversion)
// assign IntValue [31:0] = FSrcXE[31:0];
// assign IntValue [63:32] = FOpCtrlE[0] ? {32{FSrcXE[31]}} : FSrcXE[63:32];
// If doing an integer to floating point conversion, mantissaA3 is set to
// IntVal and the prenomalized exponent is set to 1084. Otherwise,
// mantissaA3 is simply extended to 64-bits by setting the 7 LSBs to zero,
// and the exponent value is left unchanged.
// Under denormalized cases, the exponent before the rounder is set to 1
// if the normal shift value is 11.
assign mantissaA3 = AddDenormInE ? ({12'h0, mantissaA}) : {mantissaA1, 7'h0};
// Put zero in for mantissaB3, if zeroB is one. Otherwise, B is extended to
// 64-bits by setting the 7 LSBs to the Sticky_out bit followed by six
// zeros.
assign mantissaB3[63:7] = AddDenormInE ? {12'h0, mantissaB[51:7]} : mantissaB2 & {57{~zeroB}};
assign mantissaB3[6] = AddDenormInE ? mantissaB[6] : Sticky_out & ~zeroB;
assign mantissaB3[5:0] = AddDenormInE ? mantissaB[5:0] : 6'h0;
// The sign of the result needs to be corrected if the true
// operation is subtraction and the input operands were swapped.
assign AddCorrSignE = ~FOpCtrlE[1]&FOpCtrlE[0]&AddSwapE;
// 64-bit Mantissa Adder/Subtractor
cla64 add1 (AddSumE, mantissaA3, mantissaB3, sub); //***adder
// 64-bit Mantissa Subtractor - to get the two's complement of the
// result when the sign from the adder/subtractor is negative.
cla_sub64 sub1 (AddSumTcE, mantissaB3, mantissaA3); //***adder
// Finds normal underflow result to determine whether to round final exponent down
//***KEP used to be (AddSumE == 16'h0) I am unsure what it's supposed to be
// assign AddNormOvflowE = (AddDenormInE & (AddSumE == 64'h0) & (AddOpANormE | AddOpBNormE) & ~FOpCtrlE[0]) ? 1'b1 : (AddSumE[63] ? AddSumTcE[52] : AddSumE[52]);
endmodule // fpadd
//
// File name : fpadd
// Title : Floating-Point Adder/Subtractor
// project : FPU
// Library : fpadd
// Author(s) : James E. Stine, Jr., Brett Mathis
// Purpose : definition of main unit to floating-point add/sub
// notes :
//
// Copyright Oklahoma State University
// Copyright AFRL
//
// Basic and Denormalized Operations
//
// Step 1: Load operands, set flags, and AddConvertM SP to DP
// Step 2: Check for special inputs ( +/- Infinity, NaN)
// Step 3: Compare exponents. Swap the operands of exp1 < exp2
// or of (exp1 = exp2 AND mnt1 < mnt2)
// Step 4: Shift the mantissa corresponding to the smaller AddExponentM,
// and extend precision by three bits to the right.
// Step 5: Add or subtract the mantissas.
// Step 6: Normalize the result.//
// Shift left until normalized. Normalized when the value to the
// left of the binrary point is 1.
// Step 7: Round the result.//
// Step 8: Put AddSumM onto output.
//
module fpuaddcvt2 (
input logic [2:0] FrmM, // Rounding mode - specify values
input logic [2:0] FOpCtrlM, // Function opcode
input logic FmtM, // Result Precision (0 for double, 1 for single)
input logic [63:0] AddSumM, AddSumTcM,
input logic [11:0] AddExp1DenormM, AddExp2DenormM,
input logic [10:0] AddExponentM, AddExpPostSumM,
input logic [3:0] AddSelInvM,
input logic XSgnM, YSgnM,
input logic [52:0] XManM, YManM,
input logic [10:0] XExpM, YExpM,
input logic XNormM, YNormM,
input logic AddOpANormM, AddOpBNormM,
input logic AddInvalidM,
input logic AddDenormInM,
input logic AddSignAM,
input logic AddCorrSignM,
input logic AddSwapM,
output logic [63:0] FAddResM, // Result of operation
output logic [4:0] FAddFlgM // IEEE exception flags
);
wire AddDenormM; // AddDenormM on input or output
wire P;
assign P = ~(FmtM^FOpCtrlM[1]);
wire [10:0] exp_pre;
wire [63:0] Result;
wire [63:0] sum_norm, sum_norm_w_bypass;
wire [5:0] norm_shift, norm_shift_denorm;
wire exp_valid;
wire DenormIO;
wire [4:0] FlagsIn;
wire Sticky_out;
wire sign_corr;
wire zeroB;
wire mantissa_comp;
wire mantissa_comp_sum;
wire mantissa_comp_sum_tc;
wire Float1_sum_comp;
wire Float2_sum_comp;
wire Float1_sum_tc_comp;
wire Float2_sum_tc_comp;
wire normal_underflow;
wire [63:0] sum_corr;
logic AddNormOvflowM;
logic AddOvEnM; // Overflow trap enabled
logic AddUnEnM; // Underflow trap enabled
assign AddOvEnM = 1'b1;
assign AddUnEnM = 1'b1;
//AddExponentM value pre-rounding with considerations for denormalized
//cases/conversion cases
assign exp_pre = AddDenormInM ?
((norm_shift == 6'b001011) ? 11'b00000000001 : (AddSwapM ? AddExp2DenormM[10:0] : AddExp1DenormM[10:0]))
: AddExponentM;
// Finds normal underflow result to determine whether to round final AddExponentM down
// Comparison between each float and the resulting AddSumM of the primary cla adder/subtractor and cla subtractor
assign Float1_sum_comp = ~(XManM[51:0] > AddSumM[51:0]);
assign Float2_sum_comp = ~(YManM[51:0] > AddSumM[51:0]);
assign Float1_sum_tc_comp = ~(XManM[51:0] > AddSumTcM[51:0]);
assign Float2_sum_tc_comp = ~(YManM[51:0] > AddSumTcM[51:0]);
// Determines the correct Float value to compare based on AddSwapM result
assign mantissa_comp_sum = AddSwapM ? Float2_sum_comp : Float1_sum_comp;
assign mantissa_comp_sum_tc = AddSwapM ? Float2_sum_tc_comp : Float1_sum_tc_comp;
// Determines the correct comparison result based on operation and sign of resulting AddSumM
assign mantissa_comp = (FOpCtrlM[0] ^ AddSumM[63]) ? mantissa_comp_sum_tc : mantissa_comp_sum;
// If the signs are different and both operands aren't denormalized
// the normal underflow bit is needed and therefore updated.
assign normal_underflow = ((XSgnM ^ YSgnM) & (AddOpANormM | AddOpBNormM)) ? mantissa_comp : 1'b0;
// Determine the correct sign of the result
assign sign_corr = (AddCorrSignM ^ AddSignAM) ^ AddSumM[63];
// If the AddSumM is negative, use its two complement instead.
// This value has to be 64-bits to correctly handle the
// case 10...00
assign sum_corr = (AddDenormInM & (AddOpANormM | AddOpBNormM) & ( ( (XSgnM ~^ YSgnM) & FOpCtrlM[0] ) | ((XSgnM ^ YSgnM) & ~FOpCtrlM[0]) ))
? (AddSumM[63] ? AddSumM : AddSumTcM) : (AddSumM[63] ? AddSumTcM : AddSumM);
// Finds normal underflow result to determine whether to round final AddExponentM down
//KEP used to be (AddSumM == 16'h0) not sure what it is supposed to be
assign AddNormOvflowM = (AddDenormInM & (AddSumM == 64'h0) & (AddOpANormM | AddOpBNormM) & ~FOpCtrlM[0]) ? 1'b1 : (AddSumM[63] ? AddSumTcM[52] : AddSumM[52]);
// Leading-Zero Detector. Determine the size of the shift needed for
// normalization. If sum_corrected is all zeros, the exp_valid is
// zero; otherwise, it is one.
lz64 lzd1 (norm_shift, exp_valid, sum_corr);
assign norm_shift_denorm = (AddDenormInM & ( (~AddOpANormM & ~AddOpBNormM) | normal_underflow)) ? (6'h00) : (norm_shift);
// Barell shifter used for normalization. It takes as inputs the
// the corrected AddSumM and the amount by which the AddSumM should
// be right shifted. It outputs the normalized AddSumM.
barrel_shifter_l64 bs2 (sum_norm, sum_corr, norm_shift_denorm);
assign sum_norm_w_bypass = sum_norm;
// Round the mantissa to a 52-bit value, with the leading one
// removed. If the result is a single precision number, the actual
// mantissa is in the upper 23 bits and the lower 29 bits are zero.
// At this point, normalization has already been performed, so we know
// exactly where the rounding point is. The rounding units also
// handles special cases and set the exception flags.
// Changed DenormIO -> AddDenormM and FlagsIn -> FAddFlgM in order to
// help in processor reservation station detection of load/stores. In
// other words, the processor would like to know ahead of time that
// if the result is an exception then don't load or store.
rounder round1 (.Result, .DenormIO, .Flags(FlagsIn), .rm(FrmM), .P, .OvEn(AddOvEnM), .UnEn(AddUnEnM), .exp_valid,
.sel_inv(AddSelInvM), .Invalid(AddInvalidM), .DenormIn(AddDenormInM), .Asign(sign_corr), .Aexp(exp_pre), .norm_shift, .A(sum_norm_w_bypass),
.exponent_postsum(AddExpPostSumM), .A_Norm(XNormM), .B_Norm(YNormM), .exp_A_unmodified({XSgnM, XExpM}), .exp_B_unmodified({YSgnM, YExpM}),
.normal_overflow(AddNormOvflowM), .normal_underflow, .swap(AddSwapM), .op_type(FOpCtrlM), .sum(AddSumM));
// Store the final result and the exception flags in registers.
assign FAddResM = Result;
assign {AddDenormM, FAddFlgM} = {DenormIO, FlagsIn};
endmodule // fpadd

View File

@ -5,18 +5,18 @@ module fclassify (
input logic XSgnE, // sign bit
input logic XNaNE, // is NaN
input logic XSNaNE, // is signaling NaN
input logic XNormE, // is normal
input logic XDenormE, // is denormal
input logic XZeroE, // is zero
input logic XInfE, // is infinity
output logic [63:0] ClassResE // classify result
output logic [`XLEN-1:0] ClassResE // classify result
);
logic PInf, PZero, PNorm, PDenorm;
logic NInf, NZero, NNorm, NDenorm;
logic XNormE;
// determine the sub categories
assign XNormE = ~(XNaNE | XInfE | XDenormE | XZeroE);
assign PInf = ~XSgnE&XInfE;
assign NInf = XSgnE&XInfE;
assign PNorm = ~XSgnE&XNormE;
@ -37,6 +37,6 @@ module fclassify (
// bit 7 - +Inf
// bit 8 - signaling NaN
// bit 9 - quiet NaN
assign ClassResE = {{54{1'b0}}, XNaNE&~XSNaNE, XSNaNE, PInf, PNorm, PDenorm, PZero, NZero, NDenorm, NNorm, NInf};
assign ClassResE = {{`XLEN-10{1'b0}}, XNaNE&~XSNaNE, XSNaNE, PInf, PNorm, PDenorm, PZero, NZero, NDenorm, NNorm, NInf};
endmodule

View File

@ -10,7 +10,7 @@
module fcmp (
input logic [`FPSIZES/3:0] FmtE, // precision 1 = double 0 = single
input logic [`FMTBITS-1:0] FmtE, // precision 1 = double 0 = single
input logic [2:0] FOpCtrlE, // see above table
input logic XSgnE, YSgnE, // input signs
input logic [`NE-1:0] XExpE, YExpE, // input exponents

View File

@ -1,3 +1,4 @@
`include "wally-config.vh"
module fctrl (
input logic [6:0] Funct7D, // bits 31:25 of instruction - may contain percision
@ -13,7 +14,7 @@ module fctrl (
output logic [2:0] FOpCtrlD, // chooses which opperation to do - specifics shown at bottom of module and in each unit
output logic [1:0] FResSelD, // select one of the results done in the memory stage
output logic [1:0] FIntResSelD, // select the result that will be written to the integer register
output logic FmtD, // precision - single-0 double-1
output logic [`FMTBITS-1:0] FmtD, // precision - single-0 double-1
output logic [2:0] FrmD, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
output logic FWriteIntD // is the result written to the integer register
);
@ -72,14 +73,12 @@ module fctrl (
2'b01: ControlsD = `FCTRLW'b1_0_11_100_11_00_0_0; // fcvt.s.wu wu->s
2'b10: ControlsD = `FCTRLW'b1_0_11_111_11_00_0_0; // fcvt.s.l l->s
2'b11: ControlsD = `FCTRLW'b1_0_11_110_11_00_0_0; // fcvt.s.lu lu->s
default: ControlsD = `FCTRLW'b0_0_00_000_00_00_0_1; // non-implemented instruction
endcase
7'b1100000: case(Rs2D[1:0])
2'b00: ControlsD = `FCTRLW'b0_1_11_001_11_11_0_0; // fcvt.w.s s->w
2'b01: ControlsD = `FCTRLW'b0_1_11_000_11_11_0_0; // fcvt.wu.s s->wu
2'b10: ControlsD = `FCTRLW'b0_1_11_011_11_11_0_0; // fcvt.l.s s->l
2'b11: ControlsD = `FCTRLW'b0_1_11_010_11_11_0_0; // fcvt.lu.s s->lu
default: ControlsD = `FCTRLW'b0_0_00_000_00_00_0_1; // non-implemented instruction
endcase
7'b1111000: ControlsD = `FCTRLW'b1_0_11_000_00_00_0_0; // fmv.w.x
7'b0100000: ControlsD = `FCTRLW'b1_0_11_000_11_00_0_0; // fcvt.s.d
@ -88,14 +87,12 @@ module fctrl (
2'b01: ControlsD = `FCTRLW'b1_0_11_100_11_00_0_0; // fcvt.d.wu wu->d
2'b10: ControlsD = `FCTRLW'b1_0_11_111_11_00_0_0; // fcvt.d.l l->d
2'b11: ControlsD = `FCTRLW'b1_0_11_110_11_00_0_0; // fcvt.d.lu lu->d
default: ControlsD = `FCTRLW'b0_0_00_000_00_00_0_1; // non-implemented instruction
endcase
7'b1100001: case(Rs2D[1:0])
2'b00: ControlsD = `FCTRLW'b0_1_11_001_11_11_0_0; // fcvt.w.d d->w
2'b01: ControlsD = `FCTRLW'b0_1_11_000_11_11_0_0; // fcvt.wu.d d->wu
2'b10: ControlsD = `FCTRLW'b0_1_11_011_11_11_0_0; // fcvt.l.d d->l
2'b11: ControlsD = `FCTRLW'b0_1_11_010_11_11_0_0; // fcvt.lu.d d->lu
default: ControlsD = `FCTRLW'b0_0_00_000_00_00_0_1; // non-implemented instruction
endcase
7'b1111001: ControlsD = `FCTRLW'b1_0_11_001_00_00_0_0; // fmv.d.x
7'b0100001: ControlsD = `FCTRLW'b1_0_11_001_11_00_0_0; // fcvt.d.s
@ -119,8 +116,18 @@ module fctrl (
// Precision
// 0-single
// 1-double
assign FmtD = FResultSelD == 2'b00 ? Funct3D[0] : ((Funct7D[6:3] == 4'b0100)&OpD[4]) | OpD[6:1] == 6'b010000 ? ~Funct7D[0] : Funct7D[0];
if (`FPSIZES == 1)
assign FmtD = 0;
else if (`FPSIZES == 2)begin
logic [1:0] FmtTmp;
assign FmtTmp = (FResultSelD == 2'b00) ? {~Funct3D[1], ~(Funct3D[1]^Funct3D[0])} : ((Funct7D[6:3] == 4'b0100)&OpD[4]) ? Rs2D[1:0] : Funct7D[1:0];
assign FmtD = (`FMT == FmtTmp);
end
else if (`FPSIZES == 3|`FPSIZES == 4)
assign FmtD = (FResultSelD == 2'b00) ? {~Funct3D[1], ~(Funct3D[1]^Funct3D[0])} : ((Funct7D[6:3] == 4'b0100)&OpD[4]) ? Rs2D[1:0] : Funct7D[1:0];
// assign FmtD = FResultSelD == 2'b00 ? Funct3D[0] : ((Funct7D[6:3] == 4'b0100)&OpD[4]) | OpD[6:1] == 6'b010000 ? ~Funct7D[0] : Funct7D[0];
// FResultSel:
// 000 - ReadRes - load
// 001 - FMARes - FMA and multiply

View File

@ -2,6 +2,7 @@
`include "wally-config.vh"
// largest length in IEU/FPU
`define LGLEN ((`NF<`XLEN) ? `XLEN : `NF)
`define LOGLGLEN $unsigned($clog2(`LGLEN+1))
module fcvt (
input logic XSgnE, // input's sign
@ -11,15 +12,15 @@ module fcvt (
input logic [2:0] FOpCtrlE, // choose which opperation (look below for values)
input logic FWriteIntE, // is fp->int (since it's writting to the integer register)
input logic XZeroE, // is the input zero
input logic XOrigDenormE, // is the input denormalized
input logic XDenormE, // is the input denormalized
input logic XInfE, // is the input infinity
input logic XNaNE, // is the input a NaN
input logic XSNaNE, // is the input a signaling NaN
input logic [2:0] FrmE, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
input logic [`FPSIZES/3:0] FmtE, // the input's precision (11=quad 01=double 00=single 10=half)
output logic [`FLEN-1:0] CvtResE, // the fp to fp conversion's result
output logic [`XLEN-1:0] CvtIntResE, // the fp to fp conversion's result
output logic [4:0] CvtFlgE // the fp to fp conversion's flags
input logic [`FMTBITS-1:0] FmtE, // the input's precision (11=quad 01=double 00=single 10=half)
output logic [`FLEN-1:0] CvtResE, // the fp conversion result
output logic [`XLEN-1:0] CvtIntResE, // the int conversion result
output logic [4:0] CvtFlgE // the conversion's flags
);
// OpCtrls:
@ -37,11 +38,12 @@ module fcvt (
// (FI) fp -> int coversion signals
logic [`FPSIZES/3:0] OutFmt; // format of the output
logic [`FMTBITS-1:0] OutFmt; // format of the output
logic [`XLEN-1:0] PosInt; // the positive integer input
logic [`XLEN-1:0] TrimInt; // integer trimmed to the correct size
logic [`LGLEN-1:0] LzcIn; // input to the Leading Zero Counter (priority encoder)
logic [`NE:0] CalcExp; // the calculated expoent
logic [$clog2(`LGLEN):0] ShiftAmt; // how much to shift by
logic [`LOGLGLEN-1:0] ShiftAmt; // how much to shift by
logic [`LGLEN+`NF:0] ShiftIn; // number to be shifted
logic ResDenormUf;// does the result underflow or is denormalized
logic ResUf; // does the result underflow
@ -71,6 +73,7 @@ module fcvt (
logic Int64; // is the integer 64 bits?
logic IntToFp; // is the opperation an int->fp conversion?
logic ToInt; // is the opperation an fp->int conversion?
logic [`LOGLGLEN-1:0] ZeroCnt; // output from the LZC
// seperate OpCtrl for code readability
@ -82,23 +85,20 @@ module fcvt (
// choose the ouptut format depending on the opperation
// - fp -> fp: OpCtrl contains the percision of the output
// - int -> fp: FmtE contains the percision of the output
assign OutFmt = IntToFp ? FmtE : (FOpCtrlE[1:0] == `FMT);
if (`FPSIZES == 2)
assign OutFmt = IntToFp ? FmtE : (FOpCtrlE[1:0] == `FMT);
else if (`FPSIZES == 3 | `FPSIZES == 4)
assign OutFmt = IntToFp ? FmtE : FOpCtrlE[1:0];
///////////////////////////////////////////////////////////////////////////
// negation
///////////////////////////////////////////////////////////////////////////
// negate the input if the input is a negitive singed integer
// - remove leading ones if the input is a unsigned 32-bit integer
//
// Negitive input
// 64-bit input : negate the input
// 32-bit input : trim to 32-bits and negate the input
// Positive input
// 64-bit input : do nothing
// 32-bit input : trim to 32-bits
// 1) negate the input if the input is a negitive singed integer
// 2) trim the input to the proper size (kill the 32 most significant zeroes if needed)
assign PosInt = ResSgn ? Int64 ? -ForwardedSrcAE : {{`XLEN-32{1'b0}}, -ForwardedSrcAE[31:0]} :
Int64 ? ForwardedSrcAE : {{`XLEN-32{1'b0}}, ForwardedSrcAE[31:0]};
assign PosInt = ResSgn ? -ForwardedSrcAE : ForwardedSrcAE;
assign TrimInt = {{`XLEN-32{Int64}}, {32{1'b1}}} & PosInt;
///////////////////////////////////////////////////////////////////////////
// lzc
@ -107,40 +107,15 @@ module fcvt (
// choose the input to the leading zero counter i.e. priority encoder
// int -> fp : | positive integer | 00000... (if needed) |
// fp -> fp : | fraction | 00000... (if needed) |
assign LzcIn = IntToFp ? {PosInt, {`LGLEN-`XLEN{1'b0}}} : // I->F
{XManE[`NF-1:0], {`LGLEN-`NF{1'b0}}}; // F->F
assign LzcIn = IntToFp ? {TrimInt, {`LGLEN-`XLEN{1'b0}}} :
{XManE[`NF-1:0], {`LGLEN-`NF{1'b0}}};
// lglen is the largest possible value of ZeroCnt (NF or XLEN) hence normcnt must be log2(lglen) bits
logic [$clog2(`LGLEN):0] i, ZeroCnt;
always_comb begin
i = 0;
while (~LzcIn[`LGLEN-1-i] & i <= `LGLEN-1) i = i+1; // search for leading one
ZeroCnt = i;
end
lzc #(`LGLEN) lzc (.num(LzcIn), .ZeroCnt);
///////////////////////////////////////////////////////////////////////////
// shifter
///////////////////////////////////////////////////////////////////////////
// F->F shift so the fraction is not denormalized
// Large->Small Denrom -> Norm Frac:
//
// | Frac | `NF zeros| << ShiftCnt
//
// Small->Large Norm -> Denorm Frac:
// - shift right so that the new-bias exponet = 1
// - so shift right by new-bias - 1 exponent
// - ie shift left by NF - 1 + new-bias exponent (if this is negitive then 0 is selected as a result later)
// - new-bias exponent is negitive
//
// | `NF-1 zeros |1| Frac | << NF + new-bias exponent
// | keep |
//
// Int -> Fp :
// | Int | `NF zeros| << ShiftCnt
// Fp -> Int :
// | `XLEN zeros | Man | << CalcExp
// seclect the input to the shifter
// fp -> int:
@ -150,12 +125,13 @@ module fcvt (
// - we do however want to keep the one in the sticky bit so set one of bits in the sticky bit area to 1
// - ex: for the case 0010000.... (double)
// ??? -> fp:
// - if result is denormalized or underflowed then we want to normalize the result:
// | `NF zeros | Mantissa | 0's if nessisary |
// - if result is denormalized or underflowed then we want to shift right i.e. shift right then shift left:
// | `NF-1 zeros | Mantissa | 0's if nessisary |
// - otherwise:
// | lzcIn | 0's if nessisary |
assign ShiftIn = ToInt ? {{`XLEN{1'b0}}, XManE[`NF]&~CalcExp[`NE], XManE[`NF-1]|(CalcExp[`NE]&XManE[`NF]), XManE[`NF-2:0], {`LGLEN-`XLEN{1'b0}}} :
ResDenormUf ? {{`NF-1{1'b0}}, XManE, {`LGLEN-`NF+1{1'b0}}} : {LzcIn, {`NF+1{1'b0}}};
ResDenormUf ? {{`NF-1{1'b0}}, XManE, {`LGLEN-`NF+1{1'b0}}} :
{LzcIn, {`NF+1{1'b0}}};
// kill the shift if it's negitive
// select the amount to shift by
// fp -> int:
@ -168,17 +144,50 @@ module fcvt (
// - only shift fp -> fp if the intital value is denormalized
// - this is a problem because the input to the lzc was the fraction rather than the mantissa
// - rather have a few and-gates than an extra bit in the priority encoder??? *** is this true?
assign ShiftAmt = ToInt ? CalcExp[$clog2(`LGLEN):0]&{$clog2(`LGLEN)+1{~CalcExp[`NE]}} :
ResDenormUf&~IntToFp ? ($clog2(`LGLEN)+1)'(`NF-1)+CalcExp[$clog2(`LGLEN):0] : (ZeroCnt+1)&{$clog2(`LGLEN)+1{XOrigDenormE|IntToFp}};
assign ShiftAmt = ToInt ? CalcExp[`LOGLGLEN-1:0]&{`LOGLGLEN{~CalcExp[`NE]}} :
ResDenormUf&~IntToFp ? (`LOGLGLEN)'(`NF-1)+CalcExp[`LOGLGLEN-1:0] :
(ZeroCnt+1)&{`LOGLGLEN{XDenormE|IntToFp}};
// shift
// fp -> int: | `XLEN zeros | Mantissa | 0's if nessisary | << CalcExp
// process:
// - start - CalcExp = 1 + XExp - Largest Bias
// | `XLEN zeros | Mantissa | 0's if nessisary |
//
// - shift left 1 (1)
// | `XLEN-1 zeros |bit| frac | 0's if nessisary |
// . <- binary point
//
// - shift left till unbiased exponent is 0 (XExp - Largest Bias)
// | 0's | Mantissa | 0's if nessisary |
// | keep |
//
// fp -> fp:
// - if result is denormalized or underflowed:
// | `NF-1 zeros | Mantissa | 0's if nessisary | << NF+CalcExp-1
// process:
// - start
// | mantissa | 0's |
//
// - shift right by NF-1 (NF-1)
// | `NF-1 zeros | mantissa | 0's |
//
// - shift left by CalcExp = XExp - Largest bias + new bias
// | 0's | mantissa | 0's |
// | keep |
//
// - if the input is denormalized:
// | lzcIn | 0's if nessisary | << ZeroCnt+1
// - plus 1 to shift out the first 1
//
// int -> fp: | lzcIn | 0's if nessisary | << ZeroCnt+1
// - plus 1 to shift out the first 1
assign Shifted = ShiftIn << ShiftAmt;
///////////////////////////////////////////////////////////////////////////
// exp calculations
///////////////////////////////////////////////////////////////////////////
// fp -> int
// CalcExp = 1 - largest bias + 1 -
// *** possible optimizaations:
@ -192,10 +201,35 @@ module fcvt (
// Select the bias of the output
// fp -> int : select 1
// ??? -> fp : pick the new bias depending on the output format
// ??? -> fp : pick the new bias depending on the output format
if (`FPSIZES == 1) begin
assign NewBias = ToInt ? (`NE-1)'(1) : (`NE-1)'(`BIAS);
assign NewBias = ToInt ? (`NE-1)'(1) : OutFmt ? (`NE-1)'(`BIAS) : (`NE-1)'(`BIAS1);
end else if (`FPSIZES == 2) begin
assign NewBias = ToInt ? (`NE-1)'(1) : OutFmt ? (`NE-1)'(`BIAS) : (`NE-1)'(`BIAS1);
end else if (`FPSIZES == 3) begin
logic [`NE-2:0] NewBiasToFp;
always_comb
case (OutFmt)
`FMT: NewBiasToFp = (`NE-1)'(`BIAS);
`FMT1: NewBiasToFp = (`NE-1)'(`BIAS1);
`FMT2: NewBiasToFp = (`NE-1)'(`BIAS2);
default: NewBiasToFp = 1'bx;
endcase
assign NewBias = ToInt ? (`NE-1)'(1) : NewBiasToFp;
end else if (`FPSIZES == 4) begin
logic [`NE-2:0] NewBiasToFp;
always_comb
case (OutFmt)
2'h3: NewBiasToFp = (`NE-1)'(`Q_BIAS);
2'h1: NewBiasToFp = (`NE-1)'(`D_BIAS);
2'h0: NewBiasToFp = (`NE-1)'(`S_BIAS);
2'h2: NewBiasToFp = (`NE-1)'(`H_BIAS);
endcase
assign NewBias = ToInt ? (`NE-1)'(1) : NewBiasToFp;
end
// select the old exponent
// int -> fp : largest bias + XLEN
// fp -> ??? : XExp
@ -203,22 +237,76 @@ module fcvt (
// calculate CalcExp
// fp -> fp :
// - XExp - Largest bias + new bias
// fp -> int : XExp
// int -> fp : largest bias + XLEN
// the -XOrigDenorm is to take into account the correction (which had a plus 1)
assign CalcExp = {1'b0, OldExp} - (`NE+1)'(`BIAS) + {2'b0, NewBias} - {{`NE{1'b0}}, XOrigDenormE|IntToFp} - {{`NE-$clog2(`LGLEN){1'b0}}, (ZeroCnt&{$clog2(`LGLEN)+1{XOrigDenormE|IntToFp}})};
// if result is 0 or negitive
assign ResDenormUf = (~|CalcExp | CalcExp[`NE])&~XZeroE;
assign ResNegNF = (FOpCtrlE[1:0] == `FMT) ? -`NF : -`NF1;
// if the reuslt underflows and somthing is shifted out set the sticky bit
assign ResUf = ($signed(CalcExp) < $signed({{`NE-$clog2(`NF){1'b1}}, ResNegNF}))&~XZeroE;
// - XExp - Largest bias + new bias - (ZeroCnt+1)
// only do ^ if the input was denormalized
// - convert the expoenent to the final preciaion (Exp - oldBias + newBias)
// - correct the expoent when there is a normalization shift ( + ZeroCnt+1)
// fp -> int : XExp - Largest Bias + 1 - (ZeroCnt+1)
// | `XLEN zeros | Mantissa | 0's if nessisary | << CalcExp
// process:
// - start
// | `XLEN zeros | Mantissa | 0's if nessisary |
//
// - shift left 1 (1)
// | `XLEN-1 zeros |bit| frac | 0's if nessisary |
// . <- binary point
//
// - shift left till unbiased exponent is 0 (XExp - Largest Bias)
// | 0's | Mantissa | 0's if nessisary |
// | keep |
//
// - if the input is denormalized then we dont shift... so the "- (ZeroCnt+1)" is just leftovers from other options
// int -> fp : largest bias + XLEN - Largest bias + new bias - 1 - ZeroCnt = XLEN + NewBias - 1 - ZeroCnt
// Process:
// - shifted right by XLEN (XLEN)
// - shift left to normilize (-1-ZeroCnt)
// - newBias to make the biased exponent
//
assign CalcExp = {1'b0, OldExp} - (`NE+1)'(`BIAS) + {2'b0, NewBias} - {{`NE{1'b0}}, XDenormE|IntToFp} - {{`NE-`LOGLGLEN+1{1'b0}}, (ZeroCnt&{`LOGLGLEN{XDenormE|IntToFp}})};
// find if the result is dnormal or underflows
// - if Calculated expoenent is 0 or negitive (and the input/result is not exactaly 0)
// - can't underflow an integer to Fp conversion
assign ResDenormUf = (~|CalcExp | CalcExp[`NE])&~XZeroE&~IntToFp;
// choose the negative of the fraction size
if (`FPSIZES == 1) begin
assign ResNegNF = -($clog2(`NF)+1)'(`NF);
end else if (`FPSIZES == 2) begin
assign ResNegNF = OutFmt ? -($clog2(`NF)+1)'(`NF) : -($clog2(`NF)+1)'(`NF1);
end else if (`FPSIZES == 3) begin
always_comb
case (OutFmt)
`FMT: ResNegNF = -($clog2(`NF)+1)'(`NF);
`FMT1: ResNegNF = -($clog2(`NF)+1)'(`NF1);
`FMT2: ResNegNF = -($clog2(`NF)+1)'(`NF2);
default: ResNegNF = 1'bx;
endcase
end else if (`FPSIZES == 4) begin
always_comb
case (OutFmt)
2'h3: ResNegNF = -($clog2(`NF)+1)'(`Q_NF);
2'h1: ResNegNF = -($clog2(`NF)+1)'(`D_NF);
2'h0: ResNegNF = -($clog2(`NF)+1)'(`S_NF);
2'h2: ResNegNF = -($clog2(`NF)+1)'(`H_NF);
endcase
end
// determine if the result underflows ??? -> fp
// - if the first 1 is shifted out of the result then the result underflows
// - can't underflow an integer to fp conversions
assign ResUf = ($signed(CalcExp) < $signed({{`NE-$clog2(`NF){1'b1}}, ResNegNF}))&~XZeroE&~IntToFp;
///////////////////////////////////////////////////////////////////////////
// sign
///////////////////////////////////////////////////////////////////////////
// determine the sign of the result
// - if int -> fp
// - if 64-bit : check the msb of the 64-bit integer input and if it's signed
// - if 32-bit : check the msb of the 32-bit integer input and if it's signed
// - otherwise: the floating point input's sign
assign ResSgn = IntToFp ? Int64 ? ForwardedSrcAE[`XLEN-1]&Signed : ForwardedSrcAE[31]&Signed : XSgnE;
///////////////////////////////////////////////////////////////////////////
@ -241,17 +329,80 @@ module fcvt (
// {Guard, Round, Sticky}
// 0x - do nothing
// 1x - Plus1
// ResUf is used when a fp->fp result underflows but all the bits get shifted out, which leaves nothing for the sticky bit
if (`FPSIZES == 1) begin
assign Sticky = ToInt ? |Shifted[`LGLEN+`NF-`XLEN-1:0] : |Shifted[`LGLEN+`NF-`NF-1:0]|ResUf;
assign Round = ToInt ? Shifted[`LGLEN+`NF-`XLEN] : Shifted[`LGLEN+`NF-`NF];
assign LSBFrac = ToInt ? Shifted[`LGLEN+`NF-`XLEN+1] : Shifted[`LGLEN+`NF-`NF+1];
// ResUf is used when a fp->fp result underflows but all the bits get shifted out, leaving nothing for the sticky bit
assign Sticky = ToInt ? |Shifted[`LGLEN+`NF-`XLEN-1:0] :
(OutFmt ? |Shifted[`LGLEN+`NF-`NF-1:0] : |Shifted[`LGLEN+`NF-`NF1-1:0])|ResUf;
assign Round = ToInt ? Shifted[`LGLEN+`NF-`XLEN] :
OutFmt ? Shifted[`LGLEN+`NF-`NF] : |Shifted[`LGLEN+`NF-`NF1];
assign LSBFrac = ToInt ? Shifted[`LGLEN+`NF-`XLEN+1] :
OutFmt ? Shifted[`LGLEN+`NF-`NF+1] : Shifted[`LGLEN+`NF-`NF1+1];
end else if (`FPSIZES == 2) begin
assign Sticky = ToInt ? |Shifted[`LGLEN+`NF-`XLEN-1:0] :
(OutFmt ? |Shifted[`LGLEN+`NF-`NF-1:0] : |Shifted[`LGLEN+`NF-`NF1-1:0])|ResUf;
assign Round = ToInt ? Shifted[`LGLEN+`NF-`XLEN] :
OutFmt ? Shifted[`LGLEN+`NF-`NF] : Shifted[`LGLEN+`NF-`NF1];
assign LSBFrac = ToInt ? Shifted[`LGLEN+`NF-`XLEN+1] :
OutFmt ? Shifted[`LGLEN+`NF-`NF+1] : Shifted[`LGLEN+`NF-`NF1+1];
end else if (`FPSIZES == 3) begin
logic ToFpSticky, ToFpRound, ToFpLSBFrac;
always_comb
case (OutFmt)
`FMT: begin
ToFpSticky = |Shifted[`LGLEN+`NF-`NF-1:0];
ToFpRound = Shifted[`LGLEN+`NF-`NF];
ToFpLSBFrac = Shifted[`LGLEN+`NF-`NF+1];
end
`FMT1: begin
ToFpSticky = |Shifted[`LGLEN+`NF-`NF1-1:0];
ToFpRound = Shifted[`LGLEN+`NF-`NF1];
ToFpLSBFrac = Shifted[`LGLEN+`NF-`NF1+1];
end
`FMT2: begin
ToFpSticky = |Shifted[`LGLEN+`NF-`NF2-1:0];
ToFpRound = Shifted[`LGLEN+`NF-`NF2];
ToFpLSBFrac = Shifted[`LGLEN+`NF-`NF2+1];
end
default: begin
ToFpSticky = 1'bx;
ToFpRound = 1'bx;
ToFpLSBFrac = 1'bx;
end
endcase
assign Sticky = ToInt ? |Shifted[`LGLEN+`NF-`XLEN-1:0] : ToFpSticky|ResUf;
assign Round = ToInt ? Shifted[`LGLEN+`NF-`XLEN] : ToFpRound;
assign LSBFrac = ToInt ? Shifted[`LGLEN+`NF-`XLEN+1] : ToFpLSBFrac;
always_comb begin // ***remove guard bit
end else if (`FPSIZES == 4) begin
logic ToFpSticky, ToFpRound, ToFpLSBFrac;
always_comb
case (OutFmt)
2'h3: begin
ToFpSticky = |Shifted[`LGLEN+`Q_NF-`Q_NF-1:0];
ToFpRound = Shifted[`LGLEN+`Q_NF-`Q_NF];
ToFpLSBFrac = Shifted[`LGLEN+`Q_NF-`Q_NF+1];
end
2'h1: begin
ToFpSticky = |Shifted[`LGLEN+`Q_NF-`D_NF-1:0];
ToFpRound = Shifted[`LGLEN+`Q_NF-`D_NF];
ToFpLSBFrac = Shifted[`LGLEN+`Q_NF-`D_NF+1];
end
2'h0: begin
ToFpSticky = |Shifted[`LGLEN+`Q_NF-`S_NF-1:0];
ToFpRound = Shifted[`LGLEN+`Q_NF-`S_NF];
ToFpLSBFrac = Shifted[`LGLEN+`Q_NF-`S_NF+1];
end
2'h2: begin
ToFpSticky = |Shifted[`LGLEN+`Q_NF-`H_NF-1:0];
ToFpRound = Shifted[`LGLEN+`Q_NF-`H_NF];
ToFpLSBFrac = Shifted[`LGLEN+`Q_NF-`H_NF+1];
end
endcase
assign Sticky = ToInt ? |Shifted[`LGLEN+`NF-`XLEN-1:0] : ToFpSticky|ResUf;
assign Round = ToInt ? Shifted[`LGLEN+`NF-`XLEN] : ToFpRound;
assign LSBFrac = ToInt ? Shifted[`LGLEN+`NF-`XLEN+1] : ToFpLSBFrac;
end
always_comb
// Determine if you add 1
case (FrmE)
3'b000: CalcPlus1 = Round & (Sticky | LSBFrac);//round to nearest even
@ -261,32 +412,98 @@ module fcvt (
3'b100: CalcPlus1 = Round;//round to nearest max magnitude
default: CalcPlus1 = 1'bx;
endcase
end
assign Plus1 = CalcPlus1&(Round|Sticky);
assign ShiftedPlus1 = OutFmt ? {{`FLEN-1{1'b0}},Plus1} : {{`NE+`NF1{1'b0}}, Plus1, {`FLEN-`NE-`NF1-1{1'b0}}};
// dont round if exact
assign Plus1 = CalcPlus1&(Round|Sticky);
// shift the 1 to the propper position for rounding
// - dont round it converting to integer
if (`FPSIZES == 1) begin
assign ShiftedPlus1 = {{`FLEN-1{1'b0}},Plus1&~ToInt};
end else if (`FPSIZES == 2) begin
assign ShiftedPlus1 = OutFmt ? {{`FLEN-1{1'b0}},Plus1&~ToInt} : {{`NE+`NF1{1'b0}}, Plus1&~ToInt, {`FLEN-`NE-`NF1-1{1'b0}}};
end else if (`FPSIZES == 3) begin
always_comb
case (OutFmt)
`FMT: ShiftedPlus1 = {{`FLEN-1{1'b0}},Plus1&~ToInt};
`FMT1: ShiftedPlus1 = {{`NE+`NF1{1'b0}}, Plus1&~ToInt, {`FLEN-`NE-`NF1-1{1'b0}}};
`FMT2: ShiftedPlus1 = {{`NE+`NF2{1'b0}}, Plus1&~ToInt, {`FLEN-`NE-`NF2-1{1'b0}}};
default: ShiftedPlus1 = 0;
endcase
end else if (`FPSIZES == 4) begin
always_comb
case (OutFmt)
2'h3: ShiftedPlus1 = {{`Q_LEN-1{1'b0}},Plus1&~ToInt};
2'h1: ShiftedPlus1 = {{`Q_NE+`D_NF{1'b0}}, Plus1&~ToInt, {`Q_LEN-`Q_NE-`D_NF-1{1'b0}}};
2'h0: ShiftedPlus1 = {{`Q_NE+`S_NF{1'b0}}, Plus1&~ToInt, {`Q_LEN-`Q_NE-`S_NF-1{1'b0}}};
2'h2: ShiftedPlus1 = {{`Q_NE+`H_NF{1'b0}}, Plus1&~ToInt, {`Q_LEN-`Q_NE-`H_NF-1{1'b0}}};
endcase
end
// kill calcExp if the result is denormalized
assign {FullResExp, ResFrac} = {CalcExp&{`NE+1{~ResDenormUf}}, Shifted[`LGLEN+`NF:`LGLEN+`NF+1-`NF]} + ShiftedPlus1;
// trim the result's expoent to size
assign ResExp = FullResExp[`NE-1:0];
///////////////////////////////////////////////////////////////////////////
// flags
///////////////////////////////////////////////////////////////////////////
// calculate the flags
// dont set underflow overflow or inexact flags if result is NaN
assign MaxExp = ToInt ? Int64 ? 65 : 33 :
OutFmt ? {`NE{1'b1}} : {{`NE-`NE1{1'b0}}, {`NE1{1'b1}}};
// if the exponent is lager or equal to the maximum and it's not negitive
// F->F if the input is inf then the output is also Inf ie exact, so dont set the underflow flag
// find the maximum exponent (the exponent and larger overflows)
if (`FPSIZES == 1) begin
assign MaxExp = ToInt ? Int64 ? (`NE)'(65) : (`NE)'(33) : {`NE{1'b1}};
end else if (`FPSIZES == 2) begin
assign MaxExp = ToInt ? Int64 ? (`NE)'($unsigned(65)) : (`NE)'($unsigned(33)) :
OutFmt ? {`NE{1'b1}} : {{`NE-`NE1{1'b0}}, {`NE1{1'b1}}};
end else if (`FPSIZES == 3) begin
logic [`NE-1:0] MaxExpFp;
always_comb
case (OutFmt)
`FMT: begin
MaxExpFp = {`NE{1'b1}};
end
`FMT1: begin
MaxExpFp = {{`NE-`NE1{1'b0}}, {`NE1{1'b1}}};
end
`FMT2: begin
MaxExpFp = {{`NE-`NE2{1'b0}}, {`NE2{1'b1}}};
end
default: begin
MaxExpFp = 1'bx;
end
endcase
assign MaxExp = ToInt ? Int64 ? (`NE)'(65) : (`NE)'(33) : MaxExpFp;
end else if (`FPSIZES == 4) begin
logic [`NE-1:0] MaxExpFp;
always_comb
case (OutFmt)
2'h3: begin
MaxExpFp = {`Q_NE{1'b1}};
end
2'h1: begin
MaxExpFp = {{`Q_NE-`D_NE{1'b0}}, {`D_NE{1'b1}}};
end
2'h0: begin
MaxExpFp = {{`Q_NE-`S_NE{1'b0}}, {`S_NE{1'b1}}};
end
2'h2: begin
MaxExpFp = {{`Q_NE-`H_NE{1'b0}}, {`H_NE{1'b1}}};
end
endcase
assign MaxExp = ToInt ? Int64 ? (`NE)'(65) : (`NE)'(33) : MaxExpFp;
end
// if the result exponent is larger then the maximum possible exponent
// | and the exponent is positive
// | | and the input is not NaN or Infinity
// | | |
assign Overflow = ((ResExp >= MaxExp)&~CalcExp[`NE]&~(XNaNE|XInfE));
// only set the underflow flag if not-exact
// set the underflow flag if the result is denomal or underflowed
// can't underflow durring to integer conversions
assign Overflow = ((ResExp >= MaxExp)&~CalcExp[`NE]&(~(XNaNE|XInfE)|IntToFp));
// if the result is denormalized or underflowed
// | and the result did not round into normal values
@ -294,18 +511,24 @@ module fcvt (
// | | | and the result isn't NaN
// | | | |
assign Underflow = ResDenormUf & ~(ResExp==1 & CalcExp == 0) & (Sticky|Round)&~(XNaNE);
// we are using the IEEE convertToIntegerExact opperations (rather then the exact ones) which do singal the inexact flag
// if there were bits thrown away
// | if overflowed or underflowed
// | | and if not a NaN
// | | |
assign FpInexact = (Sticky|Round|Underflow|Overflow)&(~XNaNE|IntToFp);
// if the result is too small to be represented and not 0
// | and if the result is not invalid (outside the integer bounds)
// | |
assign IntInexact = ((CalcExp[`NE]&~XZeroE)|Sticky|Round)&~Invalid;
// select the inexact flag to output
assign Inexact = ToInt ? IntInexact : FpInexact;
// if an input was a singaling NaN(and we're using a FP input)
// |
assign FpInvalid = (XSNaNE&~IntToFp);
assign NegResMSBS = Signed ? Int64 ? NegRes[`XLEN:`XLEN-1] : NegRes[32:31] :
@ -320,54 +543,262 @@ module fcvt (
assign IntInvalid = XNaNE|XInfE|Overflow|((XSgnE&~Signed)&(~((CalcExp[`NE]|(~|CalcExp))&~Plus1)))|(NegResMSBS[1]^NegResMSBS[0]);
// |
// or when the positive result rounds up out of range
// select the inexact flag to output
assign Invalid = ToInt ? IntInvalid : FpInvalid;
// pack the flags together and choose the result based on the opperation
// don't set the overflow or underfolw flags if converting to integer
// pack the flags together
// - fp -> int does not set the overflow or underflow flags
assign CvtFlgE = {Invalid, 1'b0, Overflow&~ToInt, Underflow&~ToInt, Inexact};
///////////////////////////////////////////////////////////////////////////
// result selection
///////////////////////////////////////////////////////////////////////////
// when the input is zero for F->F the exponent is not calulated as 0 so combine with underflow result
//logic [$clog2(`NF)-1:0] MinDenormExp;
//assign MinDenormExp = FOpCtrlE[1:0] == `FMT ? -`NE : -`NE1;
assign KillRes = (ResUf|(XZeroE&~IntToFp)|(~|PosInt&IntToFp));
//assign NaNRes = FOpCtrlE[1:0] == `FMT ? {1'b0, {`NE+1{1'b1}}, (`NF-1)'(0)} : {{`FLEN-`LEN1{1'b1}}, 1'b0, {`NE1+1{1'b1}}, (`NF1-1)'(0)};
if(`IEEE754) begin
assign NaNRes = FOpCtrlE[1:0] == `FMT ? {1'b0, {`NE+1{1'b1}}, XManE[`NF-2:0]} : {{`FLEN-`LEN1{1'b1}}, 1'b0, {`NE1+1{1'b1}}, XManE[`NF-2:`NF-`NF1]};
end else begin
assign NaNRes = FOpCtrlE[1:0] == `FMT ? {1'b0, {`NE+1{1'b1}}, {`NF-1{1'b0}}} : {{`FLEN-`LEN1{1'b1}}, 1'b0, {`NE1+1{1'b1}}, {`NF1-1{1'b0}}};
// determine if you shoould kill the result
// - do so if the result underflows, is zero (the exp doesnt calculate correctly). or the integer input is 0
// - dont set to zero if fp input is zero but not using the fp input
// - dont set to zero if int input is zero but not using the int input
assign KillRes = (ResUf|(XZeroE&~IntToFp)|(~|TrimInt&IntToFp));
if (`FPSIZES == 1) begin
// IEEE sends a payload while Riscv says to send a canonical quiet NaN
if(`IEEE754) begin
assign NaNRes = {1'b0, {`NE+1{1'b1}}, XManE[`NF-2:0]};
end else begin
assign NaNRes = {1'b0, {`NE+1{1'b1}}, {`NF-1{1'b0}}};
end
// determine the infinity result
// - if the input was infinity or rounding mode RZ, RU, RD (and not rounding the value) then output the maximum normalized floating point number with the correct sign
// - otherwise: output infinity with the correct sign
// - kill the infinity singal if the input isn't fp
assign InfRes = (~XInfE|IntToFp)&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {ResSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} : {ResSgn, {`NE{1'b1}}, {`NF{1'b0}}};
// result for when the result is killed i.e. underflowes
// - output a rounded 0 with the correct sign
assign UfRes = {ResSgn, (`FLEN-2)'(0), Plus1&FrmE[1]};
// format the result - NaN box single precision (put 1's in the unused msbs)
assign Res = {ResSgn, ResExp, ResFrac};
end else if (`FPSIZES == 2) begin
// IEEE sends a payload while Riscv says to send a canonical quiet NaN
if(`IEEE754) begin
assign NaNRes = OutFmt ? {1'b0, {`NE+1{1'b1}}, XManE[`NF-2:0]} : {{`FLEN-`LEN1{1'b1}}, 1'b0, {`NE1+1{1'b1}}, XManE[`NF-2:`NF-`NF1]};
end else begin
assign NaNRes = OutFmt ? {1'b0, {`NE+1{1'b1}}, {`NF-1{1'b0}}} : {{`FLEN-`LEN1{1'b1}}, 1'b0, {`NE1+1{1'b1}}, {`NF1-1{1'b0}}};
end
// determine the infinity result
// - if the input was infinity or rounding mode RZ, RU, RD (and not rounding the value) then output the maximum normalized floating point number with the correct sign
// - otherwise: output infinity with the correct sign
// - kill the infinity singal if the input isn't fp
assign InfRes = OutFmt ? (~XInfE|IntToFp)&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {ResSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} :
{ResSgn, {`NE{1'b1}}, {`NF{1'b0}}} :
(~XInfE|IntToFp)&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {{`FLEN-`LEN1{1'b1}}, ResSgn, {`NE1-1{1'b1}}, 1'b0, {`NF1{1'b1}}} :
{{`FLEN-`LEN1{1'b1}}, ResSgn, {`NE1{1'b1}}, (`NF1)'(0)};
// result for when the result is killed i.e. underflowes
// - output a rounded 0 with the correct sign
assign UfRes = OutFmt ? {ResSgn, (`FLEN-2)'(0), Plus1&FrmE[1]} : {{`FLEN-`LEN1{1'b1}}, ResSgn, (`LEN1-2)'(0), Plus1&FrmE[1]};
// format the result - NaN box single precision (put 1's in the unused msbs)
assign Res = OutFmt ? {ResSgn, ResExp, ResFrac} : {{`FLEN-`LEN1{1'b1}}, ResSgn, ResExp[`NE1-1:0], ResFrac[`NF-1:`NF-`NF1]};
end else if (`FPSIZES == 3) begin
always_comb
case (OutFmt)
`FMT: begin
// IEEE sends a payload while Riscv says to send a canonical quiet NaN
if(`IEEE754) begin
NaNRes = {1'b0, {`NE+1{1'b1}}, XManE[`NF-2:0]};
end else begin
NaNRes = {1'b0, {`NE+1{1'b1}}, {`NF-1{1'b0}}};
end
// determine the infinity result
// - if the input was infinity or rounding mode RZ, RU, RD (and not rounding the value) then output the maximum normalized floating point number with the correct sign
// - otherwise: output infinity with the correct sign
// - kill the infinity singal if the input isn't fp
InfRes = (~XInfE|IntToFp)&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {ResSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} : {ResSgn, {`NE{1'b1}}, {`NF{1'b0}}};
// result for when the result is killed i.e. underflowes
// - output a rounded 0 with the correct sign
UfRes = {ResSgn, (`FLEN-2)'(0), Plus1&FrmE[1]};
// format the result - NaN box single precision (put 1's in the unused msbs)
Res = {ResSgn, ResExp, ResFrac};
end
`FMT1: begin
// IEEE sends a payload while Riscv says to send a canonical quiet NaN
if(`IEEE754) begin
NaNRes = {{`FLEN-`LEN1{1'b1}}, 1'b0, {`NE1+1{1'b1}}, XManE[`NF-2:`NF-`NF1]};
end else begin
NaNRes = {{`FLEN-`LEN1{1'b1}}, 1'b0, {`NE1+1{1'b1}}, {`NF1-1{1'b0}}};
end
// determine the infinity result
// - if the input was infinity or rounding mode RZ, RU, RD (and not rounding the value) then output the maximum normalized floating point number with the correct sign
// - otherwise: output infinity with the correct sign
// - kill the infinity singal if the input isn't fp
InfRes = (~XInfE|IntToFp)&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {{`FLEN-`LEN1{1'b1}}, ResSgn, {`NE1-1{1'b1}}, 1'b0, {`NF1{1'b1}}} : {{`FLEN-`LEN1{1'b1}}, ResSgn, {`NE1{1'b1}}, (`NF1)'(0)};
// result for when the result is killed i.e. underflowes
// - output a rounded 0 with the correct sign
UfRes = {{`FLEN-`LEN1{1'b1}}, ResSgn, (`LEN1-2)'(0), Plus1&FrmE[1]};
// format the result - NaN box single precision (put 1's in the unused msbs)
Res = {{`FLEN-`LEN1{1'b1}}, ResSgn, ResExp[`NE1-1:0], ResFrac[`NF-1:`NF-`NF1]};
end
`FMT2: begin
// IEEE sends a payload while Riscv says to send a canonical quiet NaN
if(`IEEE754) begin
NaNRes = {{`FLEN-`LEN2{1'b1}}, 1'b0, {`NE2+1{1'b1}}, XManE[`NF-2:`NF-`NF2]};
end else begin
NaNRes = {{`FLEN-`LEN2{1'b1}}, 1'b0, {`NE2+1{1'b1}}, {`NF2-1{1'b0}}};
end
// determine the infinity result
// - if the input was infinity or rounding mode RZ, RU, RD (and not rounding the value) then output the maximum normalized floating point number with the correct sign
// - otherwise: output infinity with the correct sign
// - kill the infinity singal if the input isn't fp
InfRes = (~XInfE|IntToFp)&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {{`FLEN-`LEN2{1'b1}}, ResSgn, {`NE2-1{1'b1}}, 1'b0, {`NF2{1'b1}}} : {{`FLEN-`LEN2{1'b1}}, ResSgn, {`NE2{1'b1}}, (`NF2)'(0)};
// result for when the result is killed i.e. underflowes
// - output a rounded 0 with the correct sign
UfRes = {{`FLEN-`LEN2{1'b1}}, ResSgn, (`LEN2-2)'(0), Plus1&FrmE[1]};
// format the result - NaN box single precision (put 1's in the unused msbs)
Res = {{`FLEN-`LEN2{1'b1}}, ResSgn, ResExp[`NE2-1:0], ResFrac[`NF-1:`NF-`NF2]};
end
default: begin
NaNRes = 1'bx;
InfRes = 1'bx;
UfRes = 1'bx;
Res = 1'bx;
end
endcase
end else if (`FPSIZES == 4) begin
always_comb
case (OutFmt)
2'h3: begin
// IEEE sends a payload while Riscv says to send a canonical quiet NaN
if(`IEEE754) begin
NaNRes = {1'b0, {`Q_NE+1{1'b1}}, XManE[`Q_NF-2:0]};
end else begin
NaNRes = {1'b0, {`Q_NE+1{1'b1}}, {`Q_NF-1{1'b0}}};
end
// determine the infinity result
// - if the input was infinity or rounding mode RZ, RU, RD (and not rounding the value) then output the maximum normalized floating point number with the correct sign
// - otherwise: output infinity with the correct sign
// - kill the infinity singal if the input isn't fp
InfRes = (~XInfE|IntToFp)&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {ResSgn, {`Q_NE-1{1'b1}}, 1'b0, {`Q_NF{1'b1}}} : {ResSgn, {`Q_NE{1'b1}}, {`Q_NF{1'b0}}};
// result for when the result is killed i.e. underflowes
// - output a rounded 0 with the correct sign
UfRes = {ResSgn, (`Q_LEN-2)'(0), Plus1&FrmE[1]};
// format the result - NaN box single precision (put 1's in the unused msbs)
Res = {ResSgn, ResExp, ResFrac};
end
2'h1: begin
// IEEE sends a payload while Riscv says to send a canonical quiet NaN
if(`IEEE754) begin
NaNRes = {{`Q_LEN-`D_LEN{1'b1}}, 1'b0, {`D_NE+1{1'b1}}, XManE[`Q_NF-2:`Q_NF-`D_NF]};
end else begin
NaNRes = {{`Q_LEN-`D_LEN{1'b1}}, 1'b0, {`D_NE+1{1'b1}}, {`D_NF-1{1'b0}}};
end
// determine the infinity result
// - if the input was infinity or rounding mode RZ, RU, RD (and not rounding the value) then output the maximum normalized floating point number with the correct sign
// - otherwise: output infinity with the correct sign
// - kill the infinity singal if the input isn't fp
InfRes = (~XInfE|IntToFp)&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {{`Q_LEN-`D_LEN{1'b1}}, ResSgn, {`D_NE-1{1'b1}}, 1'b0, {`D_NF{1'b1}}} : {{`Q_LEN-`D_LEN{1'b1}}, ResSgn, {`D_NE{1'b1}}, (`D_NF)'(0)};
// result for when the result is killed i.e. underflowes
// - output a rounded 0 with the correct sign
UfRes = {{`Q_LEN-`D_LEN{1'b1}}, ResSgn, (`D_LEN-2)'(0), Plus1&FrmE[1]};
// format the result - NaN box single precision (put 1's in the unused msbs)
Res = {{`Q_LEN-`D_LEN{1'b1}}, ResSgn, ResExp[`D_NE-1:0], ResFrac[`Q_NF-1:`Q_NF-`D_NF]};
end
2'h0: begin
// IEEE sends a payload while Riscv says to send a canonical quiet NaN
if(`IEEE754) begin
NaNRes = {{`Q_LEN-`S_LEN{1'b1}}, 1'b0, {`S_NE+1{1'b1}}, XManE[`Q_NF-2:`Q_NF-`S_NF]};
end else begin
NaNRes = {{`Q_LEN-`S_LEN{1'b1}}, 1'b0, {`S_NE+1{1'b1}}, {`S_NF-1{1'b0}}};
end
// determine the infinity result
// - if the input was infinity or rounding mode RZ, RU, RD (and not rounding the value) then output the maximum normalized floating point number with the correct sign
// - otherwise: output infinity with the correct sign
// - kill the infinity singal if the input isn't fp
InfRes = (~XInfE|IntToFp)&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {{`Q_LEN-`S_LEN{1'b1}}, ResSgn, {`S_NE-1{1'b1}}, 1'b0, {`S_NF{1'b1}}} : {{`Q_LEN-`S_LEN{1'b1}}, ResSgn, {`S_NE{1'b1}}, (`S_NF)'(0)};
// result for when the result is killed i.e. underflowes
// - output a rounded 0 with the correct sign
UfRes = {{`Q_LEN-`S_LEN{1'b1}}, ResSgn, (`S_LEN-2)'(0), Plus1&FrmE[1]};
// format the result - NaN box single precision (put 1's in the unused msbs)
Res = {{`Q_LEN-`S_LEN{1'b1}}, ResSgn, ResExp[`S_NE-1:0], ResFrac[`Q_NF-1:`Q_NF-`S_NF]};
end
2'h2: begin
// IEEE sends a payload while Riscv says to send a canonical quiet NaN
if(`IEEE754) begin
NaNRes = {{`Q_LEN-`H_LEN{1'b1}}, 1'b0, {`H_NE+1{1'b1}}, XManE[`Q_NF-2:`Q_NF-`H_NF]};
end else begin
NaNRes = {{`Q_LEN-`H_LEN{1'b1}}, 1'b0, {`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}};
end
// determine the infinity result
// - if the input overflows in rounding mode RZ, RU, RD (and not rounding the value) then output the maximum normalized floating point number with the correct sign
// - otherwise: output infinity with the correct sign
// - kill the infinity singal if the input isn't fp
InfRes = (~XInfE|IntToFp)&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {{`Q_LEN-`H_LEN{1'b1}}, ResSgn, {`H_NE-1{1'b1}}, 1'b0, {`H_NF{1'b1}}} : {{`Q_LEN-`H_LEN{1'b1}}, ResSgn, {`H_NE{1'b1}}, (`H_NF)'(0)};
// result for when the result is killed i.e. underflowes
// - output a rounded 0 with the correct sign
UfRes = {{`Q_LEN-`H_LEN{1'b1}}, ResSgn, (`H_LEN-2)'(0), Plus1&FrmE[1]};
// format the result - NaN box single precision (put 1's in the unused msbs)
Res = {{`Q_LEN-`H_LEN{1'b1}}, ResSgn, ResExp[`H_NE-1:0], ResFrac[`Q_NF-1:`Q_NF-`H_NF]};
end
endcase
end
// assign InfRes = FOpCtrlE[1:0] == `FMT ? {ResSgn, {`NE{1'b1}}, (`NF)'(0)} : {{`FLEN-`LEN1{1'b1}}, ResSgn, {`NE1{1'b1}}, (`NF1)'(0)};
// output one less then the maximum value if rounding down (RZ RU RD)
// if infinitiy output infinity
assign InfRes = FOpCtrlE[1:0] == `FMT ? ~XInfE&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {ResSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} :
{ResSgn, {`NE{1'b1}}, {`NF{1'b0}}} :
~XInfE&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {{`FLEN-`LEN1{1'b1}}, ResSgn, {`NE1-1{1'b1}}, 1'b0, {`NF1{1'b1}}} :
{{`FLEN-`LEN1{1'b1}}, ResSgn, {`NE1{1'b1}}, (`NF1)'(0)};
// if RU/RD then round the underflowed result if needed
// integer zero's exponent is not calculated corresctly so go through underflow result
assign UfRes = OutFmt ? {ResSgn, (`FLEN-2)'(0), Plus1&FrmE[1]} : {{`FLEN-`LEN1{1'b1}}, ResSgn, (`LEN1-2)'(0), Plus1&FrmE[1]};
assign Res = OutFmt ? {ResSgn, ResExp, ResFrac} : {{`FLEN-`LEN1{1'b1}}, ResSgn, ResExp[`NE1-1:0], ResFrac[`NF-1:`NF-`NF1]};
// choose the floating point result
// - if the input is NaN (and using the NaN input) output the NaN result
// - if the input is infinity or the output overflows
// - kill the InfE signal if the input isn't a floating point value
// - if killing the result output the underflow result
// - otherwise output the normal result
assign CvtResE = XNaNE&~IntToFp ? NaNRes :
(XInfE|Overflow)&~IntToFp ? InfRes :
(XInfE&~IntToFp)|Overflow ? InfRes :
KillRes ? UfRes :
Res;
// *** probably can optimize the negation
// NaNs sould ouput the same as a positive infinity
// a 32bit unsigend result should be sign extended (as if it is not a unsigned number)
// select the overflow integer result
// - negitive infinity and out of range negitive input
// | int | long |
// signed | -2^31 | -2^63 |
// unsigned | 0 | 0 |
//
// - positive infinity and out of range negitive input and NaNs
// | int | long |
// signed | 2^31-1 | 2^63-1 |
// unsigned | 2^32-1 | 2^64-1 |
//
// other: 32 bit unsinged result should be sign extended as if it were a signed number
assign OfIntRes = Signed ? XSgnE&~XNaNE ? Int64 ? {1'b1, {`XLEN-1{1'b0}}} : {{`XLEN-32{1'b1}}, 1'b1, {31{1'b0}}} : // signed negitive
Int64 ? {1'b0, {`XLEN-1{1'b1}}} : {{`XLEN-32{1'b0}}, 1'b0, {31{1'b1}}} : // signed positive
XSgnE&~XNaNE ? {`XLEN{1'b0}} : // unsigned negitive
{`XLEN{1'b1}};// unsigned positive
Int64 ? {1'b0, {`XLEN-1{1'b1}}} : {{`XLEN-32{1'b0}}, 1'b0, {31{1'b1}}} : // signed positive
XSgnE&~XNaNE ? {`XLEN{1'b0}} : // unsigned negitive
{`XLEN{1'b1}};// unsigned positive
assign NegRes = XSgnE ? -({2'b0, Shifted[`LGLEN+`NF:`LGLEN+`NF+1-`XLEN]}+{{`XLEN+1{1'b0}},Plus1}) : {2'b0, Shifted[`LGLEN+`NF:`LGLEN+`NF+1-`XLEN]}+{{`XLEN+1{1'b0}},Plus1};
// round and negate the positive result if needed
assign NegRes = XSgnE ? -({2'b0, Shifted[`LGLEN+`NF:`LGLEN+`NF+1-`XLEN]}+{{`XLEN+1{1'b0}}, Plus1}) : {2'b0, Shifted[`LGLEN+`NF:`LGLEN+`NF+1-`XLEN]}+{{`XLEN+1{1'b0}}, Plus1};
// select the integer output
// - if the input is invalid (out of bounds NaN or Inf) then output overflow result
// - if the input underflows
// - if rounding and signed opperation and negitive input, output -1
// - otherwise output a rounded 0
// - otherwise output the normal result (trmined and sign extended if nessisary)
assign CvtIntResE = Invalid ? OfIntRes :
CalcExp[`NE] ? XSgnE&Signed&Plus1 ? {{`XLEN{1'b1}}} : {{`XLEN-1{1'b0}}, Plus1} : //CalcExp has to come after invalid ***swap to actual mux at some point??
Int64 ? NegRes[`XLEN-1:0] : {{`XLEN-32{NegRes[31]}}, NegRes[31:0]};
CalcExp[`NE] ? XSgnE&Signed&Plus1 ? {{`XLEN{1'b1}}} : {{`XLEN-1{1'b0}}, Plus1} : //CalcExp has to come after invalid ***swap to actual mux at some point??
Int64 ? NegRes[`XLEN-1:0] : {{`XLEN-32{NegRes[31]}}, NegRes[31:0]};
endmodule

View File

@ -1,190 +0,0 @@
`include "wally-config.vh"
module fcvtfp (
input logic [10:0] XExpE, // input's exponent
input logic [52:0] XManE, // input's mantissa
input logic XSgnE, // input's sign
input logic XZeroE, // is the input zero
input logic XDenormE, // is the input denormalized
input logic XInfE, // is the input infinity
input logic XNaNE, // is the input a NaN
input logic XSNaNE, // is the input a signaling NaN
input logic [2:0] FrmE, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
input logic FmtE, // the input's precision (1 = double 0 = single)
output logic [63:0] CvtFpResE, // the fp to fp conversion's result
output logic [4:0] CvtFpFlgE); // the fp to fp conversion's flags
logic [12:0] DSExp; // double to single precision exponent
logic Denorm; // is the double to single precision result denormalized
logic Shift; // do you shift the double precision exponent (if single precision result is denormalized)
logic [51:0] SDFrac; // single to double precision fraction
logic [25:0] DSFrac; // double to single precision fraction
logic [77:0] DSFracShifted; // single precision fraction shifted for double precision
logic Sticky, UfSticky, Guard, Round, LSBFrac, UfGuard, UfRound, UfLSBFrac; // rounding bits
logic CalcPlus1, UfCalcPlus1, Plus1, UfPlus1; // do you add one to the result
logic [12:0] DSExpFull; // full double to single exponent
logic [22:0] DSResFrac; // final double to single fraction
logic [7:0] DSResExp; // final double to single exponent
logic [10:0] SDExp; // final single to double precision exponent
logic Overflow, Underflow, Inexact; // flags
logic [31:0] DSRes; // double to single precision result
// add support for all formats
// consider reordering code blocks so upconverting is in one region of the file
// and downconverting is in the other region.
///////////////////////////////////////////////////////////////////////////////
// LZC: Leading Zero Counter
///////////////////////////////////////////////////////////////////////////////
// *** consider sharing this with fcvtint
// *** emphasize parallel structure between the two
// *** add a priorityencoder module to generic (similar to priorityonehot) and use it
// LZC - find the first 1 in the input's mantissa
logic [8:0] i,NormCnt;
always_comb begin
i = 0;
while (~XManE[52-i] & i <= 52) i = i+1; // search for leading one
NormCnt = i;
end
///////////////////////////////////////////////////////////////////////////////
// Expoents
///////////////////////////////////////////////////////////////////////////////
// convert the single precion exponent to single precision.
// - subtract the double precision exponent (1023) and add the
// single precsision exponent (127)
// - if the input is zero then kill the exponent
assign DSExp = ({2'b0,XExpE}-13'd1023+13'd127)&{13{~XZeroE}};
// is the converted double to single precision exponent in the denormalized range
assign Denorm = $signed(DSExp) <= 0 & $signed(DSExp) > $signed(-(13'd23));
// caluculate the final single to double precsion exponent
// - subtract the single precision bias (127) and add the double
// precision bias (127)
// - if the result is zero or denormalized, kill the exponent
assign SDExp = XExpE-({2'b0,NormCnt&{9{~XZeroE}}})+({11{XDenormE}}&1024-127); //*** seems ineffecient
///////////////////////////////////////////////////////////////////////////////
// Fraction
///////////////////////////////////////////////////////////////////////////////
// normalize the single precision fraction for double precsion
// - needed for denormal single precsion values
assign SDFrac = XManE[51:0] << NormCnt;
// check if the double precision mantissa needs to be shifted
// - the mantissa needs to be shifted if the single precision result is denormal
assign Shift = Denorm | (($signed(DSExp) > $signed(-(13'd25))) & DSExp[12]);
// shift the mantissa
assign DSFracShifted = {XManE, 25'b0} >> ((-DSExp+1)&{13{Shift}}); //***might be some optimization here
assign DSFrac = DSFracShifted[76:51];
///////////////////////////////////////////////////////////////////////////////
// Rounder
///////////////////////////////////////////////////////////////////////////////
// used to determine underflow flag
assign UfSticky = |DSFracShifted[50:0];
assign UfGuard = DSFrac[1];
assign UfRound = DSFrac[0];
assign UfLSBFrac = DSFrac[2];
assign Sticky = UfSticky | UfRound;
assign Guard = DSFrac[2];
assign Round = DSFrac[1];
assign LSBFrac = DSFrac[3];
always_comb begin // ***remove guard bit
// Determine if you add 1
case (FrmE)
3'b000: CalcPlus1 = Guard & (Round | (Sticky) | (~Round&~Sticky&LSBFrac));//round to nearest even
3'b001: CalcPlus1 = 0;//round to zero
3'b010: CalcPlus1 = XSgnE;//round down
3'b011: CalcPlus1 = ~XSgnE;//round up
3'b100: CalcPlus1 = (Guard & (Round | (Sticky) | (~Round&~Sticky)));//round to nearest max magnitude
default: CalcPlus1 = 1'bx;
endcase
// Determine if you add 1 (for underflow flag)
case (FrmE)
3'b000: UfCalcPlus1 = UfGuard & (UfRound | UfSticky | (~UfRound&~UfSticky&UfLSBFrac));//round to nearest even
3'b001: UfCalcPlus1 = 0;//round to zero
3'b010: UfCalcPlus1 = XSgnE;//round down
3'b011: UfCalcPlus1 = ~XSgnE;//round up
3'b100: UfCalcPlus1 = (UfGuard & (UfRound | UfSticky | (~UfRound&~UfSticky)));//round to nearest max magnitude
default: UfCalcPlus1 = 1'bx;
endcase
end
// if an answer is exact don't round
assign Plus1 = CalcPlus1 & (Sticky | UfGuard | Guard | Round);
assign UfPlus1 = UfCalcPlus1 & (Sticky | UfGuard);
// round the double to single precision result
assign {DSExpFull, DSResFrac} = {DSExp&{13{~Denorm}}, DSFrac[25:3]} + {35'b0,Plus1};
assign DSResExp = DSExpFull[7:0];
///////////////////////////////////////////////////////////////////////////////
// Flags
///////////////////////////////////////////////////////////////////////////////
// calculate the flags
// - overflow, underflow and inexact can only be set by the double to single precision opperation
// - don't set underflow or overflow if the input is NaN or Infinity
// - don't set the inexact flag if the input is NaN
assign Overflow = $signed(DSExpFull) >= $signed({5'b0, {8{1'b1}}}) & ~(XNaNE|XInfE);
assign Underflow = (($signed(DSExpFull) <= 0) & ((Sticky|Guard|Round) | (XManE[52]&~|DSFrac) | (|DSFrac&~Denorm)) | ((DSExpFull == 1) & Denorm & ~(UfPlus1&UfLSBFrac))) & ~(XNaNE|XInfE);
assign Inexact = (Sticky|Guard|Round|Underflow|Overflow) &~(XNaNE);
// pack the flags together and choose the result based on the opperation
assign CvtFpFlgE = FmtE ? {XSNaNE, 1'b0, Overflow, Underflow, Inexact} : {XSNaNE, 4'b0};
///////////////////////////////////////////////////////////////////////////////
// Result Selection
///////////////////////////////////////////////////////////////////////////////
if(`IEEE754) begin
// select the double to single precision result
assign DSRes = XNaNE ? {XSgnE, {8{1'b1}}, 1'b1, XManE[50:29]} :
Underflow & ~Denorm ? {XSgnE, 30'b0, CalcPlus1&(|FrmE[1:0]|Shift)} :
Overflow | XInfE ? ((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~XSgnE) | (FrmE[1:0]==2'b11&XSgnE)) & ~XInfE ? {XSgnE, 8'hfe, {23{1'b1}}} :
{XSgnE, 8'hff, 23'b0} :
{XSgnE, DSResExp, DSResFrac};
// select the final result based on the opperation
//*** in al units before putting into : ? put in a seperate signal
assign CvtFpResE = FmtE ? {{32{1'b1}},DSRes} : {XSgnE, SDExp, SDFrac[51]|XNaNE, SDFrac[50:0]};
end else begin
// select the double to single precision result
assign DSRes = XNaNE ? {1'b0, {8{1'b1}}, 1'b1, 22'b0} :
Underflow & ~Denorm ? {XSgnE, 30'b0, CalcPlus1&(|FrmE[1:0]|Shift)} :
Overflow | XInfE ? ((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~XSgnE) | (FrmE[1:0]==2'b11&XSgnE)) & ~XInfE ? {XSgnE, 8'hfe, {23{1'b1}}} :
{XSgnE, 8'hff, 23'b0} :
{XSgnE, DSResExp, DSResFrac};
// select the final result based on the opperation
assign CvtFpResE = FmtE ? {{32{1'b1}},DSRes} : {XSgnE&~XNaNE, SDExp, SDFrac[51]|XNaNE, SDFrac[50:0]&{51{~XNaNE}}};
end
endmodule // fpadd

View File

@ -1,190 +0,0 @@
`include "wally-config.vh"
// `include "../../config/rv64icfd/wally-config.vh"
// `define XLEN 64
module fcvtint (
input logic XSgnE, // X's sign
input logic [10:0] XExpE, // X's exponent
input logic [52:0] XManE, // X's fraction
input logic XZeroE, // is X zero
input logic XNaNE, // is X NaN
input logic XInfE, // is X infinity
input logic XDenormE, // is X denormalized
input logic [`XLEN-1:0] ForwardedSrcAE, // integer input
input logic [2:0] FOpCtrlE, // chooses which instruction is done (full list below)
input logic [2:0] FrmE, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
input logic FmtE, // precision 1 = double 0 = single
output logic [63:0] CvtResE, // convert final result
output logic [4:0] CvtFlgE); // convert flags {invalid, divide by zero, overflow, underflow, inexact}
logic ResSgn; // FP result's sign
logic [10:0] ResExp,TmpExp; // FP result's exponent
logic [51:0] ResFrac; // FP result's fraction
logic [6:0] LZResP; // lz output
logic [7:0] Bits; // how many bits are in the integer result
logic [7:0] SubBits; // subtract these bits from the exponent (FP result)
logic [64+51:0] ShiftedManTmp; // Shifted mantissa
logic [64+51:0] ShiftVal; // value being shifted (to int - XMan, to FP - |integer input|)
logic [64+1:0] ShiftedMan; // shifted mantissa truncated
logic [64:0] RoundedTmp; // full size rounded result - in case of overfow
logic [63:0] Rounded; // rounded result
logic [12:0] ExpVal; // unbiased X exponent
logic [12:0] ShiftCnt; // how much is the mantissa shifted
logic [64-1:0] IntIn; // trimed integer input
logic [64-1:0] PosInt; // absolute value of the integer input
logic [63:0] CvtIntRes; // interger result from the fp -> int instructions
logic [63:0] CvtFPRes; // floating point result from the int -> fp instructions
logic Of, Uf; // did the integer result underflow or overflow
logic Guard, Round, LSB, Sticky; // bits used to determine rounding
logic Plus1,CalcPlus1; // do you add one for rounding
logic SgnRes; // sign of the floating point result
logic Res64, In64; // is the result or input 64 bits
logic RoundMSB; // most significant bit of the fraction
logic RoundSgn; // sign of the rounded result
logic Invalid, Inexact; // flags
// FOpCtrlE:
// fcvt.w.s = 001
// fcvt.wu.s = 011
// fcvt.s.w = 000
// fcvt.s.wu = 010
// fcvt.l.s = 101
// fcvt.lu.s = 111
// fcvt.s.l = 100
// fcvt.s.lu = 110
// fcvt.w.d = 001
// fcvt.wu.d = 011
// fcvt.d.w = 000
// fcvt.d.wu = 010
// fcvt.l.d = 101
// fcvt.lu.d = 111
// fcvt.d.l = 100
// fcvt.d.lu = 110
// {long, unsigned, to int}
// *** revisit this module, explain in more depth
// should the int to fp and fp to int paths be separated?
// add support for all formats
// calculate signals based off the input and output's size
assign Res64 = (FOpCtrlE[0]&FOpCtrlE[2]) | (FmtE&~FOpCtrlE[0]);
assign In64 = (~FOpCtrlE[0]&FOpCtrlE[2]) | (FmtE&FOpCtrlE[0]);
assign SubBits = In64 ? 8'd64 : 8'd32;
assign Bits = Res64 ? 8'd64 : 8'd32;
// calulate the unbiased exponent
assign ExpVal = {1'b0,XExpE} - {1'b0, (11)'(`BIAS)} + {12'b0, XDenormE};
////////////////////////////////////////////////////////
// position the input in the most significant bits
assign IntIn = FOpCtrlE[2] ? {ForwardedSrcAE, {64-`XLEN{1'b0}}} : {ForwardedSrcAE[31:0], 32'b0};
// make the integer positive
assign PosInt = IntIn[64-1]&~FOpCtrlE[1] ? -IntIn : IntIn;
// determine the integer's sign
assign ResSgn = ~FOpCtrlE[1]&IntIn[64-1];
// Leading one detector
logic [8:0] i;
always_comb begin
i = 0;
while (~PosInt[64-1-i] & i < `XLEN) i = i+1; // search for leading one
LZResP = i[5:0]+1; // compute shift count
end
// if no one was found set to zero otherwise calculate the exponent
assign TmpExp = i==`XLEN ? 0 : FmtE ? 11'd1023 + {3'b0, SubBits} - {4'b0, LZResP} : 11'd127 + {3'b0, SubBits} - {4'b0, LZResP};
////////////////////////////////////////////
// select the shift value and amount based on operation (to fp or int)
assign ShiftCnt = FOpCtrlE[0] ? ExpVal : {6'b0, LZResP};
assign ShiftVal = FOpCtrlE[0] ? {{64-1{1'b0}}, XManE} : {PosInt, 52'b0};
// if shift = -1 then shift one bit right for gaurd bit (right shifting twice never rounds)
// if the shift is negitive add a bit for sticky bit calculation
// otherwise shift left
assign ShiftedManTmp = &ShiftCnt ? {{64{1'b0}}, XManE[52:1]} : ShiftCnt[12] ? {{64+51{1'b0}}, ~XZeroE} : ShiftVal << ShiftCnt;
// truncate the shifted mantissa
assign ShiftedMan = ShiftedManTmp[64+51:50];
// calculate sticky bit
// - take into account the possible right shift from before
// - the sticky bit calculation covers three diffrent sizes depending on the opperation
assign Sticky = |ShiftedManTmp[49:0] | &ShiftCnt&XManE[0] | (~FOpCtrlE[0]&|ShiftedManTmp[62:50]) | (~FOpCtrlE[0]&~FmtE&|ShiftedManTmp[91:63]);
// determine guard, round, and least significant bit of the result
assign Guard = FOpCtrlE[0] ? ShiftedMan[1] : FmtE ? ShiftedMan[13] : ShiftedMan[42];
assign Round = FOpCtrlE[0] ? ShiftedMan[0] : FmtE ? ShiftedMan[12] : ShiftedMan[41];
assign LSB = FOpCtrlE[0] ? ShiftedMan[2] : FmtE ? ShiftedMan[14] : ShiftedMan[43];
always_comb begin//*** remove guard bit
// Determine if you add 1
case (FrmE)
3'b000: CalcPlus1 = Guard & (Round | Sticky | (~Round&~Sticky&LSB));//round to nearest even
3'b001: CalcPlus1 = 0;//round to zero
3'b010: CalcPlus1 = (XSgnE&FOpCtrlE[0]) | (ResSgn&~FOpCtrlE[0]);//round down
3'b011: CalcPlus1 = (~XSgnE&FOpCtrlE[0]) | (~ResSgn&~FOpCtrlE[0]);//round up
3'b100: CalcPlus1 = Guard & (Round | Sticky | (~Round&~Sticky));//round to nearest max magnitude
default: CalcPlus1 = 1'bx;
endcase
end
// dont tound if the result is exact
assign Plus1 = CalcPlus1 & (Guard|Round|Sticky)&~(XZeroE&FOpCtrlE[0]);
// round the shifted mantissa
assign RoundedTmp = ShiftedMan[64+1:2] + {64'b0, Plus1};
assign {ResExp, ResFrac} = FmtE ? {TmpExp, ShiftedMan[64+1:14]} + {62'b0, Plus1} : {{TmpExp, ShiftedMan[64+1:43]} + {33'b0,Plus1}, 29'b0} ;
// fit the rounded result into the appropriate size and take the 2's complement if needed
assign Rounded = Res64 ? XSgnE&FOpCtrlE[0] ? -RoundedTmp[63:0] : RoundedTmp[63:0] :
XSgnE ? {{32{1'b1}}, -RoundedTmp[31:0]} : {32'b0, RoundedTmp[31:0]};
// extract the MSB and Sign for later use (will be used to determine underflow and overflow)
assign RoundMSB = Res64 ? RoundedTmp[64] : RoundedTmp[32];
assign RoundSgn = Res64 ? Rounded[63] : Rounded[31];
// check if the result overflows
assign Of = (~XSgnE&($signed(ShiftCnt) >= $signed({{5{Bits[7]}}, Bits}))) | (~XSgnE&RoundSgn&~FOpCtrlE[1]) | (RoundMSB&(ShiftCnt==({{5{Bits[7]}}, Bits}-1))) | (~XSgnE&XInfE) | XNaNE;
// check if the result underflows (this calculation changes if the result is signed or unsigned)
assign Uf = FOpCtrlE[1] ? XSgnE&~XZeroE | (XSgnE&XInfE) | (XSgnE&~XZeroE&(~ShiftCnt[12]|CalcPlus1)) | (ShiftCnt[12]&Plus1) : (XSgnE&XInfE) | (XSgnE&($signed(ShiftCnt) >= $signed({{5{Bits[7]}}, Bits}))) | (XSgnE&~RoundSgn&~ShiftCnt[12]); // assign CvtIntRes = (XSgnE | ShiftCnt[12]) ? {64{1'b0}} : (ShiftCnt >= 64) ? {64{1'b1}} : Rounded;
// calculate the result's sign
assign SgnRes = ~FOpCtrlE[2] & FOpCtrlE[0];
// select the integer result
assign CvtIntRes = Of ? FOpCtrlE[1] ? {64{1'b1}} : SgnRes ? {33'b0, {31{1'b1}}}: {1'b0, {63{1'b1}}} :
Uf ? FOpCtrlE[1] ? {63'b0, Plus1&~XSgnE} : SgnRes ? {{33{1'b1}}, 31'b0} : {1'b1, 63'b0} :
|RoundedTmp ? Rounded[64-1:0] : 64'b0;
// select the floating point result
assign CvtFPRes = FmtE ? {ResSgn, ResExp, ResFrac} : {{32{1'b1}}, ResSgn, ResExp[7:0], ResFrac[51:29]};
// select the result
assign CvtResE = FOpCtrlE[0] ? CvtIntRes : CvtFPRes;
// calculate the flags
// - only set invalid flag for out-of-range vales
// - set inexact if in representable range and not exact
if(`IEEE754) begin // checks before rounding
assign Invalid = (Of | Uf)&FOpCtrlE[0];
assign Inexact = (Guard|Round|Sticky)&~(&FOpCtrlE[1:0]&(XSgnE|Of))&~((Of|Uf)&~FOpCtrlE[1]&FOpCtrlE[0]);
assign CvtFlgE = {Invalid&~Inexact, 3'b0, Inexact};
end else begin // RISC-V checks if the result is in range after rounding
assign Invalid = (Of | Uf)&FOpCtrlE[0];
assign Inexact = (Guard|Round|Sticky)&~(&FOpCtrlE[1:0]&((XSgnE&~(ShiftCnt[12]&~Plus1))|Of))&~((Of|Uf)&~FOpCtrlE[1]&FOpCtrlE[0]);
assign CvtFlgE = {Invalid&~Inexact, 3'b0, Inexact};
end
endmodule // fpadd

View File

@ -34,7 +34,7 @@ module fma(
input logic reset,
input logic FlushM, // flush the memory stage
input logic StallM, // stall memory stage
input logic [`FPSIZES/3:0] FmtE, FmtM, // precision 1 = double 0 = single
input logic [`FMTBITS-1:0] FmtE, FmtM, // precision 1 = double 0 = single
input logic [2:0] FOpCtrlE, // 000 = fmadd (X*Y)+Z, 001 = fmsub (X*Y)-Z, 010 = fnmsub -(X*Y)+Z, 011 = fnmadd -(X*Y)-Z, 100 = fmul (X*Y)
input logic [2:0] FrmM, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
input logic XSgnE, YSgnE, ZSgnE, // input signs - execute stage
@ -43,8 +43,7 @@ module fma(
input logic XSgnM, YSgnM, // input signs - memory stage
input logic [`NE-1:0] ZExpM, // input exponents - memory stage
input logic [`NF:0] XManM, YManM, ZManM, // input mantissa - memory stage
input logic ZOrigDenormE, // is the original precision denormalized
input logic XDenormE, YDenormE, ZDenormE, // is denorm
input logic ZDenormE, // is denorm
input logic XZeroE, YZeroE, ZZeroE, // is zero - execute stage
input logic XNaNM, YNaNM, ZNaNM, // is NaN
input logic XSNaNM, YSNaNM, ZSNaNM, // is signaling NaN
@ -73,21 +72,21 @@ module fma(
logic PSgnE, PSgnM;
logic [$clog2(3*`NF+7)-1:0] NormCntE, NormCntM;
logic Mult;
logic ZOrigDenormM;
logic ZDenormM;
fma1 fma1 (.XSgnE, .YSgnE, .ZSgnE, .XExpE, .YExpE, .ZExpE, .XManE, .YManE, .ZManE,
.XDenormE, .YDenormE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE,
.XZeroE, .YZeroE, .ZZeroE,
.FOpCtrlE, .FmtE, .SumE, .NegSumE, .InvZE, .NormCntE, .ZSgnEffE, .PSgnE,
.ProdExpE, .AddendStickyE, .KillProdE);
// E/M pipeline registers
flopenrc #(3*`NF+6) EMRegFma2(clk, reset, FlushM, ~StallM, SumE, SumM);
flopenrc #(13) EMRegFma3(clk, reset, FlushM, ~StallM, ProdExpE, ProdExpM);
flopenrc #(`NE+2) EMRegFma3(clk, reset, FlushM, ~StallM, ProdExpE, ProdExpM);
flopenrc #($clog2(3*`NF+7)+8) EMRegFma4(clk, reset, FlushM, ~StallM,
{AddendStickyE, KillProdE, InvZE, NormCntE, NegSumE, ZSgnEffE, PSgnE, FOpCtrlE[2]&~FOpCtrlE[1]&~FOpCtrlE[0], ZOrigDenormE},
{AddendStickyM, KillProdM, InvZM, NormCntM, NegSumM, ZSgnEffM, PSgnM, Mult, ZOrigDenormM});
{AddendStickyE, KillProdE, InvZE, NormCntE, NegSumE, ZSgnEffE, PSgnE, FOpCtrlE[2]&~FOpCtrlE[1]&~FOpCtrlE[0], ZDenormE},
{AddendStickyM, KillProdM, InvZM, NormCntM, NegSumM, ZSgnEffM, PSgnM, Mult, ZDenormM});
fma2 fma2(.XSgnM, .YSgnM, .ZExpM, .XManM, .YManM, .ZManM, .ZOrigDenormM,
fma2 fma2(.XSgnM, .YSgnM, .ZExpM, .XManM, .YManM, .ZManM, .ZDenormM,
.FrmM, .FmtM, .ProdExpM, .AddendStickyM, .KillProdM, .SumM, .NegSumM, .InvZM, .NormCntM, .ZSgnEffM, .PSgnM,
.XZeroM, .YZeroM, .ZZeroM, .XInfM, .YInfM, .ZInfM, .XNaNM, .YNaNM, .ZNaNM, .XSNaNM, .YSNaNM, .ZSNaNM, .Mult,
.FMAResM, .FMAFlgM);
@ -101,10 +100,9 @@ module fma1(
input logic XSgnE, YSgnE, ZSgnE, // input's signs
input logic [`NE-1:0] XExpE, YExpE, ZExpE, // biased exponents in B(NE.0) format
input logic [`NF:0] XManE, YManE, ZManE, // fractions in U(0.NF) format
input logic XDenormE, YDenormE, ZDenormE, // is the input denormal
input logic XZeroE, YZeroE, ZZeroE, // is the input zero
input logic [2:0] FOpCtrlE, // 000 = fmadd (X*Y)+Z, 001 = fmsub (X*Y)-Z, 010 = fnmsub -(X*Y)+Z, 011 = fnmadd -(X*Y)-Z, 100 = fmul (X*Y)
input logic [`FPSIZES/3:0] FmtE, // precision 1 = double 0 = single
input logic [`FMTBITS-1:0] FmtE, // precision 1 = double 0 = single
output logic [`NE+1:0] ProdExpE, // X exponent + Y exponent - bias in B(NE+2.0) format; adds 2 bits to allow for size of number and negative sign
output logic AddendStickyE, // sticky bit that is calculated during alignment
output logic KillProdE, // set the product to zero before addition if the product is too small to matter
@ -116,13 +114,11 @@ module fma1(
output logic [$clog2(3*`NF+7)-1:0] NormCntE // normalization shift cnt
);
logic [`NE-1:0] Denorm; // value of a denormaized number based on precision
logic [2*`NF+1:0] ProdManE; // 1.X frac * 1.Y frac in U(2.2Nf) format
logic [3*`NF+5:0] AlignedAddendE; // Z aligned for addition in U(NF+5.2NF+1)
logic [3*`NF+6:0] AlignedAddendInv; // aligned addend possibly inverted
logic [2*`NF+1:0] ProdManKilled; // the product's mantissa possibly killed
logic [3*`NF+6:0] PreSum, NegPreSum; // positive and negitve versions of the sum
logic [`NE-1:0] XExpVal, YExpVal; // exponent value after taking into accound denormals
///////////////////////////////////////////////////////////////////////////////
// Calculate the product
// - When multipliying two fp numbers, add the exponents
@ -133,8 +129,8 @@ module fma1(
// calculate the product's exponent
expadd expadd(.FmtE, .XExpE, .YExpE, .XZeroE, .YZeroE, .XDenormE, .YDenormE, .XExpVal, .YExpVal,
.Denorm, .ProdExpE);
expadd expadd(.FmtE, .XExpE, .YExpE, .XZeroE, .YZeroE,
.ProdExpE);
// multiplication of the mantissa's
mult mult(.XManE, .YManE, .ProdManE);
@ -143,7 +139,7 @@ module fma1(
// Alignment shifter
///////////////////////////////////////////////////////////////////////////////
align align(.ZExpE, .ZManE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE, .ProdExpE, .Denorm, .XExpVal, .YExpVal,
align align(.ZExpE, .ZManE, .XZeroE, .YZeroE, .ZZeroE, .ProdExpE, .XExpE, .YExpE,
.AlignedAddendE, .AddendStickyE, .KillProdE);
// calculate the signs and take the opperation into account
@ -165,53 +161,14 @@ endmodule
module expadd(
input logic [`FPSIZES/3:0] FmtE, // precision
input logic [`FMTBITS-1:0] FmtE, // precision
input logic [`NE-1:0] XExpE, YExpE, // input exponents
input logic XDenormE, YDenormE, // are the inputs denormalized
input logic XZeroE, YZeroE, // are the inputs zero
output logic [`NE-1:0] XExpVal, YExpVal, // Exponent value after taking into account denormals
output logic [`NE-1:0] Denorm, // value of denormalized exponent
output logic [`NE+1:0] ProdExpE // product's exponent B^(1023)NE+2
);
// denormalized numbers have diffrent values depending on which precison it is.
// FLEN - 1
// Other - BIAS - other bias + 1
if (`FPSIZES == 1) begin
assign Denorm = 1;
end else if (`FPSIZES == 2) begin
assign Denorm = FmtE ? (`NE)'(1) : (`NE)'(`BIAS)-(`NE)'(`BIAS1)+(`NE)'(1);
end else if (`FPSIZES == 3) begin
always_comb begin
case (FmtE)
`FMT: Denorm = 1;
`FMT1: Denorm = `BIAS-`BIAS1+1;
`FMT2: Denorm = `BIAS-`BIAS2+1;
default: Denorm = 1'bx;
endcase
end
end else if (`FPSIZES == 4) begin
always_comb begin
case (FmtE)
2'h3: Denorm = 1;
2'h1: Denorm = `BIAS-`D_BIAS+1;
2'h0: Denorm = `BIAS-`S_BIAS+1;
2'h2: Denorm = `BIAS-`H_BIAS+1;
endcase
end
end
// pick denormalized value or exponent
assign XExpVal = XDenormE ? Denorm : XExpE;
assign YExpVal = YDenormE ? Denorm : YExpE;
// kill the exponent if the product is zero - either X or Y is 0
assign ProdExpE = ({2'b0, XExpVal} + {2'b0, YExpVal} - {2'b0, (`NE)'(`BIAS)})&{`NE+2{~(XZeroE|YZeroE)}};
assign ProdExpE = ({2'b0, XExpE} + {2'b0, YExpE} - {2'b0, (`NE)'(`BIAS)})&{`NE+2{~(XZeroE|YZeroE)}};
endmodule
@ -258,13 +215,10 @@ endmodule
module align(
input logic [`NE-1:0] ZExpE, // biased exponents in B(NE.0) format
input logic [`NE-1:0] XExpE, YExpE, ZExpE, // biased exponents in B(NE.0) format
input logic [`NF:0] ZManE, // fractions in U(0.NF) format]
input logic ZDenormE, // is the input denormal
input logic XZeroE, YZeroE, ZZeroE, // is the input zero
input logic [`NE-1:0] XExpVal, YExpVal, // Exponent value after taking into account denormals
input logic [`NE+1:0] ProdExpE, // the product's exponent
input logic [`NE-1:0] Denorm, // the biased value of a denormalized number
output logic [3*`NF+5:0] AlignedAddendE, // Z aligned for addition in U(NF+5.2NF+1)
output logic AddendStickyE, // Sticky bit calculated from the aliged addend
output logic KillProdE // should the product be set to zero
@ -273,7 +227,6 @@ module align(
logic [`NE+1:0] AlignCnt; // how far to shift the addend to align with the product in Q(NE+2.0) format
logic [4*`NF+5:0] ZManShifted; // output of the alignment shifter including sticky bits U(NF+5.3NF+1)
logic [4*`NF+5:0] ZManPreShifted; // input to the alignment shifter U(NF+5.3NF+1)
logic [`NE-1:0] ZExpVal; // Exponent value after taking into account denormals
///////////////////////////////////////////////////////////////////////////////
// Alignment shifter
@ -282,11 +235,9 @@ module align(
// determine the shift count for alignment
// - negitive means Z is larger, so shift Z left
// - positive means the product is larger, so shift Z right
// - Denormal numbers have a diffrent exponent value depending on the precision
assign ZExpVal = ZDenormE ? Denorm : ZExpE;
// assign AlignCnt = ProdExpE - {2'b0, ZExpVal} + (`NF+3);
// *** can we use ProdExpE instead of XExp/YExp to save an adder? DH 5/12/22
assign AlignCnt = XZeroE|YZeroE ? -1 : {2'b0, XExpVal} + {2'b0, YExpVal} - {2'b0, (`NE)'(`BIAS)} + `NF+3 - {2'b0, ZExpVal};
// KP- yes we used ProdExpE originally but we did this for timing
assign AlignCnt = XZeroE|YZeroE ? -(`NE+2)'($unsigned(1)) : {2'b0, XExpE} + {2'b0, YExpE} - {2'b0, (`NE)'(`BIAS)} + (`NE+2)'(`NF)+3 - {2'b0, ZExpE};
// Defualt Addition without shifting
// | 54'b0 | 106'b(product) | 2'b0 |
@ -369,7 +320,7 @@ module add(
// Do the addition
// - calculate a positive and negitive sum in parallel
assign PreSum = AlignedAddendInv + {55'b0, ProdManKilled, 2'b0} + {{3*`NF+6{1'b0}}, InvZE};
assign PreSum = AlignedAddendInv + {{`NF+3{1'b0}}, ProdManKilled, 2'b0} + {{3*`NF+6{1'b0}}, InvZE};
assign NegPreSum = XZeroE|YZeroE|KillProdE ? {1'b0, AlignedAddendE} : {1'b0, AlignedAddendE} + {{`NF+3{1'b1}}, ~ProdManKilled, 2'b0} + {(3*`NF+7)'(4)};
// Is the sum negitive
@ -409,22 +360,10 @@ module loa( //https://ieeexplore.ieee.org/abstract/document/930098
lzc lzc(.f, .NormCntE);
lzc #(3*`NF+7) lzc (.num(f), .ZeroCnt(NormCntE));
endmodule
module lzc(
input logic [3*`NF+6:0] f,
output logic [$clog2(3*`NF+7)-1:0] NormCntE // normalization shift
);
logic [$clog2(3*`NF+7)-1:0] i;
always_comb begin
i = 0;
while (~f[3*`NF+6-i] & $unsigned(i) <= $unsigned($clog2(3*`NF+7)'(3)*($clog2(3*`NF+7))'(`NF)+($clog2(3*`NF+7))'(6))) i = i+1; // search for leading one
NormCntE = i;
end
endmodule
@ -439,7 +378,7 @@ module fma2(
input logic [`NE-1:0] ZExpM, // input exponents
input logic [`NF:0] XManM, YManM, ZManM, // input mantissas
input logic [2:0] FrmM, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
input logic [`FPSIZES/3:0] FmtM, // precision 1 = double 0 = single
input logic [`FMTBITS-1:0] FmtM, // precision 1 = double 0 = single
input logic [`NE+1:0] ProdExpM, // X exponent + Y exponent - bias
input logic AddendStickyM, // sticky bit that is calculated during alignment
input logic KillProdM, // set the product to zero before addition if the product is too small to matter
@ -450,7 +389,7 @@ module fma2(
input logic [3*`NF+5:0] SumM, // the positive sum
input logic NegSumM, // was the sum negitive
input logic InvZM, // do you invert Z
input logic ZOrigDenormM, // is the original precision denormalized
input logic ZDenormM, // is the original precision denormalized
input logic ZSgnEffM, // the modified Z sign - depends on instruction
input logic PSgnM, // the product's sign
input logic Mult, // multiply opperation
@ -465,7 +404,7 @@ module fma2(
logic ResultSgn, ResultSgnTmp; // Result sign
logic [`NE+1:0] SumExp; // exponent of the normalized sum
logic [`NE+1:0] FullResultExp; // ResultExp with bits to determine sign and overflow
logic [`NF+2:0] NormSum; // normalized sum
logic [`NF+1:0] NormSum; // normalized sum
logic NormSumSticky; // sticky bit calulated from the normalized sum
logic SumZero; // is the sum zero
logic ResultDenorm; // is the result denormalized
@ -486,7 +425,7 @@ module fma2(
///////////////////////////////////////////////////////////////////////////////
normalize normalize(.SumM, .ZExpM, .ProdExpM, .NormCntM, .FmtM, .KillProdM, .AddendStickyM, .NormSum,
.ZOrigDenormM, .SumZero, .NormSumSticky, .UfSticky, .SumExp, .ResultDenorm);
.ZDenormM, .SumZero, .NormSumSticky, .UfSticky, .SumExp, .ResultDenorm);
@ -533,7 +472,7 @@ module fma2(
// Select the result
///////////////////////////////////////////////////////////////////////////////
resultselect resultselect(.XSgnM, .YSgnM, .ZExpM, .XManM, .YManM, .ZManM, .ZOrigDenormM,
resultselect resultselect(.XSgnM, .YSgnM, .ZExpM, .XManM, .YManM, .ZManM, .ZDenormM, .ZZeroM,
.FrmM, .FmtM, .AddendStickyM, .KillProdM, .XInfM, .YInfM, .ZInfM, .XNaNM, .YNaNM, .ZNaNM, .RoundAdd,
.ZSgnEffM, .PSgnM, .ResultSgn, .CalcPlus1, .Invalid, .Overflow, .Underflow,
.ResultDenorm, .ResultExp, .ResultFrac, .FMAResM);
@ -578,11 +517,11 @@ module normalize(
input logic [`NE-1:0] ZExpM, // exponent of Z
input logic [`NE+1:0] ProdExpM, // X exponent + Y exponent - bias
input logic [$clog2(3*`NF+7)-1:0] NormCntM, // normalization shift count
input logic [`FPSIZES/3:0] FmtM, // precision 1 = double 0 = single
input logic [`FMTBITS-1:0] FmtM, // precision 1 = double 0 = single
input logic KillProdM, // is the product set to zero
input logic ZOrigDenormM,
input logic ZDenormM,
input logic AddendStickyM, // the sticky bit caclulated from the aligned addend
output logic [`NF+2:0] NormSum, // normalized sum
output logic [`NF+1:0] NormSum, // normalized sum
output logic SumZero, // is the sum zero
output logic NormSumSticky, UfSticky, // sticky bits
output logic [`NE+1:0] SumExp, // exponent of the normalized sum
@ -599,12 +538,12 @@ module normalize(
///////////////////////////////////////////////////////////////////////////////
// Normalization
///////////////////////////////////////////////////////////////////////////////
//*** insert bias-bias simplification in fcvt.sv/phone pictures/ whiteboard... if still there
//*** insert bias-bias simplification in fcvt.sv/phone pictures
// Determine if the sum is zero
assign SumZero = ~(|SumM);
// calculate the sum's exponent
assign SumExpTmpTmp = KillProdM ? {2'b0, ZExpM[`NE-1:1], ZExpM[0]&~ZOrigDenormM} : ProdExpM + -({4'b0, NormCntM} + 1 - (`NF+4));
assign SumExpTmpTmp = KillProdM ? {2'b0, ZExpM[`NE-1:1], ZExpM[0]&~ZDenormM} : ProdExpM + -({{`NE+2-$unsigned($clog2(3*`NF+7)){1'b0}}, NormCntM} + 1 - (`NE+2)'(`NF+4));
//convert the sum's exponent into the propper percision
if (`FPSIZES == 1) begin
@ -617,8 +556,8 @@ module normalize(
always_comb begin
case (FmtM)
`FMT: SumExpTmp = SumExpTmpTmp;
`FMT1: SumExpTmp = (SumExpTmpTmp-`BIAS+`BIAS1)&{`NE+2{|SumExpTmpTmp}};
`FMT2: SumExpTmp = (SumExpTmpTmp-`BIAS+`BIAS2)&{`NE+2{|SumExpTmpTmp}};
`FMT1: SumExpTmp = (SumExpTmpTmp-(`NE+2)'(`BIAS)+(`NE+2)'(`BIAS1))&{`NE+2{|SumExpTmpTmp}};
`FMT2: SumExpTmp = (SumExpTmpTmp-(`NE+2)'(`BIAS)+(`NE+2)'(`BIAS2))&{`NE+2{|SumExpTmpTmp}};
default: SumExpTmp = `NE+2'bx;
endcase
end
@ -627,9 +566,9 @@ module normalize(
always_comb begin
case (FmtM)
2'h3: SumExpTmp = SumExpTmpTmp;
2'h1: SumExpTmp = (SumExpTmpTmp-`BIAS+`D_BIAS)&{`NE+2{|SumExpTmpTmp}};
2'h0: SumExpTmp = (SumExpTmpTmp-`BIAS+`S_BIAS)&{`NE+2{|SumExpTmpTmp}};
2'h2: SumExpTmp = (SumExpTmpTmp-`BIAS+`H_BIAS)&{`NE+2{|SumExpTmpTmp}};
2'h1: SumExpTmp = (SumExpTmpTmp-(`NE+2)'(`BIAS)+(`NE+2)'(`D_BIAS))&{`NE+2{|SumExpTmpTmp}};
2'h0: SumExpTmp = (SumExpTmpTmp-(`NE+2)'(`BIAS)+(`NE+2)'(`S_BIAS))&{`NE+2{|SumExpTmpTmp}};
2'h2: SumExpTmp = (SumExpTmpTmp-(`NE+2)'(`BIAS)+(`NE+2)'(`H_BIAS))&{`NE+2{|SumExpTmpTmp}};
endcase
end
@ -707,27 +646,27 @@ module normalize(
assign LZAPlus2 = SumShifted[3*`NF+8];
// the only possible mantissa for a plus two is all zeroes - a one has to propigate all the way through a sum. so we can leave the bottom statement alone
assign CorrSumShifted = LZAPlus1 ? SumShifted[3*`NF+6:1] : SumShifted[3*`NF+5:0];
assign NormSum = CorrSumShifted[3*`NF+5:2*`NF+3];
assign NormSum = CorrSumShifted[3*`NF+5:2*`NF+4];
// Calculate the sticky bit
if (`FPSIZES == 1) begin
assign NormSumSticky = |CorrSumShifted[2*`NF+2:0];
assign NormSumSticky = |CorrSumShifted[2*`NF+3:0];
end else if (`FPSIZES == 2) begin
// 3*NF+5 - NF1 - 3
assign NormSumSticky = (|CorrSumShifted[2*`NF+2:0]) |
(|CorrSumShifted[3*`NF+2-`NF1:2*`NF+3]&~FmtM);
assign NormSumSticky = (|CorrSumShifted[2*`NF+3:0]) |
(|CorrSumShifted[3*`NF+3-`NF1:2*`NF+4]&~FmtM);
end else if (`FPSIZES == 3) begin
assign NormSumSticky = (|CorrSumShifted[2*`NF+2:0]) |
(|CorrSumShifted[3*`NF+2-`NF1:2*`NF+3]&((FmtM==`FMT1)|(FmtM==`FMT2))) |
(|CorrSumShifted[3*`NF+2-`NF2:3*`NF+3-`NF1]&(FmtM==`FMT2));
assign NormSumSticky = (|CorrSumShifted[2*`NF+3:0]) |
(|CorrSumShifted[3*`NF+3-`NF1:2*`NF+4]&((FmtM==`FMT1)|(FmtM==`FMT2))) |
(|CorrSumShifted[3*`NF+3-`NF2:3*`NF+4-`NF1]&(FmtM==`FMT2));
end else if (`FPSIZES == 4) begin
assign NormSumSticky = (|CorrSumShifted[2*`NF+2:0]) |
(|CorrSumShifted[3*`NF+2-`D_NF:2*`NF+3]&((FmtM==1)|(FmtM==0)|(FmtM==2))) |
(|CorrSumShifted[3*`NF+2-`S_NF:3*`NF+3-`D_NF]&((FmtM==0)|(FmtM==2))) |
(|CorrSumShifted[3*`NF+2-`H_NF:3*`NF+3-`S_NF]&(FmtM==2));
assign NormSumSticky = (|CorrSumShifted[2*`NF+3:0]) |
(|CorrSumShifted[3*`NF+3-`D_NF:2*`NF+4]&((FmtM==1)|(FmtM==0)|(FmtM==2))) |
(|CorrSumShifted[3*`NF+3-`S_NF:3*`NF+4-`D_NF]&((FmtM==0)|(FmtM==2))) |
(|CorrSumShifted[3*`NF+3-`H_NF:3*`NF+4-`S_NF]&(FmtM==2));
end
@ -735,17 +674,17 @@ module normalize(
// Determine sum's exponent
// if plus1 If plus2 if said denorm but norm plus 1 if said denorm but norm plus 2
assign SumExp = (SumExpTmp+{12'b0, LZAPlus1&~KillProdM}+{11'b0, LZAPlus2&~KillProdM, 1'b0}+{12'b0, ~ResultDenorm&PreResultDenorm&~KillProdM}+{12'b0, &SumExpTmp&SumShifted[3*`NF+6]&~KillProdM}) & {`NE+2{~(SumZero|ResultDenorm)}};
assign SumExp = (SumExpTmp+{{`NE+1{1'b0}}, LZAPlus1&~KillProdM}+{{`NE{1'b0}}, LZAPlus2&~KillProdM, 1'b0}+{{`NE+1{1'b0}}, ~ResultDenorm&PreResultDenorm&~KillProdM}+{{`NE+1{1'b0}}, &SumExpTmp&SumShifted[3*`NF+6]&~KillProdM}) & {`NE+2{~(SumZero|ResultDenorm)}};
// recalculate if the result is denormalized
assign ResultDenorm = PreResultDenorm&~SumShifted[3*`NF+6]&~SumShifted[3*`NF+7];
endmodule
module fmaround(
input logic [`FPSIZES/3:0] FmtM, // precision 1 = double 0 = single
input logic [`FMTBITS-1:0] FmtM, // precision 1 = double 0 = single
input logic [2:0] FrmM, // rounding mode
input logic UfSticky, // sticky bit for underlow calculation
input logic [`NF+2:0] NormSum, // normalized sum
input logic [`NF+1:0] NormSum, // normalized sum
input logic AddendStickyM, // addend's sticky bit
input logic NormSumSticky, // normalized sum's sticky bit
input logic ZZeroM, // is Z zero
@ -799,83 +738,53 @@ module fmaround(
if (`FPSIZES == 1) begin
// determine guard, round, and least significant bit of the result
assign Guard = NormSum[2];
assign Round = NormSum[1];
assign LSBNormSum = NormSum[3];
assign LSBNormSum = NormSum[2];
// used to determine underflow flag
assign UfGuard = NormSum[1];
assign UfRound = NormSum[0];
assign UfLSBNormSum = NormSum[2];
// determine sticky
assign Sticky = UfSticky | NormSum[0];
end else if (`FPSIZES == 2) begin
// \/-------------NF---------------,
// | NF1 | 3 | |
// | NF1 | 2 | |
// '-------NF1------^
// determine guard, round, and least significant bit of the result
assign Guard = FmtM ? NormSum[2] : NormSum[`NF-`NF1+2];
assign Round = FmtM ? NormSum[1] : NormSum[`NF-`NF1+1];
assign LSBNormSum = FmtM ? NormSum[3] : NormSum[`NF-`NF1+3];
assign LSBNormSum = FmtM ? NormSum[2] : NormSum[`NF-`NF1+2];
// used to determine underflow flag
assign UfGuard = FmtM ? NormSum[1] : NormSum[`NF-`NF1+1];
assign UfRound = FmtM ? NormSum[0] : NormSum[`NF-`NF1];
assign UfLSBNormSum = FmtM ? NormSum[2] : NormSum[`NF-`NF1+2];
// determine sticky
assign Sticky = UfSticky | (FmtM ? NormSum[0] : NormSum[`NF-`NF1]);
end else if (`FPSIZES == 3) begin
always_comb begin
case (FmtM)
`FMT: begin
// determine guard, round, and least significant bit of the result
Guard = NormSum[2];
Round = NormSum[1];
LSBNormSum = NormSum[3];
LSBNormSum = NormSum[2];
// used to determine underflow flag
UfGuard = NormSum[1];
UfRound = NormSum[0];
UfLSBNormSum = NormSum[2];
// determine sticky
Sticky = UfSticky | NormSum[0];
end
`FMT1: begin
// determine guard, round, and least significant bit of the result
Guard = NormSum[`NF-`NF1+2];
Round = NormSum[`NF-`NF1+1];
LSBNormSum = NormSum[`NF-`NF1+3];
LSBNormSum = NormSum[`NF-`NF1+2];
// used to determine underflow flag
UfGuard = NormSum[`NF-`NF1+1];
UfRound = NormSum[`NF-`NF1];
UfLSBNormSum = NormSum[`NF-`NF1+2];
// determine sticky
Sticky = UfSticky | NormSum[`NF-`NF1];
end
`FMT2: begin
// determine guard, round, and least significant bit of the result
Guard = NormSum[`NF-`NF2+2];
Round = NormSum[`NF-`NF2+1];
LSBNormSum = NormSum[`NF-`NF2+3];
LSBNormSum = NormSum[`NF-`NF2+2];
// used to determine underflow flag
UfGuard = NormSum[`NF-`NF2+1];
UfRound = NormSum[`NF-`NF2];
UfLSBNormSum = NormSum[`NF-`NF2+2];
// determine sticky
Sticky = UfSticky | NormSum[`NF-`NF2];
end
default: begin
Guard = 1'bx;
Round = 1'bx;
LSBNormSum = 1'bx;
UfGuard = 1'bx;
UfRound = 1'bx;
UfLSBNormSum = 1'bx;
Sticky = 1'bx;
end
endcase
end
@ -885,56 +794,40 @@ module fmaround(
case (FmtM)
2'h3: begin
// determine guard, round, and least significant bit of the result
Guard = NormSum[2];
Round = NormSum[1];
LSBNormSum = NormSum[3];
LSBNormSum = NormSum[2];
// used to determine underflow flag
UfGuard = NormSum[1];
UfRound = NormSum[0];
UfLSBNormSum = NormSum[2];
// determine sticky
Sticky = UfSticky | NormSum[0];
end
2'h1: begin
// determine guard, round, and least significant bit of the result
Guard = NormSum[`NF-`D_NF+2];
Round = NormSum[`NF-`D_NF+1];
LSBNormSum = NormSum[`NF-`D_NF+3];
LSBNormSum = NormSum[`NF-`D_NF+2];
// used to determine underflow flag
UfGuard = NormSum[`NF-`D_NF+1];
UfRound = NormSum[`NF-`D_NF];
UfLSBNormSum = NormSum[`NF-`D_NF+2];
// determine sticky
Sticky = UfSticky | NormSum[`NF-`D_NF];
end
2'h0: begin
// determine guard, round, and least significant bit of the result
Guard = NormSum[`NF-`S_NF+2];
Round = NormSum[`NF-`S_NF+1];
LSBNormSum = NormSum[`NF-`S_NF+3];
LSBNormSum = NormSum[`NF-`S_NF+2];
// used to determine underflow flag
UfGuard = NormSum[`NF-`S_NF+1];
UfRound = NormSum[`NF-`S_NF];
UfLSBNormSum = NormSum[`NF-`S_NF+2];
// determine sticky
Sticky = UfSticky | NormSum[`NF-`S_NF];
end
2'h2: begin
// determine guard, round, and least significant bit of the result
Guard = NormSum[`NF-`H_NF+2];
Round = NormSum[`NF-`H_NF+1];
LSBNormSum = NormSum[`NF-`H_NF+3];
LSBNormSum = NormSum[`NF-`H_NF+2];
// used to determine underflow flag
UfGuard = NormSum[`NF-`H_NF+1];
UfRound = NormSum[`NF-`H_NF];
UfLSBNormSum = NormSum[`NF-`H_NF+2];
// determine sticky
Sticky = UfSticky | NormSum[`NF-`H_NF];
end
endcase
end
end
// used to determine underflow flag
assign UfLSBNormSum = Round;
// determine sticky
assign Sticky = UfSticky | UfRound;
// Deterimine if a small number was supposed to be subtrated
@ -944,28 +837,28 @@ module fmaround(
always_comb begin
// Determine if you add 1
case (FrmM)
3'b000: CalcPlus1 = Guard & (Round | ((Sticky)&~(~Round&SubBySmallNum)) | (~Round&~(Sticky)&LSBNormSum&~SubBySmallNum));//round to nearest even
3'b000: CalcPlus1 = Round & ((Sticky| LSBNormSum)&~SubBySmallNum);//round to nearest even
3'b001: CalcPlus1 = 0;//round to zero
3'b010: CalcPlus1 = ResultSgnTmp & ~(SubBySmallNum & ~Guard & ~Round);//round down
3'b011: CalcPlus1 = ~ResultSgnTmp & ~(SubBySmallNum & ~Guard & ~Round);//round up
3'b100: CalcPlus1 = (Guard & (Round | ((Sticky)&~(~Round&SubBySmallNum)) | (~Round&~(Sticky)&~SubBySmallNum)));//round to nearest max magnitude
3'b010: CalcPlus1 = ResultSgnTmp & ~(SubBySmallNum & ~Round);//round down
3'b011: CalcPlus1 = ~ResultSgnTmp & ~(SubBySmallNum & ~Round);//round up
3'b100: CalcPlus1 = Round & ~SubBySmallNum;//round to nearest max magnitude
default: CalcPlus1 = 1'bx;
endcase
// Determine if you add 1 (for underflow flag)
case (FrmM)
3'b000: UfCalcPlus1 = UfGuard & (UfRound | (UfSticky&UfRound|~UfSubBySmallNum) | (~Sticky&UfLSBNormSum&~UfSubBySmallNum));//round to nearest even
3'b000: UfCalcPlus1 = UfRound & ((UfSticky| UfLSBNormSum)&~UfSubBySmallNum);//round to nearest even
3'b001: UfCalcPlus1 = 0;//round to zero
3'b010: UfCalcPlus1 = ResultSgnTmp & ~(UfSubBySmallNum & ~UfGuard & ~UfRound);//round down
3'b011: UfCalcPlus1 = ~ResultSgnTmp & ~(UfSubBySmallNum & ~UfGuard & ~UfRound);//round up
3'b100: UfCalcPlus1 = (UfGuard & (UfRound | (UfSticky&~(~UfRound&UfSubBySmallNum)) | (~Sticky&~UfSubBySmallNum)));//round to nearest max magnitude
3'b010: UfCalcPlus1 = ResultSgnTmp & ~(UfSubBySmallNum & ~UfRound);//round down
3'b011: UfCalcPlus1 = ~ResultSgnTmp & ~(UfSubBySmallNum & ~UfRound);//round up
3'b100: UfCalcPlus1 = UfRound & ~UfSubBySmallNum;//round to nearest max magnitude
default: UfCalcPlus1 = 1'bx;
endcase
// Determine if you subtract 1
case (FrmM)
3'b000: CalcMinus1 = 0;//round to nearest even
3'b001: CalcMinus1 = SubBySmallNum & ~Guard & ~Round;//round to zero
3'b010: CalcMinus1 = ~ResultSgnTmp & ~Guard & ~Round & SubBySmallNum;//round down
3'b011: CalcMinus1 = ResultSgnTmp & ~Guard & ~Round & SubBySmallNum;//round up
3'b001: CalcMinus1 = SubBySmallNum & ~Round;//round to zero
3'b010: CalcMinus1 = ~ResultSgnTmp & ~Round & SubBySmallNum;//round down
3'b011: CalcMinus1 = ResultSgnTmp & ~Round & SubBySmallNum;//round up
3'b100: CalcMinus1 = 0;//round to nearest max magnitude
default: CalcMinus1 = 1'bx;
endcase
@ -973,9 +866,9 @@ module fmaround(
end
// If an answer is exact don't round
assign Plus1 = CalcPlus1 & (Sticky | Guard | Round);
assign UfPlus1 = UfCalcPlus1 & (Sticky | UfGuard);//UfRound is part of sticky
assign Minus1 = CalcMinus1 & (Sticky | Guard | Round);
assign Plus1 = CalcPlus1 & (Sticky | Round);
assign UfPlus1 = UfCalcPlus1 & (Sticky | UfRound);//UfRound is part of sticky
assign Minus1 = CalcMinus1 & (Sticky | Round);
// Compute rounded result
if (`FPSIZES == 1) begin
@ -1011,7 +904,7 @@ module fmaround(
end
assign NormSumTruncated = NormSum[`NF+2:3];
assign NormSumTruncated = NormSum[`NF+1:2];
assign {FullResultExp, ResultFrac} = {SumExp, NormSumTruncated} + RoundAdd;
assign ResultExp = FullResultExp[`NE-1:0];
@ -1027,7 +920,7 @@ module fmaflags(
input logic [`NE+1:0] SumExp, // exponent of the normalized sum
input logic ZSgnEffM, PSgnM, // the product and modified Z signs
input logic Round, Guard, UfLSBNormSum, Sticky, UfPlus1, // bits used to determine rounding
input logic [`FPSIZES/3:0] FmtM, // precision 1 = double 0 = single
input logic [`FMTBITS-1:0] FmtM, // precision 1 = double 0 = single
output logic Invalid, Overflow, Underflow, // flags used to select the result
output logic [4:0] FMAFlgM // FMA flags
);
@ -1083,12 +976,12 @@ module fmaflags(
// Set Underflow flag if the number is too small to be represented in normal numbers
// - Don't set the underflow flag if the result is exact
assign Underflow = (SumExp[`NE+1] | ((SumExp == 0) & (Round|Guard|Sticky)))&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
assign Underflow = (SumExp[`NE+1] | ((SumExp == 0) & (Round|Sticky)))&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
// exp is negitive result is denorm exp was denorm but rounded to norm and if given an unbounded exponent it would stay denormal
assign UnderflowFlag = (FullResultExp[`NE+1] | ((FullResultExp == 0) | ((FullResultExp == 1) & (SumExp == 0) & ~(UfPlus1&UfLSBNormSum)))&(Round|Guard|Sticky))&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
assign UnderflowFlag = (FullResultExp[`NE+1] | ((FullResultExp == 0) | ((FullResultExp == 1) & (SumExp == 0) & ~(UfPlus1&UfLSBNormSum)))&(Round|Sticky))&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
// Set Inexact flag if the result is diffrent from what would be outputed given infinite precision
// - Don't set the underflow flag if an underflowed result isn't outputed
assign Inexact = (Sticky|Overflow|Guard|Round|Underflow)&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
assign Inexact = (Sticky|Overflow|Round|Underflow)&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
// Combine flags
// - FMA can't set the Divide by zero flag
@ -1103,12 +996,13 @@ module resultselect(
input logic [`NE-1:0] ZExpM, // input exponents
input logic [`NF:0] XManM, YManM, ZManM, // input mantissas
input logic [2:0] FrmM, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
input logic [`FPSIZES/3:0] FmtM, // precision 1 = double 0 = single
input logic [`FMTBITS-1:0] FmtM, // precision 1 = double 0 = single
input logic AddendStickyM, // sticky bit that is calculated during alignment
input logic KillProdM, // set the product to zero before addition if the product is too small to matter
input logic XInfM, YInfM, ZInfM, // inputs are infinity
input logic XNaNM, YNaNM, ZNaNM, // inputs are NaN
input logic ZOrigDenormM, // is the original precision denormalized
input logic ZDenormM, // is the original precision denormalized
input logic ZZeroM,
input logic ZSgnEffM, // the modified Z sign - depends on instruction
input logic PSgnM, // the product's sign
input logic ResultSgn, // the result's sign
@ -1134,7 +1028,7 @@ module resultselect(
end
assign OverflowResult = ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} :
{ResultSgn, {`NE{1'b1}}, {`NF{1'b0}}};
assign KillProdResult = {ResultSgn, {ZExpM, ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})};
assign KillProdResult = {ResultSgn, {ZExpM[`NE-1:1], ZExpM[0]&~(ZDenormM|ZZeroM), ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})};
assign UnderflowResult = {ResultSgn, {`FLEN-1{1'b0}}} + {(`FLEN-1)'(0),(CalcPlus1&(AddendStickyM|FrmM[1]))};
assign InfResult = {InfSgn, {`NE{1'b1}}, (`NF)'(0)};
assign NormResult = {ResultSgn, ResultExp, ResultFrac};
@ -1153,7 +1047,7 @@ module resultselect(
{ResultSgn, {`NE{1'b1}}, {`NF{1'b0}}} :
((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{`FLEN-`LEN1{1'b1}}, ResultSgn, {`NE1-1{1'b1}}, 1'b0, {`NF1{1'b1}}} :
{{`FLEN-`LEN1{1'b1}}, ResultSgn, {`NE1{1'b1}}, (`NF1)'(0)};
assign KillProdResult = FmtM ? {ResultSgn, {ZExpM, ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})} : {{`FLEN-`LEN1{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`NE1-2:1], ZExpM[0]&~ZOrigDenormM, ZManM[`NF-1:`NF-`NF1]} + (RoundAdd[`NF-`NF1+`LEN1-2:`NF-`NF1]&{`LEN1-1{AddendStickyM}})};
assign KillProdResult = FmtM ? {ResultSgn, {ZExpM[`NE-1:1], ZExpM[0]&~(ZDenormM|ZZeroM), ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})} : {{`FLEN-`LEN1{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`NE1-2:1], ZExpM[0]&~(ZDenormM|ZZeroM), ZManM[`NF-1:`NF-`NF1]} + (RoundAdd[`NF-`NF1+`LEN1-2:`NF-`NF1]&{`LEN1-1{AddendStickyM}})};
assign UnderflowResult = FmtM ? {ResultSgn, {`FLEN-1{1'b0}}} + {(`FLEN-1)'(0),(CalcPlus1&(AddendStickyM|FrmM[1]))} : {{`FLEN-`LEN1{1'b1}}, {ResultSgn, (`LEN1-1)'(0)} + {(`LEN1-1)'(0), (CalcPlus1&(AddendStickyM|FrmM[1]))}};
assign InfResult = FmtM ? {InfSgn, {`NE{1'b1}}, (`NF)'(0)} : {{`FLEN-`LEN1{1'b1}}, InfSgn, {`NE1{1'b1}}, (`NF1)'(0)};
assign NormResult = FmtM ? {ResultSgn, ResultExp, ResultFrac} : {{`FLEN-`LEN1{1'b1}}, ResultSgn, ResultExp[`NE1-1:0], ResultFrac[`NF-1:`NF-`NF1]};
@ -1173,7 +1067,7 @@ module resultselect(
OverflowResult = ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} :
{ResultSgn, {`NE{1'b1}}, {`NF{1'b0}}};
KillProdResult = {ResultSgn, {ZExpM, ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})};
KillProdResult = {ResultSgn, {ZExpM[`NE-1:1], ZExpM[0]&~(ZDenormM|ZZeroM), ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})};
UnderflowResult = {ResultSgn, {`FLEN-1{1'b0}}} + {(`FLEN-1)'(0),(CalcPlus1&(AddendStickyM|FrmM[1]))};
InfResult = {InfSgn, {`NE{1'b1}}, (`NF)'(0)};
NormResult = {ResultSgn, ResultExp, ResultFrac};
@ -1189,7 +1083,7 @@ module resultselect(
end
OverflowResult = ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{`FLEN-`LEN1{1'b1}}, ResultSgn, {`NE1-1{1'b1}}, 1'b0, {`NF1{1'b1}}} :
{{`FLEN-`LEN1{1'b1}}, ResultSgn, {`NE1{1'b1}}, (`NF1)'(0)};
KillProdResult = {{`FLEN-`LEN1{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`NE1-2:1], ZExpM[0]&~ZOrigDenormM, ZManM[`NF-1:`NF-`NF1]} + (RoundAdd[`NF-`NF1+`LEN1-2:`NF-`NF1]&{`LEN1-1{AddendStickyM}})};
KillProdResult = {{`FLEN-`LEN1{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`NE1-2:1], ZExpM[0]&~(ZDenormM|ZZeroM), ZManM[`NF-1:`NF-`NF1]} + (RoundAdd[`NF-`NF1+`LEN1-2:`NF-`NF1]&{`LEN1-1{AddendStickyM}})};
UnderflowResult = {{`FLEN-`LEN1{1'b1}}, {ResultSgn, (`LEN1-1)'(0)} + {(`LEN1-1)'(0), (CalcPlus1&(AddendStickyM|FrmM[1]))}};
InfResult = {{`FLEN-`LEN1{1'b1}}, InfSgn, {`NE1{1'b1}}, (`NF1)'(0)};
NormResult = {{`FLEN-`LEN1{1'b1}}, ResultSgn, ResultExp[`NE1-1:0], ResultFrac[`NF-1:`NF-`NF1]};
@ -1206,7 +1100,7 @@ module resultselect(
OverflowResult = ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{`FLEN-`LEN2{1'b1}}, ResultSgn, {`NE2-1{1'b1}}, 1'b0, {`NF2{1'b1}}} :
{{`FLEN-`LEN2{1'b1}}, ResultSgn, {`NE2{1'b1}}, (`NF2)'(0)};
KillProdResult = {{`FLEN-`LEN2{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`NE2-2:1], ZExpM[0]&~ZOrigDenormM, ZManM[`NF-1:`NF-`NF2]} + (RoundAdd[`NF-`NF2+`LEN2-2:`NF-`NF2]&{`LEN2-1{AddendStickyM}})};
KillProdResult = {{`FLEN-`LEN2{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`NE2-2:1], ZExpM[0]&~(ZDenormM|ZZeroM), ZManM[`NF-1:`NF-`NF2]} + (RoundAdd[`NF-`NF2+`LEN2-2:`NF-`NF2]&{`LEN2-1{AddendStickyM}})};
UnderflowResult = {{`FLEN-`LEN2{1'b1}}, {ResultSgn, (`LEN2-1)'(0)} + {(`LEN2-1)'(0), (CalcPlus1&(AddendStickyM|FrmM[1]))}};
InfResult = {{`FLEN-`LEN2{1'b1}}, InfSgn, {`NE2{1'b1}}, (`NF2)'(0)};
NormResult = {{`FLEN-`LEN2{1'b1}}, ResultSgn, ResultExp[`NE2-1:0], ResultFrac[`NF-1:`NF-`NF2]};
@ -1244,7 +1138,7 @@ module resultselect(
OverflowResult = ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} :
{ResultSgn, {`NE{1'b1}}, {`NF{1'b0}}};
KillProdResult = {ResultSgn, {ZExpM, ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})};
KillProdResult = {ResultSgn, {ZExpM[`Q_NE-1:1], ZExpM[0]&~(ZDenormM|ZZeroM), ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})};
UnderflowResult = {ResultSgn, {`FLEN-1{1'b0}}} + {(`FLEN-1)'(0),(CalcPlus1&(AddendStickyM|FrmM[1]))};
InfResult = {InfSgn, {`NE{1'b1}}, (`NF)'(0)};
NormResult = {ResultSgn, ResultExp, ResultFrac};
@ -1260,7 +1154,7 @@ module resultselect(
end
OverflowResult = ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{`FLEN-`D_LEN{1'b1}}, ResultSgn, {`D_NE-1{1'b1}}, 1'b0, {`D_NF{1'b1}}} :
{{`FLEN-`D_LEN{1'b1}}, ResultSgn, {`D_NE{1'b1}}, (`D_NF)'(0)};
KillProdResult = {{`FLEN-`D_LEN{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`D_NE-2:1], ZExpM[0]&~ZOrigDenormM, ZManM[`NF-1:`NF-`D_NF]} + (RoundAdd[`NF-`D_NF+`D_LEN-2:`NF-`D_NF]&{`D_LEN-1{AddendStickyM}})};
KillProdResult = {{`FLEN-`D_LEN{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`D_NE-2:1], ZExpM[0]&~(ZDenormM|ZZeroM), ZManM[`NF-1:`NF-`D_NF]} + (RoundAdd[`NF-`D_NF+`D_LEN-2:`NF-`D_NF]&{`D_LEN-1{AddendStickyM}})};
UnderflowResult = {{`FLEN-`D_LEN{1'b1}}, {ResultSgn, (`D_LEN-1)'(0)} + {(`D_LEN-1)'(0), (CalcPlus1&(AddendStickyM|FrmM[1]))}};
InfResult = {{`FLEN-`D_LEN{1'b1}}, InfSgn, {`D_NE{1'b1}}, (`D_NF)'(0)};
NormResult = {{`FLEN-`D_LEN{1'b1}}, ResultSgn, ResultExp[`D_NE-1:0], ResultFrac[`NF-1:`NF-`D_NF]};
@ -1277,7 +1171,7 @@ module resultselect(
OverflowResult = ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{`FLEN-`S_LEN{1'b1}}, ResultSgn, {`S_NE-1{1'b1}}, 1'b0, {`S_NF{1'b1}}} :
{{`FLEN-`S_LEN{1'b1}}, ResultSgn, {`S_NE{1'b1}}, (`S_NF)'(0)};
KillProdResult = {{`FLEN-`S_LEN{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`S_NE-2:1], ZExpM[0]&~ZOrigDenormM, ZManM[`NF-1:`NF-`S_NF]} + (RoundAdd[`NF-`S_NF+`S_LEN-2:`NF-`S_NF]&{`S_LEN-1{AddendStickyM}})};
KillProdResult = {{`FLEN-`S_LEN{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`S_NE-2:1], ZExpM[0]&~(ZDenormM|ZZeroM), ZManM[`NF-1:`NF-`S_NF]} + (RoundAdd[`NF-`S_NF+`S_LEN-2:`NF-`S_NF]&{`S_LEN-1{AddendStickyM}})};
UnderflowResult = {{`FLEN-`S_LEN{1'b1}}, {ResultSgn, (`S_LEN-1)'(0)} + {(`S_LEN-1)'(0), (CalcPlus1&(AddendStickyM|FrmM[1]))}};
InfResult = {{`FLEN-`S_LEN{1'b1}}, InfSgn, {`S_NE{1'b1}}, (`S_NF)'(0)};
NormResult = {{`FLEN-`S_LEN{1'b1}}, ResultSgn, ResultExp[`S_NE-1:0], ResultFrac[`NF-1:`NF-`S_NF]};
@ -1295,7 +1189,7 @@ module resultselect(
OverflowResult = ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{`FLEN-`H_LEN{1'b1}}, ResultSgn, {`H_NE-1{1'b1}}, 1'b0, {`H_NF{1'b1}}} :
{{`FLEN-`H_LEN{1'b1}}, ResultSgn, {`H_NE{1'b1}}, (`H_NF)'(0)};
KillProdResult = {{`FLEN-`H_LEN{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`H_NE-2:1],ZExpM[0]&~ZOrigDenormM, ZManM[`NF-1:`NF-`H_NF]} + (RoundAdd[`NF-`H_NF+`H_LEN-2:`NF-`H_NF]&{`H_LEN-1{AddendStickyM}})};
KillProdResult = {{`FLEN-`H_LEN{1'b1}}, ResultSgn, {ZExpM[`NE-1], ZExpM[`H_NE-2:1],ZExpM[0]&~(ZDenormM|ZZeroM), ZManM[`NF-1:`NF-`H_NF]} + (RoundAdd[`NF-`H_NF+`H_LEN-2:`NF-`H_NF]&{`H_LEN-1{AddendStickyM}})};
UnderflowResult = {{`FLEN-`H_LEN{1'b1}}, {ResultSgn, (`H_LEN-1)'(0)} + {(`H_LEN-1)'(0), (CalcPlus1&(AddendStickyM|FrmM[1]))}};
InfResult = {{`FLEN-`H_LEN{1'b1}}, InfSgn, {`H_NE{1'b1}}, (`H_NF)'(0)};
NormResult = {{`FLEN-`H_LEN{1'b1}}, ResultSgn, ResultExp[`H_NE-1:0], ResultFrac[`NF-1:`NF-`H_NF]};

View File

@ -65,7 +65,7 @@ module fpu (
// control signals
logic FRegWriteD, FRegWriteE, FRegWriteW; // FP register write enable
logic [2:0] FrmD, FrmE, FrmM; // FP rounding mode
logic FmtD, FmtE, FmtM, FmtW; // FP precision 0-single 1-double
logic [`FMTBITS-1:0] FmtD, FmtE, FmtM, FmtW; // FP precision 0-single 1-double
logic FDivStartD, FDivStartE; // Start division or squareroot
logic FWriteIntD; // Write to integer register
logic [1:0] FForwardXE, FForwardYE, FForwardZE; // forwarding mux control signals
@ -77,25 +77,25 @@ module fpu (
logic [4:0] Adr1E, Adr2E, Adr3E; // adresses of each input
// regfile signals
logic [63:0] FRD1D, FRD2D, FRD3D; // Read Data from FP register - decode stage
logic [63:0] FRD1E, FRD2E, FRD3E; // Read Data from FP register - execute stage
logic [63:0] FSrcXE; // Input 1 to the various units (after forwarding)
logic [63:0] FPreSrcYE, FSrcYE; // Input 2 to the various units (after forwarding)
logic [63:0] FPreSrcZE, FSrcZE; // Input 3 to the various units (after forwarding)
logic [`FLEN-1:0] FRD1D, FRD2D, FRD3D; // Read Data from FP register - decode stage
logic [`FLEN-1:0] FRD1E, FRD2E, FRD3E; // Read Data from FP register - execute stage
logic [`FLEN-1:0] FSrcXE; // Input 1 to the various units (after forwarding)
logic [`FLEN-1:0] FPreSrcYE, FSrcYE; // Input 2 to the various units (after forwarding)
logic [`FLEN-1:0] FPreSrcZE, FSrcZE; // Input 3 to the various units (after forwarding)
// unpacking signals
logic XSgnE, YSgnE, ZSgnE; // input's sign - execute stage
logic XSgnM, YSgnM; // input's sign - memory stage
logic [10:0] XExpE, YExpE, ZExpE; // input's exponent - execute stage
logic [10:0] ZExpM; // input's exponent - memory stage
logic [52:0] XManE, YManE, ZManE; // input's fraction - execute stage
logic [52:0] XManM, YManM, ZManM; // input's fraction - memory stage
logic [`NE-1:0] XExpE, YExpE, ZExpE; // input's exponent - execute stage
logic [`NE-1:0] ZExpM; // input's exponent - memory stage
logic [`NF:0] XManE, YManE, ZManE; // input's fraction - execute stage
logic [`NF:0] XManM, YManM, ZManM; // input's fraction - memory stage
logic XNaNE, YNaNE, ZNaNE; // is the input a NaN - execute stage
logic XNaNM, YNaNM, ZNaNM; // is the input a NaN - memory stage
logic XNaNQ, YNaNQ; // is the input a NaN - divide
logic XSNaNE, YSNaNE, ZSNaNE; // is the input a signaling NaN - execute stage
logic XSNaNM, YSNaNM, ZSNaNM; // is the input a signaling NaN - memory stage
logic XDenormE, YDenormE, ZDenormE; // is the input denormalized
logic XDenormE, ZDenormE; // is the input denormalized
logic XZeroE, YZeroE, ZZeroE; // is the input zero - execute stage
logic XZeroM, YZeroM, ZZeroM; // is the input zero - memory stage
logic XZeroQ, YZeroQ; // is the input zero - divide
@ -103,34 +103,33 @@ module fpu (
logic XInfM, YInfM, ZInfM; // is the input infinity - memory stage
logic XInfQ, YInfQ; // is the input infinity - divide
logic XExpMaxE; // is the exponent all ones (max value)
logic XNormE; // is normal
logic ZOrigDenormE, XOrigDenormE;
logic FmtQ;
logic FOpCtrlQ;
// result and flag signals
logic [63:0] FDivResM, FDivResW; // divide/squareroot result
logic [4:0] FDivFlgM; // divide/squareroot flags
logic [63:0] FMAResM, FMAResW; // FMA/multiply result
logic [`FLEN-1:0] FMAResM, FMAResW; // FMA/multiply result
logic [4:0] FMAFlgM; // FMA/multiply result
logic [63:0] ReadResW; // read result (load instruction)
logic [63:0] CvtResE; // FP <-> int convert result
logic [`FLEN-1:0] ReadResW; // read result (load instruction)
logic [`FLEN-1:0] CvtResE; // FP <-> int convert result
logic [`XLEN-1:0] CvtIntResE; // FP <-> int convert result
logic [4:0] CvtFlgE; // FP <-> int convert flags //*** trim this
logic [63:0] ClassResE; // classify result
logic [63:0] CmpResE; // compare result
logic [`XLEN-1:0] ClassResE; // classify result
logic [`FLEN-1:0] CmpResE; // compare result
logic CmpNVE; // compare invalid flag (Not Valid)
logic [63:0] SgnResE; // sign injection result
logic [63:0] FResE, FResM, FResW; // selected result that is ready in the memory stage
logic [`FLEN-1:0] SgnResE; // sign injection result
logic [`FLEN-1:0] FResE, FResM, FResW; // selected result that is ready in the memory stage
logic [4:0] FFlgE, FFlgM; // selected flag that is ready in the memory stage
logic [`XLEN-1:0] FIntResE;
logic [63:0] FPUResultW; // final FP result being written to the FP register
logic [`FLEN-1:0] FPUResultW; // final FP result being written to the FP register
// other signals
logic FDivSqrtDoneE; // is divide done
logic [63:0] DivInput1E, DivInput2E; // inputs to divide/squareroot unit
logic load_preload; // enable for FF on fpdivsqrt
logic [63:0] AlignedSrcAE; // align SrcA to the floating point format
logic [63:0] BoxedZeroE; // Zero value for Z for multiplication, with NaN boxing if needed
logic [`FLEN-1:0] AlignedSrcAE; // align SrcA to the floating point format
logic [`FLEN-1:0] BoxedZeroE; // Zero value for Z for multiplication, with NaN boxing if needed
logic [`FLEN-1:0] BoxedOneE; // Zero value for Z for multiplication, with NaN boxing if needed
// DECODE STAGE
@ -146,12 +145,12 @@ module fpu (
.rd1(FRD1D), .rd2(FRD2D), .rd3(FRD3D));
// D/E pipeline registers
flopenrc #(64) DEReg1(clk, reset, FlushE, ~StallE, FRD1D, FRD1E);
flopenrc #(64) DEReg2(clk, reset, FlushE, ~StallE, FRD2D, FRD2E);
flopenrc #(64) DEReg3(clk, reset, FlushE, ~StallE, FRD3D, FRD3E);
flopenrc #(`FLEN) DEReg1(clk, reset, FlushE, ~StallE, FRD1D, FRD1E);
flopenrc #(`FLEN) DEReg2(clk, reset, FlushE, ~StallE, FRD2D, FRD2E);
flopenrc #(`FLEN) DEReg3(clk, reset, FlushE, ~StallE, FRD3D, FRD3E);
flopenrc #(15) DEAdrReg(clk, reset, FlushE, ~StallE, {InstrD[19:15], InstrD[24:20], InstrD[31:27]},
{Adr1E, Adr2E, Adr3E});
flopenrc #(16) DECtrlReg3(clk, reset, FlushE, ~StallE,
flopenrc #(16+int'(`FMTBITS-1)) DECtrlReg3(clk, reset, FlushE, ~StallE,
{FRegWriteD, FResultSelD, FResSelD, FIntResSelD, FrmD, FmtD, FOpCtrlD, FWriteIntD, FDivStartD},
{FRegWriteE, FResultSelE, FResSelE, FIntResSelE, FrmE, FmtE, FOpCtrlE, FWriteIntE, FDivStartE});
@ -162,24 +161,46 @@ module fpu (
.FStallD, .FForwardXE, .FForwardYE, .FForwardZE);
// forwarding muxs
mux3 #(64) fxemux (FRD1E, FPUResultW, FResM, FForwardXE, FSrcXE);
mux3 #(64) fyemux (FRD2E, FPUResultW, FResM, FForwardYE, FPreSrcYE);
mux3 #(64) fzemux (FRD3E, FPUResultW, FResM, FForwardZE, FPreSrcZE);
mux3 #(64) fyaddmux (FPreSrcYE, {{32{1'b1}}, 2'b0, {7{1'b1}}, 23'b0},
{2'b0, {10{1'b1}}, 52'b0},
{FmtE&FOpCtrlE[2]&FOpCtrlE[1]&(FResultSelE==2'b01), ~FmtE&FOpCtrlE[2]&FOpCtrlE[1]&(FResultSelE==2'b01)},
FSrcYE); // Force Z to be 0 for multiply instructions
mux3 #(`FLEN) fxemux (FRD1E, FPUResultW, FResM, FForwardXE, FSrcXE);
mux3 #(`FLEN) fyemux (FRD2E, FPUResultW, FResM, FForwardYE, FPreSrcYE);
mux3 #(`FLEN) fzemux (FRD3E, FPUResultW, FResM, FForwardZE, FPreSrcZE);
generate
if(`FPSIZES == 1) assign BoxedOneE = {2'b0, {`NE-1{1'b1}}, (`NF)'(0)};
else if(`FPSIZES == 2)
mux2 #(`FLEN) fonemux ({{`FLEN-`LEN1{1'b1}}, 2'b0, {`NE1-1{1'b1}}, (`NF1)'(0)}, {2'b0, {`NE-1{1'b1}}, (`NF)'(0)}, FmtE, BoxedOneE); // NaN boxing zeroes
else if(`FPSIZES == 3 | `FPSIZES == 4)
mux4 #(`FLEN) fonemux ({{`FLEN-`S_LEN{1'b1}}, 2'b0, {`S_NE-1{1'b1}}, (`S_NF)'(0)},
{{`FLEN-`D_LEN{1'b1}}, 2'b0, {`D_NE-1{1'b1}}, (`D_NF)'(0)},
{{`FLEN-`H_LEN{1'b1}}, 2'b0, {`H_NE-1{1'b1}}, (`H_NF)'(0)},
{2'b0, {`NE-1{1'b1}}, (`NF)'(0)}, FmtE, BoxedOneE); // NaN boxing zeroes
endgenerate
mux2 #(`FLEN) fyaddmux (FPreSrcYE, BoxedOneE, FOpCtrlE[2]&FOpCtrlE[1]&(FResultSelE==2'b01), FSrcYE); // Force Z to be 0 for multiply instructions
// Force Z to be 0 for multiply instructions
mux2 #(64) fmulzeromux (64'hFFFFFFFF00000000, 64'b0, FmtE, BoxedZeroE); // NaN boxing for 32-bit zero
mux3 #(64) fzmulmux (FPreSrcZE, BoxedZeroE, FPreSrcYE, {FOpCtrlE[2]&FOpCtrlE[1], FOpCtrlE[2]&~FOpCtrlE[1]}, FSrcZE);
generate
if(`FPSIZES == 1) assign BoxedZeroE = 0;
else if(`FPSIZES == 2)
mux2 #(`FLEN) fmulzeromux ({{`FLEN-`LEN1{1'b1}}, {`LEN1{1'b0}}}, (`FLEN)'(0), FmtE, BoxedZeroE); // NaN boxing zeroes
else if(`FPSIZES == 3 | `FPSIZES == 4)
mux4 #(`FLEN) fmulzeromux ({{`FLEN-`S_LEN{1'b1}}, {`S_LEN{1'b0}}},
{{`FLEN-`D_LEN{1'b1}}, {`D_LEN{1'b0}}},
{{`FLEN-`H_LEN{1'b1}}, {`H_LEN{1'b0}}},
(`FLEN)'(0), FmtE, BoxedZeroE); // NaN boxing zeroes
endgenerate
mux3 #(`FLEN) fzmulmux (FPreSrcZE, BoxedZeroE, FPreSrcYE, {FOpCtrlE[2]&FOpCtrlE[1], FOpCtrlE[2]&~FOpCtrlE[1]}, FSrcZE);
// unpack unit
// - splits FP inputs into their various parts
// - does some classifications (SNaN, NaN, Denorm, Norm, Zero, Infifnity)
unpack unpack (.X(FSrcXE), .Y(FSrcYE), .Z(FSrcZE), .FmtE, .ZOrigDenormE, .XOrigDenormE,
unpack unpack (.X(FSrcXE), .Y(FSrcYE), .Z(FSrcZE), .FmtE,
.XSgnE, .YSgnE, .ZSgnE, .XExpE, .YExpE, .ZExpE, .XManE, .YManE, .ZManE,
.XNaNE, .YNaNE, .ZNaNE, .XSNaNE, .YSNaNE, .ZSNaNE, .XDenormE, .YDenormE, .ZDenormE,
.XZeroE, .YZeroE, .ZZeroE, .XInfE, .YInfE, .ZInfE, .XExpMaxE, .XNormE);
.XNaNE, .YNaNE, .ZNaNE, .XSNaNE, .YSNaNE, .ZSNaNE, .XDenormE, .ZDenormE,
.XZeroE, .YZeroE, .ZZeroE, .XInfE, .YInfE, .ZInfE, .XExpMaxE);
// FMA
// - two stage FMA
@ -188,26 +209,36 @@ module fpu (
// - handles FMA and multiply instructions
fma fma (.clk, .reset, .FlushM, .StallM,
.XSgnE, .YSgnE, .ZSgnE, .XExpE, .YExpE, .ZExpE, .XManE, .YManE, .ZManE,
.XDenormE, .YDenormE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE,
.ZDenormE, .XZeroE, .YZeroE, .ZZeroE,
.XSgnM, .YSgnM, .ZExpM, .XManM, .YManM, .ZManM,
.XNaNM, .YNaNM, .ZNaNM, .XZeroM, .YZeroM, .ZZeroM,
.XInfM, .YInfM, .ZInfM, .XSNaNM, .YSNaNM, .ZSNaNM,
.FOpCtrlE, .ZOrigDenormE,
.FOpCtrlE,
.FmtE, .FmtM, .FrmM,
.FMAFlgM, .FMAResM);
// fpdivsqrt using Goldschmidt's iteration
flopenrc #(64) reg_input1 (.d({XSgnE, XExpE, XManE[51:0]}), .q(DivInput1E),
if(`FLEN == 64) begin
flopenrc #(64) reg_input1 (.d({FSrcXE[63:0]}), .q(DivInput1E),
.clear(FDivSqrtDoneE), .en(load_preload),
.reset(reset), .clk(clk));
flopenrc #(64) reg_input2 (.d({YSgnE, YExpE, YManE[51:0]}), .q(DivInput2E),
flopenrc #(64) reg_input2 (.d({FSrcYE[63:0]}), .q(DivInput2E),
.clear(FDivSqrtDoneE), .en(load_preload),
.reset(reset), .clk(clk));
flopenrc #(8) reg_input3 (.d({XNaNE, YNaNE, XInfE, YInfE, XZeroE, YZeroE, FmtE, FOpCtrlE[0]}),
end
else if (`FLEN == 32) begin
flopenrc #(64) reg_input1 (.d({32'b0, FSrcXE[31:0]}), .q(DivInput1E),
.clear(FDivSqrtDoneE), .en(load_preload),
.reset(reset), .clk(clk));
flopenrc #(64) reg_input2 (.d({32'b0, FSrcYE[31:0]}), .q(DivInput2E),
.clear(FDivSqrtDoneE), .en(load_preload),
.reset(reset), .clk(clk));
end
flopenrc #(8) reg_input3 (.d({XNaNE, YNaNE, XInfE, YInfE, XZeroE, YZeroE, FmtE[0], FOpCtrlE[0]}),
.q({XNaNQ, YNaNQ, XInfQ, YInfQ, XZeroQ, YZeroQ, FmtQ, FOpCtrlQ}),
.clear(FDivSqrtDoneE), .en(load_preload),
.reset(reset), .clk(clk));
fpdiv_pipe fdivsqrt (.op1(DivInput1E), .op2(DivInput2E), .rm(FrmE[1:0]), .op_type(FOpCtrlQ),
fpdiv_pipe fdivsqrt (.op1(DivInput1E[63:0]), .op2(DivInput2E[63:0]), .rm(FrmE[1:0]), .op_type(FOpCtrlQ),
.reset, .clk(clk), .start(FDivStartE), .P(~FmtQ), .OvEn(1'b1), .UnEn(1'b1),
.XNaNQ, .YNaNQ, .XInfQ, .YInfQ, .XZeroQ, .YZeroQ, .load_preload,
.FDivBusyE, .done(FDivSqrtDoneE), .AS_Result(FDivResM), .Flags(FDivFlgM));
@ -215,40 +246,55 @@ module fpu (
// other FP execution units
fcmp fcmp (.FmtE, .FOpCtrlE, .XSgnE, .YSgnE, .XExpE, .YExpE, .XManE, .YManE,
.XZeroE, .YZeroE, .XNaNE, .YNaNE, .XSNaNE, .YSNaNE, .FSrcXE, .FSrcYE, .CmpNVE, .CmpResE);
fsgn fsgn (.SgnOpCodeE(FOpCtrlE[1:0]), .XSgnE, .YSgnE, .FSrcXE, .FmtE, .SgnResE);
fclassify fclassify (.XSgnE, .XDenormE, .XZeroE, .XNaNE, .XInfE, .XNormE, .XSNaNE, .ClassResE);
fcvt fcvt (.XSgnE, .XExpE, .XManE, .ForwardedSrcAE, .FOpCtrlE, .FWriteIntE, .XZeroE, .XOrigDenormE,
fsgninj fsgninj(.SgnOpCodeE(FOpCtrlE[1:0]), .XSgnE, .YSgnE, .FSrcXE, .FmtE, .SgnResE);
fclassify fclassify (.XSgnE, .XDenormE, .XZeroE, .XNaNE, .XInfE, .XSNaNE, .ClassResE);
fcvt fcvt (.XSgnE, .XExpE, .XManE, .ForwardedSrcAE, .FOpCtrlE, .FWriteIntE, .XZeroE, .XDenormE,
.XInfE, .XNaNE, .XSNaNE, .FrmE, .FmtE, .CvtResE, .CvtIntResE, .CvtFlgE);
// data to be stored in memory - to IEU
// - FP uses NaN-blocking format
// - if there are any unsused bits the most significant bits are filled with 1s
assign FWriteDataE = FSrcYE[`XLEN-1:0];
// Align SrcA to MSB when single precicion
mux2 #(64) SrcAMux({{32{1'b1}}, ForwardedSrcAE[31:0]}, {{64-`XLEN{1'b1}}, ForwardedSrcAE}, FmtE, AlignedSrcAE);
if (`FLEN>`XLEN) assign FWriteDataE = FSrcYE[`XLEN-1:0];
else assign FWriteDataE = {{`XLEN-`FLEN{FSrcYE[`FLEN-1]}}, FSrcYE};
// NaN Block SrcA
generate
if(`FPSIZES == 1) assign AlignedSrcAE = {{`FLEN-`XLEN{1'b1}}, ForwardedSrcAE};
else if(`FPSIZES == 2)
mux2 #(`FLEN) SrcAMux ({{`FLEN-`LEN1{1'b1}}, ForwardedSrcAE[`LEN1-1:0]}, {{`FLEN-`XLEN{1'b1}}, ForwardedSrcAE}, FmtE, AlignedSrcAE);
else if(`FPSIZES == 3 | `FPSIZES == 4)
mux4 #(`FLEN) SrcAMux ({{`FLEN-`S_LEN{1'b1}}, ForwardedSrcAE[`S_LEN-1:0]},
{{`FLEN-`D_LEN{1'b1}}, ForwardedSrcAE[`D_LEN-1:0]},
{{`FLEN-`H_LEN{1'b1}}, ForwardedSrcAE[`H_LEN-1:0]},
{{`FLEN-`XLEN{1'b1}}, ForwardedSrcAE}, FmtE, AlignedSrcAE); // NaN boxing zeroes
endgenerate
// select a result that may be written to the FP register
mux4 #(64) FResMux(AlignedSrcAE, SgnResE, CmpResE, CvtResE, FResSelE, FResE);
mux4 #(`FLEN) FResMux(AlignedSrcAE, SgnResE, CmpResE, CvtResE, FResSelE, FResE);
mux4 #(5) FFlgMux(5'b0, 5'b0, {CmpNVE, 4'b0}, CvtFlgE, FResSelE, FFlgE);
// select the result that may be written to the integer register - to IEU
mux4 #(`XLEN) IntResMux(CmpResE[`XLEN-1:0], FSrcXE[`XLEN-1:0], ClassResE[`XLEN-1:0],
CvtIntResE, FIntResSelE, FIntResE);
if (`FLEN>`XLEN)
mux4 #(`XLEN) IntResMux(CmpResE[`XLEN-1:0], FSrcXE[`XLEN-1:0], ClassResE,
CvtIntResE, FIntResSelE, FIntResE);
else
mux4 #(`XLEN) IntResMux({{`XLEN-`FLEN{CmpResE[`FLEN-1:0]}}, CmpResE}, {{`XLEN-`FLEN{FSrcXE[`FLEN-1:0]}}, FSrcXE}, ClassResE,
CvtIntResE, FIntResSelE, FIntResE);
// *** DH 5/25/22: CvtRes will move to mem stage. Premux in execute to save area, then make sure stalls are ok
// *** make sure the fpu matches the chapter diagram
// E/M pipe registers
// flopenrc #(64) EMFpReg1(clk, reset, FlushM, ~StallM, FSrcXE, FSrcXM);
flopenrc #(54) EMFpReg2 (clk, reset, FlushM, ~StallM, {XSgnE,XManE}, {XSgnM,XManM});
flopenrc #(54) EMFpReg3 (clk, reset, FlushM, ~StallM, {YSgnE,YManE}, {YSgnM,YManM});
flopenrc #(64) EMFpReg4 (clk, reset, FlushM, ~StallM, {ZExpE,ZManE}, {ZExpM,ZManM});
flopenrc #(`NF+2) EMFpReg2 (clk, reset, FlushM, ~StallM, {XSgnE,XManE}, {XSgnM,XManM});
flopenrc #(`NF+2) EMFpReg3 (clk, reset, FlushM, ~StallM, {YSgnE,YManE}, {YSgnM,YManM});
flopenrc #(`FLEN) EMFpReg4 (clk, reset, FlushM, ~StallM, {ZExpE,ZManE}, {ZExpM,ZManM});
flopenrc #(12) EMFpReg5 (clk, reset, FlushM, ~StallM,
{XZeroE, YZeroE, ZZeroE, XInfE, YInfE, ZInfE, XNaNE, YNaNE, ZNaNE, XSNaNE, YSNaNE, ZSNaNE},
{XZeroM, YZeroM, ZZeroM, XInfM, YInfM, ZInfM, XNaNM, YNaNM, ZNaNM, XSNaNM, YSNaNM, ZSNaNM});
flopenrc #(64) EMRegCmpRes (clk, reset, FlushM, ~StallM, FResE, FResM);
flopenrc #(`FLEN) EMRegCmpRes (clk, reset, FlushM, ~StallM, FResE, FResM);
flopenrc #(5) EMRegCmpFlg (clk, reset, FlushM, ~StallM, FFlgE, FFlgM);
flopenrc #(`XLEN) EMRegSgnRes (clk, reset, FlushM, ~StallM, FIntResE, FIntResM);
flopenrc #(7) EMCtrlReg (clk, reset, FlushM, ~StallM,
flopenrc #(7+int'(`FMTBITS-1)) EMCtrlReg (clk, reset, FlushM, ~StallM,
{FRegWriteE, FResultSelE, FrmE, FmtE},
{FRegWriteM, FResultSelM, FrmM, FmtM});
@ -258,10 +304,10 @@ module fpu (
mux4 #(5) FPUFlgMux (5'b0, FMAFlgM, FDivFlgM, FFlgM, FResultSelM, SetFflagsM);
// M/W pipe registers
flopenrc #(64) MWRegFma(clk, reset, FlushW, ~StallW, FMAResM, FMAResW);
flopenrc #(`FLEN) MWRegFma(clk, reset, FlushW, ~StallW, FMAResM, FMAResW);
flopenrc #(64) MWRegDiv(clk, reset, FlushW, ~StallW, FDivResM, FDivResW);
flopenrc #(64) MWRegClass(clk, reset, FlushW, ~StallW, FResM, FResW);
flopenrc #(4) MWCtrlReg(clk, reset, FlushW, ~StallW,
flopenrc #(`FLEN) MWRegClass(clk, reset, FlushW, ~StallW, FResM, FResW);
flopenrc #(4+int'(`FMTBITS-1)) MWCtrlReg(clk, reset, FlushW, ~StallW,
{FRegWriteM, FResultSelM, FmtM},
{FRegWriteW, FResultSelW, FmtW});
@ -270,8 +316,18 @@ module fpu (
// put ReadData into NaN-blocking format
// - if there are any unsused bits the most significant bits are filled with 1s
// - for load instruction
mux2 #(64) ReadResMux ({{32{1'b1}}, ReadDataW[31:0]}, {{64-`XLEN{1'b1}}, ReadDataW}, FmtW, ReadResW);
generate
if(`FPSIZES == 1) assign ReadResW = {{`FLEN-`XLEN{1'b1}}, ReadDataW};
else if(`FPSIZES == 2)
mux2 #(`FLEN) SrcAMux ({{`FLEN-`LEN1{1'b1}}, ReadDataW[`LEN1-1:0]}, {{`FLEN-`XLEN{1'b1}}, ReadDataW}, FmtW, ReadResW);
else if(`FPSIZES == 3 | `FPSIZES == 4)
mux4 #(`FLEN) SrcAMux ({{`FLEN-`S_LEN{1'b1}}, ReadDataW[`S_LEN-1:0]},
{{`FLEN-`D_LEN{1'b1}}, ReadDataW[`D_LEN-1:0]},
{{`FLEN-`H_LEN{1'b1}}, ReadDataW[`H_LEN-1:0]},
{{`FLEN-`XLEN{1'b1}}, ReadDataW}, FmtW, ReadResW); // NaN boxing zeroes
endgenerate
// select the result to be written to the FP register
mux4 #(64) FPUResultMux (ReadResW, FMAResW, FDivResW, FResW, FResultSelW, FPUResultW);
if(`FLEN>=64)
mux4 #(`FLEN) FPUResultMux (ReadResW, FMAResW, {{`FLEN-64{1'b0}},FDivResW}, FResW, FResultSelW, FPUResultW);
endmodule // fpu

View File

@ -33,10 +33,10 @@ module fregfile (
input logic clk, reset,
input logic we4,
input logic [4:0] a1, a2, a3, a4,
input logic [63:0] wd4,
output logic [63:0] rd1, rd2, rd3);
input logic [`FLEN-1:0] wd4,
output logic [`FLEN-1:0] rd1, rd2, rd3);
logic [63:0] rf[31:0];
logic [`FLEN-1:0] rf[31:0];
integer i;
// three ported register file

View File

@ -1,29 +0,0 @@
//performs the fsgnj/fsgnjn/fsgnjx RISCV instructions
module fsgn (
input logic XSgnE, YSgnE, // X and Y sign bits
input logic [63:0] FSrcXE, // X
input logic FmtE, // precision 1 = double 0 = single
input logic [1:0] SgnOpCodeE, // operation control
output logic [63:0] SgnResE // result
);
logic ResSgn;
//op code designation:
//
//00 - fsgnj - directly copy over sign value of FSrcYE
//01 - fsgnjn - negate sign value of FSrcYE
//10 - fsgnjx - XOR sign values of FSrcXE & FSrcYE
//
// calculate the result's sign
assign ResSgn = SgnOpCodeE[1] ? (XSgnE ^ YSgnE) : (YSgnE ^ SgnOpCodeE[0]);
// format final result based on precision
// - uses NaN-blocking format
// - if there are any unsused bits the most significant bits are filled with 1s
assign SgnResE = FmtE ? {ResSgn, FSrcXE[62:0]} : {FSrcXE[63:32], ResSgn, FSrcXE[30:0]};
endmodule

80
pipelined/src/fpu/fsgninj.sv Executable file
View File

@ -0,0 +1,80 @@
///////////////////////////////////////////
//
// Written: Katherine Parry
// Modified: 6/23/2021
//
// Purpose: FPU Sign Injection instructions
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module fsgninj (
input logic XSgnE, YSgnE, // X and Y sign bits
input logic [`FLEN-1:0] FSrcXE, // X
input logic [`FMTBITS-1:0] FmtE, // precision 1 = double 0 = single
input logic [1:0] SgnOpCodeE, // operation control
output logic [`FLEN-1:0] SgnResE // result
);
logic ResSgn;
//op code designation:
//
//00 - fsgnj - directly copy over sign value of FSrcYE
//01 - fsgnjn - negate sign value of FSrcYE
//10 - fsgnjx - XOR sign values of FSrcXE & FSrcYE
//
// calculate the result's sign
assign ResSgn = SgnOpCodeE[1] ? (XSgnE ^ YSgnE) : (YSgnE ^ SgnOpCodeE[0]);
// format final result based on precision
// - uses NaN-blocking format
// - if there are any unsused bits the most significant bits are filled with 1s
if (`FPSIZES == 1)
assign SgnResE = {ResSgn, FSrcXE[`FLEN-2:0]};
else if (`FPSIZES == 2)
assign SgnResE = FmtE ? {ResSgn, FSrcXE[`FLEN-2:0]} : {{`FLEN-`LEN1{1'b1}}, ResSgn, FSrcXE[`LEN1-2:0]};
else if (`FPSIZES == 3)
always_comb
case (FmtE)
`FMT: SgnResE = {ResSgn, FSrcXE[`FLEN-2:0]};
`FMT1: SgnResE = {{`FLEN-`LEN1{1'b1}}, ResSgn, FSrcXE[`LEN1-2:0]};
`FMT2: SgnResE = {{`FLEN-`LEN2{1'b1}}, ResSgn, FSrcXE[`LEN2-2:0]};
default: SgnResE = 0;
endcase
else if (`FPSIZES == 4)
always_comb
case (FmtE)
2'h3: SgnResE = {ResSgn, FSrcXE[`Q_LEN-2:0]};
2'h1: SgnResE = {{`Q_LEN-`D_LEN{1'b1}}, ResSgn, FSrcXE[`D_LEN-2:0]};
2'h0: SgnResE = {{`Q_LEN-`S_LEN{1'b1}}, ResSgn, FSrcXE[`S_LEN-2:0]};
2'h2: SgnResE = {{`Q_LEN-`H_LEN{1'b1}}, ResSgn, FSrcXE[`H_LEN-2:0]};
endcase
endmodule

View File

@ -2,555 +2,35 @@
module unpack (
input logic [`FLEN-1:0] X, Y, Z, // inputs from register file
input logic [`FPSIZES/3:0] FmtE, // format signal 00 - single 01 - double 11 - quad 10 - half
input logic [`FMTBITS-1:0] FmtE, // format signal 00 - single 01 - double 11 - quad 10 - half
output logic XSgnE, YSgnE, ZSgnE, // sign bits of XYZ
output logic [`NE-1:0] XExpE, YExpE, ZExpE, // exponents of XYZ (converted to largest supported precision)
output logic [`NF:0] XManE, YManE, ZManE, // mantissas of XYZ (converted to largest supported precision)
output logic XNormE, // is X a normalized number
output logic XNaNE, YNaNE, ZNaNE, // is XYZ a NaN
output logic XSNaNE, YSNaNE, ZSNaNE, // is XYZ a signaling NaN
output logic XDenormE, YDenormE, ZDenormE, // is XYZ denormalized
output logic XDenormE, ZDenormE, // is XYZ denormalized
output logic XZeroE, YZeroE, ZZeroE, // is XYZ zero
output logic XInfE, YInfE, ZInfE, // is XYZ infinity
output logic XOrigDenormE, ZOrigDenormE, // is the original precision denormalized
output logic XExpMaxE // does X have the maximum exponent (NaN or Inf)
);
logic [`NF-1:0] XFracE, YFracE, ZFracE; //Fraction of XYZ
logic XExpNonzero, YExpNonzero, ZExpNonzero; // is the exponent of XYZ non-zero
logic XExpNonZero, YExpNonZero, ZExpNonZero; // is the exponent of XYZ non-zero
logic XFracZero, YFracZero, ZFracZero; // is the fraction zero
logic XExpZero, YExpZero, ZExpZero; // is the exponent zero
logic YExpMaxE, ZExpMaxE; // is the exponent all 1s
if (`FPSIZES == 1) begin // if there is only one floating point format supported
unpackinput unpackinputX (.In(X), .FmtE, .Sgn(XSgnE), .Exp(XExpE), .Man(XManE),
.NaN(XNaNE), .SNaN(XSNaNE), .ExpNonZero(XExpNonZero),
.Zero(XZeroE), .Inf(XInfE), .ExpMax(XExpMaxE), .FracZero(XFracZero));
// sign bit
assign XSgnE = X[`FLEN-1];
assign YSgnE = Y[`FLEN-1];
assign ZSgnE = Z[`FLEN-1];
// exponent
assign XExpE = X[`FLEN-2:`NF];
assign YExpE = Y[`FLEN-2:`NF];
assign ZExpE = Z[`FLEN-2:`NF];
// fraction (no assumed 1)
assign XFracE = X[`NF-1:0];
assign YFracE = Y[`NF-1:0];
assign ZFracE = Z[`NF-1:0];
// is the exponent non-zero
assign XExpNonzero = |XExpE;
assign YExpNonzero = |YExpE;
assign ZExpNonzero = |ZExpE;
// is the exponent all 1's
assign XExpMaxE = &XExpE;
assign YExpMaxE = &YExpE;
assign ZExpMaxE = &ZExpE;
assign XOrigDenormE = 1'b0;
assign ZOrigDenormE = 1'b0;
end else if (`FPSIZES == 2) begin // if there are 2 floating point formats supported
//***need better names for these constants
// largest format | smaller format
//----------------------------------
// `FLEN | `LEN1 length of floating point number
// `NE | `NE1 length of exponent
// `NF | `NF1 length of fraction
// `BIAS | `BIAS1 exponent's bias value
// `FMT | `FMT1 precision's format value - Q=11 D=01 S=00 H=10
// Possible combinantions specified by spec:
// double and single
// single and half
// Not needed but can also handle:
// quad and double
// quad and single
// quad and half
// double and half
logic [`LEN1-1:0] XLen1, YLen1, ZLen1; // Remove NaN boxing or NaN, if not properly NaN boxed
logic YOrigDenormE; // the original value of XYZ is denormalized
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN
assign XLen1 = &X[`FLEN-1:`LEN1] ? X[`LEN1-1:0] : {1'b0, {`NE1+1{1'b1}}, (`NF1-1)'(0)};
assign YLen1 = &Y[`FLEN-1:`LEN1] ? Y[`LEN1-1:0] : {1'b0, {`NE1+1{1'b1}}, (`NF1-1)'(0)};
assign ZLen1 = &Z[`FLEN-1:`LEN1] ? Z[`LEN1-1:0] : {1'b0, {`NE1+1{1'b1}}, (`NF1-1)'(0)};
// choose sign bit depending on format - 1=larger precsion 0=smaller precision
assign XSgnE = FmtE ? X[`FLEN-1] : XLen1[`LEN1-1];
assign YSgnE = FmtE ? Y[`FLEN-1] : YLen1[`LEN1-1];
assign ZSgnE = FmtE ? Z[`FLEN-1] : ZLen1[`LEN1-1];
// example double to single conversion:
// 1023 = 0011 1111 1111
// 127 = 0000 0111 1111 (subtract this)
// 896 = 0011 1000 0000
// sexp = 0000 bbbb bbbb (add this) b = bit d = ~b
// dexp = 0bdd dbbb bbbb
// also need to take into account possible zero/denorm/inf/NaN values
// extract the exponent, converting the smaller exponent into the larger precision if nessisary
// - if the original precision had a denormal number convert the exponent value 1
assign XExpE = FmtE ? X[`FLEN-2:`NF] : XOrigDenormE ? {1'b0, {`NE-`NE1{1'b1}}, (`NE1-1)'(1)} : {XLen1[`LEN1-2], {`NE-`NE1{~XLen1[`LEN1-2]&~XExpZero|XExpMaxE}}, XLen1[`LEN1-3:`NF1]};
assign YExpE = FmtE ? Y[`FLEN-2:`NF] : YOrigDenormE ? {1'b0, {`NE-`NE1{1'b1}}, (`NE1-1)'(1)} : {YLen1[`LEN1-2], {`NE-`NE1{~YLen1[`LEN1-2]&~YExpZero|YExpMaxE}}, YLen1[`LEN1-3:`NF1]};
assign ZExpE = FmtE ? Z[`FLEN-2:`NF] : ZOrigDenormE ? {1'b0, {`NE-`NE1{1'b1}}, (`NE1-1)'(1)} : {ZLen1[`LEN1-2], {`NE-`NE1{~ZLen1[`LEN1-2]&~ZExpZero|ZExpMaxE}}, ZLen1[`LEN1-3:`NF1]};
// is the input (in it's original format) denormalized
assign XOrigDenormE = FmtE ? 0 : ~|XLen1[`LEN1-2:`NF1] & ~XFracZero;
assign YOrigDenormE = FmtE ? 0 : ~|YLen1[`LEN1-2:`NF1] & ~YFracZero;
assign ZOrigDenormE = FmtE ? 0 : ~|ZLen1[`LEN1-2:`NF1] & ~ZFracZero;
// extract the fraction, add trailing zeroes to the mantissa if nessisary
assign XFracE = FmtE ? X[`NF-1:0] : {XLen1[`NF1-1:0], (`NF-`NF1)'(0)};
assign YFracE = FmtE ? Y[`NF-1:0] : {YLen1[`NF1-1:0], (`NF-`NF1)'(0)};
assign ZFracE = FmtE ? Z[`NF-1:0] : {ZLen1[`NF1-1:0], (`NF-`NF1)'(0)};
// is the exponent non-zero
assign XExpNonzero = FmtE ? |X[`FLEN-2:`NF] : |XLen1[`LEN1-2:`NF1];
assign YExpNonzero = FmtE ? |Y[`FLEN-2:`NF] : |YLen1[`LEN1-2:`NF1];
assign ZExpNonzero = FmtE ? |Z[`FLEN-2:`NF] : |ZLen1[`LEN1-2:`NF1];
// is the exponent all 1's
assign XExpMaxE = FmtE ? &X[`FLEN-2:`NF] : &XLen1[`LEN1-2:`NF1];
assign YExpMaxE = FmtE ? &Y[`FLEN-2:`NF] : &YLen1[`LEN1-2:`NF1];
assign ZExpMaxE = FmtE ? &Z[`FLEN-2:`NF] : &ZLen1[`LEN1-2:`NF1];
end else if (`FPSIZES == 3) begin // three floating point precsions supported
//***need better names for these constants
// largest format | larger format | smallest format
//---------------------------------------------------
// `FLEN | `LEN1 | `LEN2 length of floating point number
// `NE | `NE1 | `NE2 length of exponent
// `NF | `NF1 | `NF2 length of fraction
// `BIAS | `BIAS1 | `BIAS2 exponent's bias value
// `FMT | `FMT1 | `FMT2 precision's format value - Q=11 D=01 S=00 H=10
// Possible combinantions specified by spec:
// quad and double and single
// double and single and half
// Not needed but can also handle:
// quad and double and half
// quad and single and half
logic [`LEN1-1:0] XLen1, YLen1, ZLen1; // Remove NaN boxing or NaN, if not properly NaN boxed for larger percision
logic [`LEN2-1:0] XLen2, YLen2, ZLen2; // Remove NaN boxing or NaN, if not properly NaN boxed for smallest precision
logic YOrigDenormE; // the original value of XYZ is denormalized
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for larger precision
assign XLen1 = &X[`FLEN-1:`LEN1] ? X[`LEN1-1:0] : {1'b0, {`NE1+1{1'b1}}, (`NF1-1)'(0)};
assign YLen1 = &Y[`FLEN-1:`LEN1] ? Y[`LEN1-1:0] : {1'b0, {`NE1+1{1'b1}}, (`NF1-1)'(0)};
assign ZLen1 = &Z[`FLEN-1:`LEN1] ? Z[`LEN1-1:0] : {1'b0, {`NE1+1{1'b1}}, (`NF1-1)'(0)};
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for smaller precision
assign XLen2 = &X[`FLEN-1:`LEN2] ? X[`LEN2-1:0] : {1'b0, {`NE2+1{1'b1}}, (`NF2-1)'(0)};
assign YLen2 = &Y[`FLEN-1:`LEN2] ? Y[`LEN2-1:0] : {1'b0, {`NE2+1{1'b1}}, (`NF2-1)'(0)};
assign ZLen2 = &Z[`FLEN-1:`LEN2] ? Z[`LEN2-1:0] : {1'b0, {`NE2+1{1'b1}}, (`NF2-1)'(0)};
// There are 2 case statements
// - one for other singals and one for sgn/exp/frac
// - need two for the dependencies in the expoenent calculation
always_comb begin
case (FmtE)
`FMT: begin // if input is largest precision (`FLEN - ie quad or double)
// This is the original format so set OrigDenorm to 0
XOrigDenormE = 1'b0;
YOrigDenormE = 1'b0;
ZOrigDenormE = 1'b0;
// is the exponent non-zero
XExpNonzero = |X[`FLEN-2:`NF];
YExpNonzero = |Y[`FLEN-2:`NF];
ZExpNonzero = |Z[`FLEN-2:`NF];
// is the exponent all 1's
XExpMaxE = &X[`FLEN-2:`NF];
YExpMaxE = &Y[`FLEN-2:`NF];
ZExpMaxE = &Z[`FLEN-2:`NF];
end
`FMT1: begin // if input is larger precsion (`LEN1 - double or single)
// is the input (in it's original format) denormalized
XOrigDenormE = ~|XLen1[`LEN1-2:`NF1] & ~XFracZero;
YOrigDenormE = ~|YLen1[`LEN1-2:`NF1] & ~YFracZero;
ZOrigDenormE = ~|ZLen1[`LEN1-2:`NF1] & ~ZFracZero;
// is the exponent non-zero
XExpNonzero = |XLen1[`LEN1-2:`NF1];
YExpNonzero = |YLen1[`LEN1-2:`NF1];
ZExpNonzero = |ZLen1[`LEN1-2:`NF1];
// is the exponent all 1's
XExpMaxE = &XLen1[`LEN1-2:`NF1];
YExpMaxE = &YLen1[`LEN1-2:`NF1];
ZExpMaxE = &ZLen1[`LEN1-2:`NF1];
end
`FMT2: begin // if input is smallest precsion (`LEN2 - single or half)
// is the input (in it's original format) denormalized
XOrigDenormE = ~|XLen2[`LEN2-2:`NF2] & ~XFracZero;
YOrigDenormE = ~|YLen2[`LEN2-2:`NF2] & ~YFracZero;
ZOrigDenormE = ~|ZLen2[`LEN2-2:`NF2] & ~ZFracZero;
// is the exponent non-zero
XExpNonzero = |XLen2[`LEN2-2:`NF2];
YExpNonzero = |YLen2[`LEN2-2:`NF2];
ZExpNonzero = |ZLen2[`LEN2-2:`NF2];
// is the exponent all 1's
XExpMaxE = &XLen2[`LEN2-2:`NF2];
YExpMaxE = &YLen2[`LEN2-2:`NF2];
ZExpMaxE = &ZLen2[`LEN2-2:`NF2];
end
default: begin
XOrigDenormE = 0;
YOrigDenormE = 0;
ZOrigDenormE = 0;
XExpNonzero = 0;
YExpNonzero = 0;
ZExpNonzero = 0;
XExpMaxE = 0;
YExpMaxE = 0;
ZExpMaxE = 0;
end
endcase
end
always_comb begin
case (FmtE)
`FMT: begin // if input is largest precision (`FLEN - ie quad or double)
// extract the sign bit
XSgnE = X[`FLEN-1];
YSgnE = Y[`FLEN-1];
ZSgnE = Z[`FLEN-1];
// extract the exponent
XExpE = X[`FLEN-2:`NF];
YExpE = Y[`FLEN-2:`NF];
ZExpE = Z[`FLEN-2:`NF];
// extract the fraction
XFracE = X[`NF-1:0];
YFracE = Y[`NF-1:0];
ZFracE = Z[`NF-1:0];
end
`FMT1: begin // if input is larger precsion (`LEN1 - double or single)
// extract the sign bit
XSgnE = XLen1[`LEN1-1];
YSgnE = YLen1[`LEN1-1];
ZSgnE = ZLen1[`LEN1-1];
// example double to single conversion:
// 1023 = 0011 1111 1111
// 127 = 0000 0111 1111 (subtract this)
// 896 = 0011 1000 0000
// sexp = 0000 bbbb bbbb (add this) b = bit d = ~b
// dexp = 0bdd dbbb bbbb
// also need to take into account possible zero/denorm/inf/NaN values
// convert the larger precision's exponent to use the largest precision's bias
XExpE = XOrigDenormE ? {1'b0, {`NE-`NE1{1'b1}}, (`NE1-1)'(1)} : {XLen1[`LEN1-2], {`NE-`NE1{~XLen1[`LEN1-2]&~XExpZero|XExpMaxE}}, XLen1[`LEN1-3:`NF1]};
YExpE = YOrigDenormE ? {1'b0, {`NE-`NE1{1'b1}}, (`NE1-1)'(1)} : {YLen1[`LEN1-2], {`NE-`NE1{~YLen1[`LEN1-2]&~YExpZero|YExpMaxE}}, YLen1[`LEN1-3:`NF1]};
ZExpE = ZOrigDenormE ? {1'b0, {`NE-`NE1{1'b1}}, (`NE1-1)'(1)} : {ZLen1[`LEN1-2], {`NE-`NE1{~ZLen1[`LEN1-2]&~ZExpZero|ZExpMaxE}}, ZLen1[`LEN1-3:`NF1]};
// extract the fraction and add the nessesary trailing zeros
XFracE = {XLen1[`NF1-1:0], (`NF-`NF1)'(0)};
YFracE = {YLen1[`NF1-1:0], (`NF-`NF1)'(0)};
ZFracE = {ZLen1[`NF1-1:0], (`NF-`NF1)'(0)};
end
`FMT2: begin // if input is smallest precsion (`LEN2 - single or half)
// exctract the sign bit
XSgnE = XLen2[`LEN2-1];
YSgnE = YLen2[`LEN2-1];
ZSgnE = ZLen2[`LEN2-1];
// example double to single conversion:
// 1023 = 0011 1111 1111
// 127 = 0000 0111 1111 (subtract this)
// 896 = 0011 1000 0000
// sexp = 0000 bbbb bbbb (add this) b = bit d = ~b
// dexp = 0bdd dbbb bbbb
// also need to take into account possible zero/denorm/inf/NaN values
// convert the smallest precision's exponent to use the largest precision's bias
XExpE = XOrigDenormE ? {1'b0, {`NE-`NE2{1'b1}}, (`NE2-1)'(1)} : {XLen2[`LEN2-2], {`NE-`NE2{~XLen2[`LEN2-2]&~XExpZero|XExpMaxE}}, XLen2[`LEN2-3:`NF2]};
YExpE = YOrigDenormE ? {1'b0, {`NE-`NE2{1'b1}}, (`NE2-1)'(1)} : {YLen2[`LEN2-2], {`NE-`NE2{~YLen2[`LEN2-2]&~YExpZero|YExpMaxE}}, YLen2[`LEN2-3:`NF2]};
ZExpE = ZOrigDenormE ? {1'b0, {`NE-`NE2{1'b1}}, (`NE2-1)'(1)} : {ZLen2[`LEN2-2], {`NE-`NE2{~ZLen2[`LEN2-2]&~ZExpZero|ZExpMaxE}}, ZLen2[`LEN2-3:`NF2]};
// extract the fraction and add the nessesary trailing zeros
XFracE = {XLen2[`NF2-1:0], (`NF-`NF2)'(0)};
YFracE = {YLen2[`NF2-1:0], (`NF-`NF2)'(0)};
ZFracE = {ZLen2[`NF2-1:0], (`NF-`NF2)'(0)};
end
default: begin
XSgnE = 0;
YSgnE = 0;
ZSgnE = 0;
XExpE = 0;
YExpE = 0;
ZExpE = 0;
XFracE = 0;
YFracE = 0;
ZFracE = 0;
end
endcase
end
end else if (`FPSIZES == 4) begin // if all precsisons are supported - quad, double, single, and half
// quad | double | single | half
//-------------------------------------------------------------------
// `Q_LEN | `D_LEN | `S_LEN | `H_LEN length of floating point number
// `Q_NE | `D_NE | `S_NE | `H_NE length of exponent
// `Q_NF | `D_NF | `S_NF | `H_NF length of fraction
// `Q_BIAS | `D_BIAS | `S_BIAS | `H_BIAS exponent's bias value
// `Q_FMT | `D_FMT | `S_FMT | `H_FMT precision's format value - Q=11 D=01 S=00 H=10
logic [`D_LEN-1:0] XLen1, YLen1, ZLen1; // Remove NaN boxing or NaN, if not properly NaN boxed for double percision
logic [`S_LEN-1:0] XLen2, YLen2, ZLen2; // Remove NaN boxing or NaN, if not properly NaN boxed for single percision
logic [`H_LEN-1:0] XLen3, YLen3, ZLen3; // Remove NaN boxing or NaN, if not properly NaN boxed for half percision
logic YOrigDenormE; // the original value of XYZ is denormalized
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for double precision
assign XLen1 = &X[`Q_LEN-1:`D_LEN] ? X[`D_LEN-1:0] : {1'b0, {`D_NE+1{1'b1}}, (`D_NF-1)'(0)};
assign YLen1 = &Y[`Q_LEN-1:`D_LEN] ? Y[`D_LEN-1:0] : {1'b0, {`D_NE+1{1'b1}}, (`D_NF-1)'(0)};
assign ZLen1 = &Z[`Q_LEN-1:`D_LEN] ? Z[`D_LEN-1:0] : {1'b0, {`D_NE+1{1'b1}}, (`D_NF-1)'(0)};
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for single precision
assign XLen2 = &X[`Q_LEN-1:`S_LEN] ? X[`S_LEN-1:0] : {1'b0, {`S_NE+1{1'b1}}, (`S_NF-1)'(0)};
assign YLen2 = &Y[`Q_LEN-1:`S_LEN] ? Y[`S_LEN-1:0] : {1'b0, {`S_NE+1{1'b1}}, (`S_NF-1)'(0)};
assign ZLen2 = &Z[`Q_LEN-1:`S_LEN] ? Z[`S_LEN-1:0] : {1'b0, {`S_NE+1{1'b1}}, (`S_NF-1)'(0)};
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for half precision
assign XLen3 = &X[`Q_LEN-1:`H_LEN] ? X[`H_LEN-1:0] : {1'b0, {`H_NE+1{1'b1}}, (`H_NF-1)'(0)};
assign YLen3 = &Y[`Q_LEN-1:`H_LEN] ? Y[`H_LEN-1:0] : {1'b0, {`H_NE+1{1'b1}}, (`H_NF-1)'(0)};
assign ZLen3 = &Z[`Q_LEN-1:`H_LEN] ? Z[`H_LEN-1:0] : {1'b0, {`H_NE+1{1'b1}}, (`H_NF-1)'(0)};
// There are 2 case statements
// - one for other singals and one for sgn/exp/frac
// - need two for the dependencies in the expoenent calculation
always_comb begin
case (FmtE)
2'b11: begin // if input is quad percision
// This is the original format so set OrigDenorm to 0
XOrigDenormE = 1'b0;
YOrigDenormE = 1'b0;
ZOrigDenormE = 1'b0;
// is the exponent non-zero
XExpNonzero = |X[`Q_LEN-2:`Q_NF];
YExpNonzero = |Y[`Q_LEN-2:`Q_NF];
ZExpNonzero = |Z[`Q_LEN-2:`Q_NF];
// is the exponent all 1's
XExpMaxE = &X[`Q_LEN-2:`Q_NF];
YExpMaxE = &Y[`Q_LEN-2:`Q_NF];
ZExpMaxE = &Z[`Q_LEN-2:`Q_NF];
end
2'b01: begin // if input is double percision
// is the exponent all 1's
XExpMaxE = &XLen1[`D_LEN-2:`D_NF];
YExpMaxE = &YLen1[`D_LEN-2:`D_NF];
ZExpMaxE = &ZLen1[`D_LEN-2:`D_NF];
// is the input (in it's original format) denormalized
XOrigDenormE = ~|XLen1[`D_LEN-2:`D_NF] & ~XFracZero;
YOrigDenormE = ~|YLen1[`D_LEN-2:`D_NF] & ~YFracZero;
ZOrigDenormE = ~|ZLen1[`D_LEN-2:`D_NF] & ~ZFracZero;
// is the exponent non-zero
XExpNonzero = |XLen1[`D_LEN-2:`D_NF];
YExpNonzero = |YLen1[`D_LEN-2:`D_NF];
ZExpNonzero = |ZLen1[`D_LEN-2:`D_NF];
end
2'b00: begin // if input is single percision
// is the exponent all 1's
XExpMaxE = &XLen2[`S_LEN-2:`S_NF];
YExpMaxE = &YLen2[`S_LEN-2:`S_NF];
ZExpMaxE = &ZLen2[`S_LEN-2:`S_NF];
// is the input (in it's original format) denormalized
XOrigDenormE = ~|XLen2[`S_LEN-2:`S_NF] & ~XFracZero;
YOrigDenormE = ~|YLen2[`S_LEN-2:`S_NF] & ~YFracZero;
ZOrigDenormE = ~|ZLen2[`S_LEN-2:`S_NF] & ~ZFracZero;
// is the exponent non-zero
XExpNonzero = |XLen2[`S_LEN-2:`S_NF];
YExpNonzero = |YLen2[`S_LEN-2:`S_NF];
ZExpNonzero = |ZLen2[`S_LEN-2:`S_NF];
end
2'b10: begin // if input is half percision
// is the exponent all 1's
XExpMaxE = &XLen3[`H_LEN-2:`H_NF];
YExpMaxE = &YLen3[`H_LEN-2:`H_NF];
ZExpMaxE = &ZLen3[`H_LEN-2:`H_NF];
// is the input (in it's original format) denormalized
XOrigDenormE = ~|XLen3[`H_LEN-2:`H_NF] & ~XFracZero;
YOrigDenormE = ~|YLen3[`H_LEN-2:`H_NF] & ~YFracZero;
ZOrigDenormE = ~|ZLen3[`H_LEN-2:`H_NF] & ~ZFracZero;
// is the exponent non-zero
XExpNonzero = |XLen3[`H_LEN-2:`H_NF];
YExpNonzero = |YLen3[`H_LEN-2:`H_NF];
ZExpNonzero = |ZLen3[`H_LEN-2:`H_NF];
end
endcase
end
always_comb begin
case (FmtE)
2'b11: begin // if input is quad percision
// extract sign bit
XSgnE = X[`Q_LEN-1];
YSgnE = Y[`Q_LEN-1];
ZSgnE = Z[`Q_LEN-1];
// extract the exponent
XExpE = X[`Q_LEN-2:`Q_NF];
YExpE = Y[`Q_LEN-2:`Q_NF];
ZExpE = Z[`Q_LEN-2:`Q_NF];
// extract the fraction
XFracE = X[`Q_NF-1:0];
YFracE = Y[`Q_NF-1:0];
ZFracE = Z[`Q_NF-1:0];
end
2'b01: begin // if input is double percision
// extract sign bit
XSgnE = XLen1[`D_LEN-1];
YSgnE = YLen1[`D_LEN-1];
ZSgnE = ZLen1[`D_LEN-1];
// example double to single conversion:
// 1023 = 0011 1111 1111
// 127 = 0000 0111 1111 (subtract this)
// 896 = 0011 1000 0000
// sexp = 0000 bbbb bbbb (add this) b = bit d = ~b
// dexp = 0bdd dbbb bbbb
// also need to take into account possible zero/denorm/inf/NaN values
// convert the double precsion exponent into quad precsion
XExpE = XOrigDenormE ? {1'b0, {`Q_NE-`D_NE{1'b1}}, (`D_NE-1)'(1)} : {XLen1[`D_LEN-2], {`Q_NE-`D_NE{~XLen1[`D_LEN-2]&~XExpZero|XExpMaxE}}, XLen1[`D_LEN-3:`D_NF]};
YExpE = YOrigDenormE ? {1'b0, {`Q_NE-`D_NE{1'b1}}, (`D_NE-1)'(1)} : {YLen1[`D_LEN-2], {`Q_NE-`D_NE{~YLen1[`D_LEN-2]&~YExpZero|YExpMaxE}}, YLen1[`D_LEN-3:`D_NF]};
ZExpE = ZOrigDenormE ? {1'b0, {`Q_NE-`D_NE{1'b1}}, (`D_NE-1)'(1)} : {ZLen1[`D_LEN-2], {`Q_NE-`D_NE{~ZLen1[`D_LEN-2]&~ZExpZero|ZExpMaxE}}, ZLen1[`D_LEN-3:`D_NF]};
// extract the fraction and add the nessesary trailing zeros
XFracE = {XLen1[`D_NF-1:0], (`Q_NF-`D_NF)'(0)};
YFracE = {YLen1[`D_NF-1:0], (`Q_NF-`D_NF)'(0)};
ZFracE = {ZLen1[`D_NF-1:0], (`Q_NF-`D_NF)'(0)};
end
2'b00: begin // if input is single percision
// extract sign bit
XSgnE = XLen2[`S_LEN-1];
YSgnE = YLen2[`S_LEN-1];
ZSgnE = ZLen2[`S_LEN-1];
// example double to single conversion:
// 1023 = 0011 1111 1111
// 127 = 0000 0111 1111 (subtract this)
// 896 = 0011 1000 0000
// sexp = 0000 bbbb bbbb (add this) b = bit d = ~b
// dexp = 0bdd dbbb bbbb
// also need to take into account possible zero/denorm/inf/NaN values
// convert the single precsion exponent into quad precsion
XExpE = XOrigDenormE ? {1'b0, {`Q_NE-`S_NE{1'b1}}, (`S_NE-1)'(1)} : {XLen2[`S_LEN-2], {`Q_NE-`S_NE{~XLen2[`S_LEN-2]&~XExpZero|XExpMaxE}}, XLen2[`S_LEN-3:`S_NF]};
YExpE = YOrigDenormE ? {1'b0, {`Q_NE-`S_NE{1'b1}}, (`S_NE-1)'(1)} : {YLen2[`S_LEN-2], {`Q_NE-`S_NE{~YLen2[`S_LEN-2]&~YExpZero|YExpMaxE}}, YLen2[`S_LEN-3:`S_NF]};
ZExpE = ZOrigDenormE ? {1'b0, {`Q_NE-`S_NE{1'b1}}, (`S_NE-1)'(1)} : {ZLen2[`S_LEN-2], {`Q_NE-`S_NE{~ZLen2[`S_LEN-2]&~ZExpZero|ZExpMaxE}}, ZLen2[`S_LEN-3:`S_NF]};
// extract the fraction and add the nessesary trailing zeros
XFracE = {XLen2[`S_NF-1:0], (`Q_NF-`S_NF)'(0)};
YFracE = {YLen2[`S_NF-1:0], (`Q_NF-`S_NF)'(0)};
ZFracE = {ZLen2[`S_NF-1:0], (`Q_NF-`S_NF)'(0)};
end
2'b10: begin // if input is half percision
// extract sign bit
XSgnE = XLen3[`H_LEN-1];
YSgnE = YLen3[`H_LEN-1];
ZSgnE = ZLen3[`H_LEN-1];
// example double to single conversion:
// 1023 = 0011 1111 1111
// 127 = 0000 0111 1111 (subtract this)
// 896 = 0011 1000 0000
// sexp = 0000 bbbb bbbb (add this) b = bit d = ~b
// dexp = 0bdd dbbb bbbb
// also need to take into account possible zero/denorm/inf/NaN values
// convert the half precsion exponent into quad precsion
XExpE = XOrigDenormE ? {1'b0, {`Q_NE-`H_NE{1'b1}}, (`H_NE-1)'(1)} : {XLen3[`H_LEN-2], {`Q_NE-`H_NE{~XLen3[`H_LEN-2]&~XExpZero|XExpMaxE}}, XLen3[`H_LEN-3:`H_NF]};
YExpE = YOrigDenormE ? {1'b0, {`Q_NE-`H_NE{1'b1}}, (`H_NE-1)'(1)} : {YLen3[`H_LEN-2], {`Q_NE-`H_NE{~YLen3[`H_LEN-2]&~YExpZero|YExpMaxE}}, YLen3[`H_LEN-3:`H_NF]};
ZExpE = ZOrigDenormE ? {1'b0, {`Q_NE-`H_NE{1'b1}}, (`H_NE-1)'(1)} : {ZLen3[`H_LEN-2], {`Q_NE-`H_NE{~ZLen3[`H_LEN-2]&~ZExpZero|ZExpMaxE}}, ZLen3[`H_LEN-3:`H_NF]};
// extract the fraction and add the nessesary trailing zeros
XFracE = {XLen3[`H_NF-1:0], (`Q_NF-`H_NF)'(0)};
YFracE = {YLen3[`H_NF-1:0], (`Q_NF-`H_NF)'(0)};
ZFracE = {ZLen3[`H_NF-1:0], (`Q_NF-`H_NF)'(0)};
end
endcase
end
end
// is the exponent all 0's
assign XExpZero = ~XExpNonzero;
assign YExpZero = ~YExpNonzero;
assign ZExpZero = ~ZExpNonzero;
// is the fraction zero
assign XFracZero = ~|XFracE;
assign YFracZero = ~|YFracE;
assign ZFracZero = ~|ZFracE;
// add the assumed one (or zero if denormal or zero) to create the mantissa
assign XManE = {XExpNonzero, XFracE};
assign YManE = {YExpNonzero, YFracE};
assign ZManE = {ZExpNonzero, ZFracE};
// is X normalized
assign XNormE = ~(XExpMaxE|XExpZero);
// is the input a NaN
// - force to be a NaN if it isn't properly Nan Boxed
assign XNaNE = XExpMaxE & ~XFracZero;
assign YNaNE = YExpMaxE & ~YFracZero;
assign ZNaNE = ZExpMaxE & ~ZFracZero;
// is the input a singnaling NaN
assign XSNaNE = XNaNE&~XFracE[`NF-1];
assign YSNaNE = YNaNE&~YFracE[`NF-1];
assign ZSNaNE = ZNaNE&~ZFracE[`NF-1];
unpackinput unpackinputY (.In(Y), .FmtE, .Sgn(YSgnE), .Exp(YExpE), .Man(YManE),
.NaN(YNaNE), .SNaN(YSNaNE), .ExpNonZero(YExpNonZero),
.Zero(YZeroE), .Inf(YInfE), .ExpMax(YExpMaxE), .FracZero(YFracZero));
unpackinput unpackinputZ (.In(Z), .FmtE, .Sgn(ZSgnE), .Exp(ZExpE), .Man(ZManE),
.NaN(ZNaNE), .SNaN(ZSNaNE), .ExpNonZero(ZExpNonZero),
.Zero(ZZeroE), .Inf(ZInfE), .ExpMax(ZExpMaxE), .FracZero(ZFracZero));
// is the input denormalized
assign XDenormE = XExpZero & ~XFracZero;
assign YDenormE = YExpZero & ~YFracZero;
assign ZDenormE = ZExpZero & ~ZFracZero;
// is the input infinity
assign XInfE = XExpMaxE & XFracZero;
assign YInfE = YExpMaxE & YFracZero;
assign ZInfE = ZExpMaxE & ZFracZero;
// is the input zero
assign XZeroE = XExpZero & XFracZero;
assign YZeroE = YExpZero & YFracZero;
assign ZZeroE = ZExpZero & ZFracZero;
assign XDenormE = ~XExpNonZero & ~XFracZero;
assign ZDenormE = ~ZExpNonZero & ~ZFracZero;
endmodule

View File

@ -0,0 +1,241 @@
`include "wally-config.vh"
module unpackinput (
input logic [`FLEN-1:0] In, // inputs from register file
input logic [`FMTBITS-1:0] FmtE, // format signal 00 - single 01 - double 11 - quad 10 - half
output logic Sgn, // sign bits of XYZ
output logic [`NE-1:0] Exp, // exponents of XYZ (converted to largest supported precision)
output logic [`NF:0] Man, // mantissas of XYZ (converted to largest supported precision)
output logic NaN, // is XYZ a NaN
output logic SNaN, // is XYZ a signaling NaN
output logic Zero, // is XYZ zero
output logic Inf, // is XYZ infinity
output logic ExpNonZero, // is the exponent not zero
output logic FracZero, // is the fraction zero
output logic ExpMax // does In have the maximum exponent (NaN or Inf)
);
logic [`NF-1:0] Frac; //Fraction of XYZ
logic ExpZero;
logic BadNaNBox;
if (`FPSIZES == 1) begin // if there is only one floating point format supported
assign BadNaNBox = 0;
assign Sgn = In[`FLEN-1]; // sign bit
assign Frac = In[`NF-1:0]; // fraction (no assumed 1)
assign ExpNonZero = |In[`FLEN-2:`NF]; // is the exponent non-zero
assign Exp = {In[`FLEN-2:`NF+1], In[`NF]|~ExpNonZero}; // exponent. Denormalized numbers have effective biased exponent of 1
assign ExpMax = &In[`FLEN-2:`NF]; // is the exponent all 1's
end else if (`FPSIZES == 2) begin // if there are 2 floating point formats supported
//***need better names for these constants
// largest format | smaller format
//----------------------------------
// `FLEN | `LEN1 length of floating point number
// `NE | `NE1 length of exponent
// `NF | `NF1 length of fraction
// `BIAS | `BIAS1 exponent's bias value
// `FMT | `FMT1 precision's format value - Q=11 D=01 S=00 H=10
// Possible combinantions specified by spec:
// double and single
// single and half
// Not needed but can also handle:
// quad and double
// quad and single
// quad and half
// double and half
assign BadNaNBox = ~(FmtE|(&In[`FLEN-1:`LEN1])); // Check NaN boxing
// choose sign bit depending on format - 1=larger precsion 0=smaller precision
assign Sgn = FmtE ? In[`FLEN-1] : In[`LEN1-1];
// extract the fraction, add trailing zeroes to the mantissa if nessisary
assign Frac = FmtE ? In[`NF-1:0] : {In[`NF1-1:0], (`NF-`NF1)'(0)};
// is the exponent non-zero
assign ExpNonZero = FmtE ? |In[`FLEN-2:`NF] : |In[`LEN1-2:`NF1];
// example double to single conversion:
// 1023 = 0011 1111 1111
// 127 = 0000 0111 1111 (subtract this)
// 896 = 0011 1000 0000
// sexp = 0000 bbbb bbbb (add this) b = bit d = ~b
// dexp = 0bdd dbbb bbbb
// also need to take into account possible zero/denorm/inf/NaN values
// extract the exponent, converting the smaller exponent into the larger precision if nessisary
// - if the original precision had a denormal number convert the exponent value 1
assign Exp = FmtE ? {In[`FLEN-2:`NF+1], In[`NF]|~ExpNonZero} : {In[`LEN1-2], {`NE-`NE1{~In[`LEN1-2]}}, In[`LEN1-3:`NF1+1], In[`NF1]|~ExpNonZero};
// is the exponent all 1's
assign ExpMax = FmtE ? &In[`FLEN-2:`NF] : &In[`LEN1-2:`NF1];
end else if (`FPSIZES == 3) begin // three floating point precsions supported
//***need better names for these constants
// largest format | larger format | smallest format
//---------------------------------------------------
// `FLEN | `LEN1 | `LEN2 length of floating point number
// `NE | `NE1 | `NE2 length of exponent
// `NF | `NF1 | `NF2 length of fraction
// `BIAS | `BIAS1 | `BIAS2 exponent's bias value
// `FMT | `FMT1 | `FMT2 precision's format value - Q=11 D=01 S=00 H=10
// Possible combinantions specified by spec:
// quad and double and single
// double and single and half
// Not needed but can also handle:
// quad and double and half
// quad and single and half
// Check NaN boxing
always_comb
case (FmtE)
`FMT: BadNaNBox = 0;
`FMT1: BadNaNBox = ~&In[`FLEN-1:`LEN1];
`FMT2: BadNaNBox = ~&In[`FLEN-1:`LEN2];
default: BadNaNBox = 0;
endcase
// extract the sign bit
always_comb
case (FmtE)
`FMT: Sgn = In[`FLEN-1];
`FMT1: Sgn = In[`LEN1-1];
`FMT2: Sgn = In[`LEN2-1];
default: Sgn = 0;
endcase
// extract the fraction
always_comb
case (FmtE)
`FMT: Frac = In[`NF-1:0];
`FMT1: Frac = {In[`NF1-1:0], (`NF-`NF1)'(0)};
`FMT2: Frac = {In[`NF2-1:0], (`NF-`NF2)'(0)};
default: Frac = 0;
endcase
// is the exponent non-zero
always_comb
case (FmtE)
`FMT: ExpNonZero = |In[`FLEN-2:`NF]; // if input is largest precision (`FLEN - ie quad or double)
`FMT1: ExpNonZero = |In[`LEN1-2:`NF1]; // if input is larger precsion (`LEN1 - double or single)
`FMT2: ExpNonZero = |In[`LEN2-2:`NF2]; // if input is smallest precsion (`LEN2 - single or half)
default: ExpNonZero = 0;
endcase
// example double to single conversion:
// 1023 = 0011 1111 1111
// 127 = 0000 0111 1111 (subtract this)
// 896 = 0011 1000 0000
// sexp = 0000 bbbb bbbb (add this) b = bit d = ~b
// dexp = 0bdd dbbb bbbb
// also need to take into account possible zero/denorm/inf/NaN values
// convert the larger precision's exponent to use the largest precision's bias
always_comb
case (FmtE)
`FMT: Exp = {In[`FLEN-2:`NF+1], In[`NF]|~ExpNonZero};
`FMT1: Exp = {In[`LEN1-2], {`NE-`NE1{~In[`LEN1-2]}}, In[`LEN1-3:`NF1+1], In[`NF1]|~ExpNonZero};
`FMT2: Exp = {In[`LEN2-2], {`NE-`NE2{~In[`LEN2-2]}}, In[`LEN2-3:`NF2+1], In[`NF2]|~ExpNonZero};
default: Exp = 0;
endcase
// is the exponent all 1's
always_comb
case (FmtE)
`FMT: ExpMax = &In[`FLEN-2:`NF];
`FMT1: ExpMax = &In[`LEN1-2:`NF1];
`FMT2: ExpMax = &In[`LEN2-2:`NF2];
default: ExpMax = 0;
endcase
end else if (`FPSIZES == 4) begin // if all precsisons are supported - quad, double, single, and half
// quad | double | single | half
//-------------------------------------------------------------------
// `Q_LEN | `D_LEN | `S_LEN | `H_LEN length of floating point number
// `Q_NE | `D_NE | `S_NE | `H_NE length of exponent
// `Q_NF | `D_NF | `S_NF | `H_NF length of fraction
// `Q_BIAS | `D_BIAS | `S_BIAS | `H_BIAS exponent's bias value
// `Q_FMT | `D_FMT | `S_FMT | `H_FMT precision's format value - Q=11 D=01 S=00 H=10
// Check NaN boxing
always_comb
case (FmtE)
2'b11: BadNaNBox = 0;
2'b01: BadNaNBox = ~&In[`Q_LEN-1:`D_LEN];
2'b00: BadNaNBox = ~&In[`Q_LEN-1:`S_LEN];
2'b10: BadNaNBox = ~&In[`Q_LEN-1:`H_LEN];
endcase
// extract sign bit
always_comb
case (FmtE)
2'b11: Sgn = In[`Q_LEN-1];
2'b01: Sgn = In[`D_LEN-1];
2'b00: Sgn = In[`S_LEN-1];
2'b10: Sgn = In[`H_LEN-1];
endcase
// extract the fraction
always_comb
case (FmtE)
2'b11: Frac = In[`Q_NF-1:0];
2'b01: Frac = {In[`D_NF-1:0], (`Q_NF-`D_NF)'(0)};
2'b00: Frac = {In[`S_NF-1:0], (`Q_NF-`S_NF)'(0)};
2'b10: Frac = {In[`H_NF-1:0], (`Q_NF-`H_NF)'(0)};
endcase
// is the exponent non-zero
always_comb
case (FmtE)
2'b11: ExpNonZero = |In[`Q_LEN-2:`Q_NF];
2'b01: ExpNonZero = |In[`D_LEN-2:`D_NF];
2'b00: ExpNonZero = |In[`S_LEN-2:`S_NF];
2'b10: ExpNonZero = |In[`H_LEN-2:`H_NF];
endcase
// example double to single conversion:
// 1023 = 0011 1111 1111
// 127 = 0000 0111 1111 (subtract this)
// 896 = 0011 1000 0000
// sexp = 0000 bbbb bbbb (add this) b = bit d = ~b
// dexp = 0bdd dbbb bbbb
// also need to take into account possible zero/denorm/inf/NaN values
// convert the double precsion exponent into quad precsion
always_comb
case (FmtE)
2'b11: Exp = {In[`Q_LEN-2:`Q_NF+1], In[`Q_NF]|~ExpNonZero};
2'b01: Exp = {In[`D_LEN-2], {`Q_NE-`D_NE{~In[`D_LEN-2]}}, In[`D_LEN-3:`D_NF+1], In[`D_NF]|~ExpNonZero};
2'b00: Exp = {In[`S_LEN-2], {`Q_NE-`S_NE{~In[`S_LEN-2]}}, In[`S_LEN-3:`S_NF+1], In[`S_NF]|~ExpNonZero};
2'b10: Exp = {In[`H_LEN-2], {`Q_NE-`H_NE{~In[`H_LEN-2]}}, In[`H_LEN-3:`H_NF+1], In[`H_NF]|~ExpNonZero};
endcase
// is the exponent all 1's
always_comb
case (FmtE)
2'b11: ExpMax = &In[`Q_LEN-2:`Q_NF];
2'b01: ExpMax = &In[`D_LEN-2:`D_NF];
2'b00: ExpMax = &In[`S_LEN-2:`S_NF];
2'b10: ExpMax = &In[`H_LEN-2:`H_NF];
endcase
end
// Output logic
assign FracZero = ~|Frac; // is the fraction zero?
assign Man = {ExpNonZero, Frac}; // add the assumed one (or zero if denormal or zero) to create the significand
assign NaN = (ExpMax & ~FracZero)|BadNaNBox; // is the input a NaN?
assign SNaN = NaN&~Frac[`NF-1]&~BadNaNBox; // is the input a singnaling NaN?
assign Inf = ExpMax & FracZero; // is the input infinity?
assign Zero = ~ExpNonZero & FracZero; // is the input zero?
endmodule

View File

@ -44,8 +44,8 @@ module bram1p1rw
//----------------------------------------------------------------------
) (
input logic clk,
input logic ena,
input logic [NUM_COL-1:0] we,
input logic we,
input logic [NUM_COL-1:0] bwe,
input logic [ADDR_WIDTH-1:0] addr,
output logic [DATA_WIDTH-1:0] dout,
input logic [DATA_WIDTH-1:0] din
@ -60,9 +60,9 @@ module bram1p1rw
always @ (posedge clk) begin
dout <= RAM[addr];
if(ena) begin
if(we) begin
for(i=0;i<NUM_COL;i=i+1) begin
if(we[i]) begin
if(bwe[i]) begin
RAM[addr][i*COL_WIDTH +: COL_WIDTH] <= din[i*COL_WIDTH +:COL_WIDTH];
end
end

View File

@ -46,11 +46,11 @@ module bram2p1r1w
//----------------------------------------------------------------------
) (
input logic clk,
input logic enaA,
input logic reA,
input logic [ADDR_WIDTH-1:0] addrA,
output logic [DATA_WIDTH-1:0] doutA,
input logic enaB,
input logic [NUM_COL-1:0] weB,
input logic weB,
input logic [NUM_COL-1:0] bweB,
input logic [ADDR_WIDTH-1:0] addrB,
input logic [DATA_WIDTH-1:0] dinB
);
@ -128,15 +128,15 @@ module bram2p1r1w
// Port-A Operation
always @ (posedge clk) begin
if(enaA) begin
if(reA) begin
doutA <= RAM[addrA];
end
end
// Port-B Operation:
always @ (posedge clk) begin
if(enaB) begin
if(weB) begin
for(i=0;i<NUM_COL;i=i+1) begin
if(weB[i]) begin
if(bweB[i]) begin
RAM[addrB][i*COL_WIDTH +: COL_WIDTH] <= dinB[i*COL_WIDTH +:COL_WIDTH];
end
end

View File

@ -42,27 +42,7 @@ module simpleram #(parameter BASE=0, RANGE = 65535) (
localparam ADDR_WDITH = $clog2(RANGE/8);
localparam OFFSET = $clog2(`XLEN/8);
bram1p1rw #(`XLEN/8, 8, ADDR_WDITH)
memory(.clk, .ena(we), .we(ByteMask), .addr(a[ADDR_WDITH+OFFSET-1:OFFSET]), .dout(rd), .din(wd));
/* -----\/----- EXCLUDED -----\/-----
logic [`XLEN-1:0] RAM[BASE>>(1+`XLEN/32):(RANGE+BASE)>>1+(`XLEN/32)];
// discard bottom 2 or 3 bits of address offset within word or doubleword
localparam adrlsb = (`XLEN==64) ? 3 : 2;
logic [31:adrlsb] adrmsbs;
assign adrmsbs = a[31:adrlsb];
always_ff @(posedge clk)
rd <= RAM[adrmsbs];
genvar index;
for(index = 0; index < `XLEN/8; index++) begin
always_ff @(posedge clk) begin
if (we & ByteMask[index]) RAM[adrmsbs][8*(index+1)-1:8*index] <= #1 wd[8*(index+1)-1:8*index];
end
end
-----/\----- EXCLUDED -----/\----- */
memory(.clk, .we, .bwe(ByteMask), .addr(a[ADDR_WDITH+OFFSET-1:OFFSET]), .dout(rd), .din(wd));
endmodule

View File

@ -0,0 +1,15 @@
//leading zero counter i.e. priority encoder
module lzc #(parameter WIDTH = 1) (
input logic [WIDTH-1:0] num,
output logic [$clog2(WIDTH+1)-1:0] ZeroCnt
);
/* verilator lint_off CMPCONST */
logic [$clog2(WIDTH+1)-1:0] i;
always_comb begin
i = 0;
while (~num[WIDTH-1-(32)'(i)] & $unsigned(i) <= $unsigned(($clog2(WIDTH+1))'(WIDTH-1))) i = i+1; // search for leading one
ZeroCnt = i;
end
/* verilator lint_on CMPCONST */
endmodule

View File

@ -32,13 +32,13 @@
module hazard(
// Detect hazards
(* mark_debug = "true" *) input logic BPPredWrongE, CSRWritePendingDEM, RetM, TrapM,
(* mark_debug = "true" *) input logic BPPredWrongE, CSRWriteFencePendingDEM, RetM, TrapM,
(* mark_debug = "true" *) input logic LoadStallD, StoreStallD, MDUStallD, CSRRdStallD,
(* mark_debug = "true" *) input logic LSUStallM, IFUStallF,
(* mark_debug = "true" *) input logic FPUStallD, FStallD,
(* mark_debug = "true" *) input logic DivBusyE,FDivBusyE,
(* mark_debug = "true" *) input logic EcallFaultM, BreakpointFaultM,
(* mark_debug = "true" *) input logic InvalidateICacheM, wfiM, IntPendingM,
(* mark_debug = "true" *) input logic wfiM, IntPendingM,
// Stall & flush outputs
(* mark_debug = "true" *) output logic StallF, StallD, StallE, StallM, StallW,
(* mark_debug = "true" *) output logic FlushF, FlushD, FlushE, FlushM, FlushW
@ -47,7 +47,6 @@ module hazard(
logic StallFCause, StallDCause, StallECause, StallMCause, StallWCause;
logic FirstUnstalledD, FirstUnstalledE, FirstUnstalledM, FirstUnstalledW;
// stalls and flushes
// loads: stall for one cycle if the subsequent instruction depends on the load
// branches and jumps: flush the next two instructions if the branch is taken in EXE
@ -62,10 +61,10 @@ module hazard(
// *** can stalls be pushed into earlier stages (e.g. no stall after Decode?)
assign StallFCause = CSRWritePendingDEM & ~(TrapM | RetM | BPPredWrongE);
assign StallFCause = CSRWriteFencePendingDEM & ~(TrapM | RetM | BPPredWrongE);
// stall in decode if instruction is a load/mul/csr dependent on previous
assign StallDCause = (LoadStallD | StoreStallD | MDUStallD | CSRRdStallD | FPUStallD | FStallD) & ~(TrapM | RetM | BPPredWrongE);
assign StallECause = (DivBusyE | FDivBusyE) & ~(TrapM);
assign StallECause = (DivBusyE | FDivBusyE) & ~(TrapM); // *** can we move to decode stage (KP?)
// WFI terminates if any enabled interrupt is pending, even if global interrupts are disabled. It could also terminate with TW trap
assign StallMCause = wfiM & (~TrapM & ~IntPendingM);
assign StallWCause = LSUStallM | IFUStallF;
@ -82,10 +81,10 @@ module hazard(
assign FirstUnstalledW = ~StallW & StallM;
// Each stage flushes if the previous stage is the last one stalled (for cause) or the system has reason to flush
assign FlushF = BPPredWrongE | InvalidateICacheM;
assign FlushD = FirstUnstalledD | TrapM | RetM | BPPredWrongE | InvalidateICacheM; // *** does RetM only need to flush if the privilege changes?
assign FlushE = FirstUnstalledE | TrapM | RetM | BPPredWrongE | InvalidateICacheM; // *** why is BPPredWrongE here, but not needed in simple processor
assign FlushM = FirstUnstalledM | TrapM | RetM | InvalidateICacheM;
assign FlushF = BPPredWrongE;
assign FlushD = FirstUnstalledD | TrapM | RetM | BPPredWrongE;
assign FlushE = FirstUnstalledE | TrapM | RetM | BPPredWrongE; // *** why is BPPredWrongE here, but not needed in simple processor
assign FlushM = FirstUnstalledM | TrapM | RetM;
// on Trap the memory stage should be flushed going into the W stage,
// except if the instruction causing the Trap is an ecall or ebreak.
assign FlushW = FirstUnstalledW | (TrapM & ~(BreakpointFaultM | EcallFaultM));

View File

@ -30,6 +30,15 @@
`include "wally-config.vh"
module donedet #(parameter WIDTH=64) (
input logic [WIDTH-1:0] a, b,
output logic eq);
//assign eq = (a+b == 0); // gives good speed but 3x necessary area
// See CMOS VLSI Design 4th Ed. p. 463 K = A+B for K = 0
assign eq = ((a ^ b) == {a[WIDTH-2:0], 1'b0} | {b[WIDTH-2:0], 1'b0});
endmodule
module comparator_sub #(parameter WIDTH=64) (
input logic [WIDTH-1:0] a, b,
output logic [2:0] flags);

View File

@ -67,7 +67,7 @@ module controller(
output logic RegWriteW, // for datapath and Hazard Unit
output logic [2:0] ResultSrcW,
// Stall during CSRs
output logic CSRWritePendingDEM,
output logic CSRWriteFencePendingDEM,
output logic StoreStallD
);
@ -107,6 +107,8 @@ module controller(
logic IEURegWriteE;
logic IllegalERegAdrD;
logic [1:0] AtomicE;
logic FencePendingD, FencePendingE, FencePendingM;
// Extract fields
assign OpD = InstrD[6:0];
@ -174,10 +176,10 @@ module controller(
assign {RegWriteD, ImmSrcD, ALUSrcAD, ALUSrcBD, MemRWD,
ResultSrcD, BranchD, ALUOpD, JumpD, ALUResultSrcD, W64D, CSRReadD,
PrivilegedD, FenceD, MDUD, AtomicD, unused} = IllegalIEUInstrFaultD ? `CTRLW'b0 : ControlsD;
// *** move Privileged, CSRwrite?? Or move controller out of IEU into datapath and handle all instructions
assign CSRZeroSrcD = InstrD[14] ? (InstrD[19:15] == 0) : (Rs1D == 0); // Is a CSR instruction using zero as the source?
assign CSRWriteD = CSRReadD & !(CSRZeroSrcD & InstrD[13]); // Don't write if setting or clearing zeros
assign FencePendingD = PrivilegedD & (InstrD[31:25] == 7'b0001001) | FenceD; // possible sfence.vma or fence.i
// ALU Decoding is lazy, only using func7[5] to distinguish add/sub and srl/sra
assign sltD = (Funct3D == 3'b010);
@ -204,9 +206,9 @@ module controller(
flopenrc #(1) controlregD(clk, reset, FlushD, ~StallD, 1'b1, InstrValidD);
// Execute stage pipeline control register and logic
flopenrc #(27) controlregE(clk, reset, FlushE, ~StallE,
{RegWriteD, ResultSrcD, MemRWD, JumpD, BranchD, ALUControlD, ALUSrcAD, ALUSrcBD, ALUResultSrcD, CSRReadD, CSRWriteD, PrivilegedD, Funct3D, W64D, MDUD, AtomicD, InvalidateICacheD, FlushDCacheD, InstrValidD},
{IEURegWriteE, ResultSrcE, MemRWE, JumpE, BranchE, ALUControlE, ALUSrcAE, ALUSrcBE, ALUResultSrcE, CSRReadE, CSRWriteE, PrivilegedE, Funct3E, W64E, MDUE, AtomicE, InvalidateICacheE, FlushDCacheE, InstrValidE});
flopenrc #(28) controlregE(clk, reset, FlushE, ~StallE,
{RegWriteD, ResultSrcD, MemRWD, JumpD, BranchD, ALUControlD, ALUSrcAD, ALUSrcBD, ALUResultSrcD, CSRReadD, CSRWriteD, PrivilegedD, Funct3D, W64D, MDUD, AtomicD, InvalidateICacheD, FlushDCacheD, FencePendingD, InstrValidD},
{IEURegWriteE, ResultSrcE, MemRWE, JumpE, BranchE, ALUControlE, ALUSrcAE, ALUSrcBE, ALUResultSrcE, CSRReadE, CSRWriteE, PrivilegedE, Funct3E, W64E, MDUE, AtomicE, InvalidateICacheE, FlushDCacheE, FencePendingE, InstrValidE});
// Branch Logic
assign {eqE, ltE, ltuE} = FlagsE;
@ -220,16 +222,17 @@ module controller(
assign RegWriteE = IEURegWriteE | FWriteIntE; // IRF register writes could come from IEU or FPU controllers
// Memory stage pipeline control register
flopenrc #(18) controlregM(clk, reset, FlushM, ~StallM,
{RegWriteE, ResultSrcE, MemRWE, CSRReadE, CSRWriteE, PrivilegedE, Funct3E, FWriteIntE, AtomicE, InvalidateICacheE, FlushDCacheE, InstrValidE},
{RegWriteM, ResultSrcM, MemRWM, CSRReadM, CSRWriteM, PrivilegedM, Funct3M, FWriteIntM, AtomicM, InvalidateICacheM, FlushDCacheM, InstrValidM});
flopenrc #(19) controlregM(clk, reset, FlushM, ~StallM,
{RegWriteE, ResultSrcE, MemRWE, CSRReadE, CSRWriteE, PrivilegedE, Funct3E, FWriteIntE, AtomicE, InvalidateICacheE, FlushDCacheE, FencePendingE, InstrValidE},
{RegWriteM, ResultSrcM, MemRWM, CSRReadM, CSRWriteM, PrivilegedM, Funct3M, FWriteIntM, AtomicM, InvalidateICacheM, FlushDCacheM, FencePendingM, InstrValidM});
// Writeback stage pipeline control register
flopenrc #(4) controlregW(clk, reset, FlushW, ~StallW,
{RegWriteM, ResultSrcM},
{RegWriteW, ResultSrcW});
assign CSRWritePendingDEM = CSRWriteD | CSRWriteE | CSRWriteM;
// Stall pipeline at Fetch if a CSR Write or Fence is pending in the subsequent stages
assign CSRWriteFencePendingDEM = CSRWriteD | CSRWriteE | CSRWriteM | FencePendingD | FencePendingE | FencePendingM;
assign StoreStallD = MemRWE[0] & ((|MemRWD) | (|AtomicD));
endmodule

View File

@ -71,7 +71,7 @@ module ieu (
output logic FPUStallD, LoadStallD, MDUStallD, CSRRdStallD,
output logic PCSrcE,
output logic CSRReadM, CSRWriteM, PrivilegedM,
output logic CSRWritePendingDEM,
output logic CSRWriteFencePendingDEM,
output logic StoreStallD
);
@ -99,7 +99,7 @@ module ieu (
.Funct3E, .MDUE, .W64E, .JumpE, .StallM, .FlushM, .MemRWM,
.CSRReadM, .CSRWriteM, .PrivilegedM, .SCE, .AtomicM, .Funct3M,
.RegWriteM, .InvalidateICacheM, .FlushDCacheM, .InstrValidM, .FWriteIntM,
.StallW, .FlushW, .RegWriteW, .ResultSrcW, .CSRWritePendingDEM, .StoreStallD);
.StallW, .FlushW, .RegWriteW, .ResultSrcW, .CSRWriteFencePendingDEM, .StoreStallD);
datapath dp(
.clk, .reset, .ImmSrcD, .InstrD, .StallE, .FlushE, .ForwardAE, .ForwardBE,

View File

@ -76,7 +76,7 @@ module ifu (
input logic [`XLEN-1:0] SATP_REGW,
input logic STATUS_MXR, STATUS_SUM, STATUS_MPRV,
input logic [1:0] STATUS_MPP,
input logic ITLBWriteF, ITLBFlushF,
input logic ITLBWriteF, sfencevmaM,
output logic ITLBMissF, InstrDAPageFaultF,
input var logic [7:0] PMPCFG_ARRAY_REGW[`PMP_ENTRIES-1:0],
input var logic [`XLEN-1:0] PMPADDR_ARRAY_REGW[`PMP_ENTRIES-1:0],
@ -141,6 +141,18 @@ module ifu (
////////////////////////////////////////////////////////////////////////////////////////////////
if(`ZICSR_SUPPORTED == 1) begin : immu
///////////////////////////////////////////
// sfence.vma causes TLB flushes
///////////////////////////////////////////
// sets ITLBFlush to pulse for one cycle of the sfence.vma instruction
// In this instr we want to flush the tlb and then do a pagetable walk to update the itlb and continue the program.
// But we're still in the stalled sfence instruction, so if itlbflushf == sfencevmaM, tlbflush would never drop and
// the tlbwrite would never take place after the pagetable walk. by adding in ~StallMQ, we are able to drop itlbflush
// after a cycle AND pulse it for another cycle on any further back-to-back sfences.
logic StallMQ, TLBFlush;
flopr #(1) StallMReg(.clk, .reset, .d(StallM), .q(StallMQ));
assign TLBFlush = sfencevmaM & ~StallMQ;
mmu #(.TLB_ENTRIES(`ITLB_ENTRIES), .IMMU(1))
immu(.clk, .reset, .SATP_REGW, .STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_MPP,
.PrivilegeModeW, .DisableTranslation(1'b0),
@ -149,7 +161,7 @@ module ifu (
.PTE(PTE),
.PageTypeWriteVal(PageType),
.TLBWrite(ITLBWriteF),
.TLBFlush(ITLBFlushF),
.TLBFlush,
.PhysicalAddress(PCPF),
.TLBMiss(ITLBMissF),
.Cacheable(CacheableF), .Idempotent(), .AtomicAllowed(),

View File

@ -55,7 +55,7 @@ module lsu (
// cpu privilege
input logic [1:0] PrivilegeModeW,
input logic BigEndianM,
input logic DTLBFlushM,
input logic sfencevmaM,
// faults
output logic LoadPageFaultM, StoreAmoPageFaultM,
output logic LoadMisalignedFaultM, LoadAccessFaultM,
@ -161,7 +161,7 @@ module lsu (
.PTE,
.PageTypeWriteVal(PageType),
.TLBWrite(DTLBWriteM),
.TLBFlush(DTLBFlushM),
.TLBFlush(sfencevmaM),
.PhysicalAddress(LSUPAdrM),
.TLBMiss(DTLBMissM),
.Cacheable(CacheableM), .Idempotent(), .AtomicAllowed(),

View File

@ -478,10 +478,12 @@ module ppa_priorityencoder #(parameter WIDTH = 8) (
output logic [$clog2(WIDTH)-1:0] y);
int i;
always_comb
always_comb begin
y = 0;
for (i=0; i<WIDTH; i++) begin:pri
if (a[i]) y= i;
end
end
endmodule
module ppa_decoder_8 #(parameter WIDTH = 8) (
@ -531,15 +533,7 @@ module ppa_mux2_8 #(parameter WIDTH = 8) (
assign y = s ? d1 : d0;
endmodule
module ppa_mux3 #(parameter WIDTH = 8) (
input logic [WIDTH-1:0] d0, d1, d2,
input logic [1:0] s,
output logic [WIDTH-1:0] y);
assign y = s[1] ? d2 : (s[0] ? d1 : d0);
endmodule
module ppa_mux4 #(parameter WIDTH = 8) (
module ppa_mux4_8 #(parameter WIDTH = 8) (
input logic [WIDTH-1:0] d0, d1, d2, d3,
input logic [1:0] s,
output logic [WIDTH-1:0] y);
@ -547,15 +541,103 @@ module ppa_mux4 #(parameter WIDTH = 8) (
assign y = s[1] ? (s[0] ? d3 : d2) : (s[0] ? d1 : d0);
endmodule
module ppa_mux6 #(parameter WIDTH = 8) (
input logic [WIDTH-1:0] d0, d1, d2, d3, d4, d5,
module ppa_mux8_8 #(parameter WIDTH = 8) (
input logic [WIDTH-1:0] d0, d1, d2, d3, d4, d5, d6, d7,
input logic [2:0] s,
output logic [WIDTH-1:0] y);
assign y = s[2] ? (s[0] ? d5 : d4) : (s[1] ? (s[0] ? d3 : d2) : (s[0] ? d1 : d0));
assign y = s[2] ? (s[1] ? (s[0] ? d5 : d4) : (s[0] ? d6 : d7)) : (s[1] ? (s[0] ? d3 : d2) : (s[0] ? d1 : d0));
endmodule
module ppa_mux8 #(parameter WIDTH = 8) (
module ppa_mux2_16 #(parameter WIDTH = 16) (
input logic [WIDTH-1:0] d0, d1,
input logic s,
output logic [WIDTH-1:0] y);
assign y = s ? d1 : d0;
endmodule
module ppa_mux4_16 #(parameter WIDTH = 16) (
input logic [WIDTH-1:0] d0, d1, d2, d3,
input logic [1:0] s,
output logic [WIDTH-1:0] y);
assign y = s[1] ? (s[0] ? d3 : d2) : (s[0] ? d1 : d0);
endmodule
module ppa_mux8_16 #(parameter WIDTH = 16) (
input logic [WIDTH-1:0] d0, d1, d2, d3, d4, d5, d6, d7,
input logic [2:0] s,
output logic [WIDTH-1:0] y);
assign y = s[2] ? (s[1] ? (s[0] ? d5 : d4) : (s[0] ? d6 : d7)) : (s[1] ? (s[0] ? d3 : d2) : (s[0] ? d1 : d0));
endmodule
module ppa_mux2_32 #(parameter WIDTH = 32) (
input logic [WIDTH-1:0] d0, d1,
input logic s,
output logic [WIDTH-1:0] y);
assign y = s ? d1 : d0;
endmodule
module ppa_mux4_32 #(parameter WIDTH = 32) (
input logic [WIDTH-1:0] d0, d1, d2, d3,
input logic [1:0] s,
output logic [WIDTH-1:0] y);
assign y = s[1] ? (s[0] ? d3 : d2) : (s[0] ? d1 : d0);
endmodule
module ppa_mux8_32 #(parameter WIDTH = 32) (
input logic [WIDTH-1:0] d0, d1, d2, d3, d4, d5, d6, d7,
input logic [2:0] s,
output logic [WIDTH-1:0] y);
assign y = s[2] ? (s[1] ? (s[0] ? d5 : d4) : (s[0] ? d6 : d7)) : (s[1] ? (s[0] ? d3 : d2) : (s[0] ? d1 : d0));
endmodule
module ppa_mux2_64 #(parameter WIDTH = 64) (
input logic [WIDTH-1:0] d0, d1,
input logic s,
output logic [WIDTH-1:0] y);
assign y = s ? d1 : d0;
endmodule
module ppa_mux4_64 #(parameter WIDTH = 64) (
input logic [WIDTH-1:0] d0, d1, d2, d3,
input logic [1:0] s,
output logic [WIDTH-1:0] y);
assign y = s[1] ? (s[0] ? d3 : d2) : (s[0] ? d1 : d0);
endmodule
module ppa_mux8_64 #(parameter WIDTH = 64) (
input logic [WIDTH-1:0] d0, d1, d2, d3, d4, d5, d6, d7,
input logic [2:0] s,
output logic [WIDTH-1:0] y);
assign y = s[2] ? (s[1] ? (s[0] ? d5 : d4) : (s[0] ? d6 : d7)) : (s[1] ? (s[0] ? d3 : d2) : (s[0] ? d1 : d0));
endmodule
module ppa_mux2_128 #(parameter WIDTH = 128) (
input logic [WIDTH-1:0] d0, d1,
input logic s,
output logic [WIDTH-1:0] y);
assign y = s ? d1 : d0;
endmodule
module ppa_mux4_128 #(parameter WIDTH = 128) (
input logic [WIDTH-1:0] d0, d1, d2, d3,
input logic [1:0] s,
output logic [WIDTH-1:0] y);
assign y = s[1] ? (s[0] ? d3 : d2) : (s[0] ? d1 : d0);
endmodule
module ppa_mux8_128 #(parameter WIDTH = 128) (
input logic [WIDTH-1:0] d0, d1, d2, d3, d4, d5, d6, d7,
input logic [2:0] s,
output logic [WIDTH-1:0] y);
@ -867,4 +949,11 @@ module ppa_csa_128 #(parameter WIDTH = 128) (
assign sum = a ^ b ^ c;
assign carry = (a & (b | c)) | (b & c);
endmodule
module ppa_inv_1 #(parameter WIDTH = 1) (
input logic [WIDTH-1:0] a,
output logic [WIDTH-1:0] y);
assign y = ~a;
endmodule

View File

@ -39,7 +39,7 @@ module privdec (
input logic [1:0] PrivilegeModeW,
input logic STATUS_TSR, STATUS_TVM, STATUS_TW,
input logic [1:0] STATUS_FS,
output logic IllegalInstrFaultM, ITLBFlushF, DTLBFlushM,
output logic IllegalInstrFaultM,
output logic EcallFaultM, BreakpointFaultM,
output logic sretM, mretM, wfiM, sfencevmaM);
@ -84,9 +84,9 @@ module privdec (
// But we're still in the stalled sfence instruction, so if itlbflushf == sfencevmaM, tlbflush would never drop and
// the tlbwrite would never take place after the pagetable walk. by adding in ~StallMQ, we are able to drop itlbflush
// after a cycle AND pulse it for another cycle on any further back-to-back sfences.
flopr #(1) StallMReg(.clk, .reset, .d(StallM), .q(StallMQ));
assign ITLBFlushF = sfencevmaM & ~StallMQ;
assign DTLBFlushM = sfencevmaM;
// flopr #(1) StallMReg(.clk, .reset, .d(StallM), .q(StallMQ));
// assign ITLBFlushF = sfencevmaM & ~StallMQ;
// assign DTLBFlushM = sfencevmaM;
///////////////////////////////////////////
// Fault on illegal instructions

View File

@ -38,7 +38,7 @@ module privileged (
output logic [`XLEN-1:0] CSRReadValW,
output logic [`XLEN-1:0] PrivilegedNextPCM,
output logic RetM, TrapM,
output logic ITLBFlushF, DTLBFlushM,
output logic sfencevmaM,
input logic InstrValidM, CommittedM,
input logic FRegWriteM, LoadStallD,
input logic BPPredDirWrongM,
@ -85,7 +85,7 @@ module privileged (
logic [`XLEN-1:0] MEDELEG_REGW;
logic [11:0] MIDELEG_REGW;
logic sretM, mretM, sfencevmaM;
logic sretM, mretM;
logic IllegalCSRAccessM;
logic IllegalIEUInstrFaultM;
logic IllegalFPUInstrM;
@ -99,13 +99,14 @@ module privileged (
logic STATUS_MIE, STATUS_SIE;
logic [11:0] MIP_REGW, MIE_REGW;
logic [1:0] NextPrivilegeModeM;
logic DelegateM;
///////////////////////////////////////////
// track the current privilege level
///////////////////////////////////////////
privmode privmode(.clk, .reset, .StallW, .TrapM, .mretM, .sretM, .InterruptM, .CauseM,
.MEDELEG_REGW, .MIDELEG_REGW, .STATUS_MPP, .STATUS_SPP, .NextPrivilegeModeM, .PrivilegeModeW);
privmode privmode(.clk, .reset, .StallW, .TrapM, .mretM, .sretM, .DelegateM,
.STATUS_MPP, .STATUS_SPP, .NextPrivilegeModeM, .PrivilegeModeW);
///////////////////////////////////////////
// decode privileged instructions
@ -114,7 +115,7 @@ module privileged (
privdec pmd(.clk, .reset, .StallM, .InstrM(InstrM[31:20]),
.PrivilegedM, .IllegalIEUInstrFaultM, .IllegalCSRAccessM, .IllegalFPUInstrM,
.PrivilegeModeW, .STATUS_TSR, .STATUS_TVM, .STATUS_TW, .STATUS_FS, .IllegalInstrFaultM,
.ITLBFlushF, .DTLBFlushM, .EcallFaultM, .BreakpointFaultM,
.EcallFaultM, .BreakpointFaultM,
.sretM, .mretM, .wfiM, .sfencevmaM);
///////////////////////////////////////////
@ -158,11 +159,11 @@ module privileged (
.LoadPageFaultM, .StoreAmoPageFaultM,
.mretM, .sretM,
.PrivilegeModeW,
.MIP_REGW, .MIE_REGW, .MIDELEG_REGW,
.MIP_REGW, .MIE_REGW, .MIDELEG_REGW, .MEDELEG_REGW,
.STATUS_MIE, .STATUS_SIE,
.InstrValidM, .CommittedM,
.TrapM, .RetM,
.InterruptM, .IntPendingM,
.InterruptM, .IntPendingM, .DelegateM,
.CauseM);
endmodule

View File

@ -33,30 +33,22 @@
module privmode (
input logic clk, reset,
input logic StallW, TrapM, mretM, sretM, InterruptM,
input logic [`LOG_XLEN-1:0] CauseM,
input logic [`XLEN-1:0] MEDELEG_REGW,
input logic [11:0] MIDELEG_REGW,
input logic StallW, TrapM, mretM, sretM,
input logic DelegateM,
input logic [1:0] STATUS_MPP,
input logic STATUS_SPP,
output logic [1:0] NextPrivilegeModeM, PrivilegeModeW
);
if (`U_SUPPORTED) begin:privmode
logic md;
// get bits of DELEG registers based on CAUSE
assign md = InterruptM ? MIDELEG_REGW[CauseM[3:0]] : MEDELEG_REGW[CauseM];
// PrivilegeMode FSM
always_comb begin
if (TrapM) begin // Change privilege based on DELEG registers (see 3.1.8)
if (`S_SUPPORTED & md & (PrivilegeModeW == `U_MODE | PrivilegeModeW == `S_MODE))
NextPrivilegeModeM = `S_MODE;
else NextPrivilegeModeM = `M_MODE;
end else if (mretM) NextPrivilegeModeM = STATUS_MPP;
else if (sretM) NextPrivilegeModeM = {1'b0, STATUS_SPP};
else NextPrivilegeModeM = PrivilegeModeW;
if (`S_SUPPORTED & DelegateM) NextPrivilegeModeM = `S_MODE;
else NextPrivilegeModeM = `M_MODE;
end else if (mretM) NextPrivilegeModeM = STATUS_MPP;
else if (sretM) NextPrivilegeModeM = {1'b0, STATUS_SPP};
else NextPrivilegeModeM = PrivilegeModeW;
end
flopenl #(2) privmodereg(clk, reset, ~StallW, NextPrivilegeModeM, `M_MODE, PrivilegeModeW);

View File

@ -39,11 +39,12 @@ module trap (
(* mark_debug = "true" *) input logic LoadPageFaultM, StoreAmoPageFaultM,
(* mark_debug = "true" *) input logic mretM, sretM,
input logic [1:0] PrivilegeModeW,
(* mark_debug = "true" *) input logic [11:0] MIP_REGW, MIE_REGW, MIDELEG_REGW,
(* mark_debug = "true" *) input logic [11:0] MIP_REGW, MIE_REGW, MIDELEG_REGW,
input logic [`XLEN-1:0] MEDELEG_REGW,
input logic STATUS_MIE, STATUS_SIE,
input logic InstrValidM, CommittedM,
output logic TrapM, RetM,
output logic InterruptM, IntPendingM,
output logic InterruptM, IntPendingM, DelegateM,
output logic [`LOG_XLEN-1:0] CauseM
);
@ -63,6 +64,8 @@ module trap (
assign IntPendingM = |PendingIntsM;
assign ValidIntsM = {12{MIntGlobalEnM}} & PendingIntsM & ~MIDELEG_REGW | {12{SIntGlobalEnM}} & PendingIntsM & MIDELEG_REGW;
assign InterruptM = (|ValidIntsM) && InstrValidM && ~(CommittedM); // *** RT. CommittedM is a temporary hack to prevent integer division from having an interrupt during divide.
assign DelegateM = `S_SUPPORTED & (InterruptM ? MIDELEG_REGW[CauseM[3:0]] : MEDELEG_REGW[CauseM]) &
(PrivilegeModeW == `U_MODE | PrivilegeModeW == `S_MODE);
///////////////////////////////////////////
// Trigger Traps and RET

View File

@ -0,0 +1,98 @@
///////////////////////////////////////////
// ahbapbbridge.sv
//
// Written: David_Harris@hmc.edu & Nic Lucio 7 June 2022
//
// Purpose: AHB to APB bridge
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module ahbapbbridge #(PERIPHS = 2) (
input logic HCLK, HRESETn,
input logic [PERIPHS-1:0] HSEL,
input logic [31:0] HADDR,
input logic [`XLEN-1:0] HWDATA,
input logic HWRITE,
input logic [1:0] HTRANS,
input logic HREADY,
output logic [`XLEN-1:0] HRDATA,
output logic HRESP, HREADYOUT,
output logic PCLK, PRESETn,
output logic [PERIPHS-1:0] PSEL,
output logic PWRITE,
output logic PENABLE,
output logic [31:0] PADDR,
output logic [`XLEN-1:0] PWDATA,
input logic [PERIPHS-1:0] PREADY,
input var [`XLEN-1:0][PERIPHS-1:0] PRDATA
);
logic activeTrans;
logic initTrans, initTransSel, initTransSelD;
logic nextPENABLE;
// convert AHB to APB signals
assign PCLK = HCLK;
assign PRESETn = HRESETn;
// identify start of a transaction
assign activeTrans = (HTRANS == 2'b10); // only accept nonsequential transactions
assign initTrans = activeTrans & HREADY; // start a transaction when the bus is ready and an active transaction is requested
assign initTransSel = initTrans & |HSEL; // capture data and address if any of the peripherals are selected
// delay AHB Address phase signals to align with AHB Data phase because APB expects them at the same time
flopenr #(32) addrreg(HCLK, ~HRESETn, initTransSel, HADDR, PADDR);
flopenr #(1) writereg(HCLK, ~HRESETn, initTransSel, HWRITE, PWRITE);
// enable selreg with iniTrans rather than initTransSel so PSEL can turn off
flopenr #(PERIPHS) selreg(HCLK, ~HRESETn, initTrans, HSEL & {PERIPHS{activeTrans}}, PSEL);
// AHB Data phase signal doesn't need delay. Note that HWDATA is guaranteed to remain stable until READY is asserted
assign PWDATA = HWDATA;
// enable logic: goes high a cycle after initTrans, then back low on cycle after desired PREADY is asserted
// cycle1: AHB puts HADDR, HWRITE, HSEL on bus. initTrans is 1, and these are captured
// cycle2: AHB puts HWDATA on the bus. This effectively extends the setup phase
// cycle3: bridge raises PENABLE. Peripheral typically responds with PREADY.
// Read occurs by end of cycle. Write occurs at end of cycle.
flopr #(1) inittransreg(HCLK, ~HRESETn, initTransSel, initTransSelD);
assign nextPENABLE = PENABLE ? ~HREADY : initTransSelD;
flopr #(1) enablereg(HCLK, ~HRESETn, nextPENABLE, PENABLE);
// result and ready multiplexer
int i;
always_comb
for (i=0; i<PERIPHS; i++) begin
// no peripheral selected: read 0, indicate ready
HRDATA = 0;
HREADYOUT = 1;
if (PSEL[i]) begin // highest numbered peripheral has priority, but multiple PSEL should never be asserted
HRDATA = PRDATA[i];
HREADYOUT = PREADY[i];
end
end
// resp logic
assign HRESP = 0; // bridge never indicates errors
endmodule

View File

@ -0,0 +1,146 @@
///////////////////////////////////////////
// gpio_apb.sv
//
// Written: David_Harris@hmc.edu 14 January 2021
// Modified: bbracker@hmc.edu 15 Apr. 2021
//
// Purpose: General Purpose I/O peripheral
// See FE310-G002-Manual-v19p05 for specifications
// No interrupts, drive strength, or pull-ups supported
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module gpio_apb (
input logic PCLK, PRESETn,
input logic PSEL,
input logic [7:0] PADDR,
input logic [`XLEN-1:0] PWDATA,
input logic PWRITE,
input logic PENABLE,
output logic [`XLEN-1:0] PRDATA,
output logic PREADY,
input logic [31:0] GPIOPinsIn,
output logic [31:0] GPIOPinsOut, GPIOPinsEn,
output logic GPIOIntr);
logic [31:0] input0d, input1d, input2d, input3d;
logic [31:0] input_val, input_en, output_en, output_val;
logic [31:0] rise_ie, rise_ip, fall_ie, fall_ip, high_ie, high_ip, low_ie, low_ip;
logic [7:0] entry;
logic [31:0] Din, Dout;
logic memwrite;
// APB I/O
assign entry = {PADDR[7:2],2'b00}; // 32-bit word-aligned accesses
assign memwrite = PWRITE & PENABLE; // only write in access phase
assign PREADY = PENABLE; // GPIO never takes >1 cycle to respond
// account for subword read/write circuitry
// -- Note GPIO registers are 32 bits no matter what; access them with LW SW.
// (At least that's what I think when FE310 spec says "only naturally aligned 32-bit accesses are supported")
if (`XLEN == 64) begin
assign Din = entry[2] ? PWDATA[63:32] : PWDATA[31:0];
assign PRDATA = entry[2] ? {Dout,32'b0} : {32'b0,Dout};
end else begin // 32-bit
assign Din = PWDATA[31:0];
assign PRDATA = Dout;
end
// register access
always_ff @(posedge PCLK, negedge PRESETn)
if (~PRESETn) begin // asynch reset
input_en <= 0;
output_en <= 0;
// *** synch reset not yet implemented [DH: can we delete this comment? Check if a sync reset is required]
output_val <= #1 0;
rise_ie <= #1 0;
rise_ip <= #1 0;
fall_ie <= #1 0;
fall_ip <= #1 0;
high_ie <= #1 0;
high_ip <= #1 0;
low_ie <= #1 0;
low_ip <= #1 0;
end else begin // writes
// According to FE310 spec: Once the interrupt is pending, it will remain set until a 1 is written to the *_ip register at that bit.
/* verilator lint_off CASEINCOMPLETE */
if (memwrite)
case(entry)
8'h04: input_en <= #1 Din;
8'h08: output_en <= #1 Din;
8'h0C: output_val <= #1 Din;
8'h18: rise_ie <= #1 Din;
8'h20: fall_ie <= #1 Din;
8'h28: high_ie <= #1 Din;
8'h30: low_ie <= #1 Din;
8'h40: output_val <= #1 output_val ^ Din; // OUT_XOR
endcase
/* verilator lint_on CASEINCOMPLETE */
// interrupts can be cleared by writing corresponding bits to a register
if (memwrite & entry == 8'h1C) rise_ip <= rise_ip & ~Din;
else rise_ip <= rise_ip | (input2d & ~input3d);
if (memwrite & (entry == 8'h24)) fall_ip <= fall_ip & ~Din;
else fall_ip <= fall_ip | (~input2d & input3d);
if (memwrite & (entry == 8'h2C)) high_ip <= high_ip & ~Din;
else high_ip <= high_ip | input3d;
if (memwrite & (entry == 8'h34)) low_ip <= low_ip & ~Din;
else low_ip <= low_ip | ~input3d;
case(entry) // flop to sample inputs
8'h00: Dout <= #1 input_val;
8'h04: Dout <= #1 input_en;
8'h08: Dout <= #1 output_en;
8'h0C: Dout <= #1 output_val;
8'h18: Dout <= #1 rise_ie;
8'h1C: Dout <= #1 rise_ip;
8'h20: Dout <= #1 fall_ie;
8'h24: Dout <= #1 fall_ip;
8'h28: Dout <= #1 high_ie;
8'h2C: Dout <= #1 high_ip;
8'h30: Dout <= #1 low_ie;
8'h34: Dout <= #1 low_ip;
8'h40: Dout <= #1 0; // OUT_XOR reads as 0
default: Dout <= #1 0;
endcase
end
// chip i/o
// connect OUT to IN for loopback testing
if (`GPIO_LOOPBACK_TEST) assign input0d = ((output_en & GPIOPinsOut) | (~output_en & GPIOPinsIn)) & input_en;
else assign input0d = GPIOPinsIn & input_en;
// synchroninzer for inputs
flop #(32) sync1(PCLK,input0d,input1d);
flop #(32) sync2(PCLK,input1d,input2d);
flop #(32) sync3(PCLK,input2d,input3d);
assign input_val = input3d;
assign GPIOPinsOut = output_val;
assign GPIOPinsEn = output_en;
assign GPIOIntr = |{(rise_ip & rise_ie),(fall_ip & fall_ie),(high_ip & high_ie),(low_ip & low_ie)};
endmodule

View File

@ -49,21 +49,24 @@ module ram #(parameter BASE=0, RANGE = 65535) (
// 3. implement burst.
// 4. remove the configurable latency.
logic [`XLEN/8-1:0] ByteMaskM;
logic [31:0] HWADDR, A;
logic prevHREADYRam, risingHREADYRam;
logic [`XLEN/8-1:0] ByteMask;
logic [31:0] HADDRD, RamAddr;
//logic prevHREADYRam, risingHREADYRam;
logic initTrans;
logic memwrite;
logic [3:0] busycount;
logic memwrite, memwriteD;
logic nextHREADYRam;
//logic [3:0] busycount;
swbytemask swbytemask(.Size(HSIZED[1:0]), .Adr(HWADDR[2:0]), .ByteMask(ByteMaskM));
swbytemask swbytemask(.Size(HSIZED[1:0]), .Adr(HADDRD[2:0]), .ByteMask(ByteMask));
assign initTrans = HREADY & HSELRam & (HTRANS != 2'b00);
assign initTrans = HREADY & HSELRam & (HTRANS != 2'b00); // *** add burst support, or disable on busy
assign memwrite = initTrans & HWRITE;
// *** this seems like a weird way to use reset
flopenr #(1) memwritereg(HCLK, 1'b0, initTrans | ~HRESETn, HSELRam & HWRITE, memwrite);
flopenr #(32) haddrreg(HCLK, 1'b0, initTrans | ~HRESETn, HADDR, A);
// busy FSM to extend READY signal
flopen #(1) memwritereg(HCLK, initTrans | ~HRESETn, memwrite, memwriteD); // probably drop ~HRESETn in all this
flopen #(32) haddrreg(HCLK, initTrans | ~HRESETn, HADDR, HADDRD);
/* // busy FSM to extend READY signal
always @(posedge HCLK, negedge HRESETn)
if (~HRESETn) begin
busycount <= 0;
@ -79,28 +82,38 @@ module ram #(parameter BASE=0, RANGE = 65535) (
busycount <= busycount + 1;
end
end
end
end */
assign nextHREADYRam = ~(memwriteD & ~memwrite);
flopr #(1) readyreg(HCLK, ~HRESETn, nextHREADYRam, HREADYRam);
// assign HREADYRam = ~(memwriteD & ~memwrite);
assign HRESPRam = 0; // OK
localparam ADDR_WDITH = $clog2(RANGE/8);
localparam ADDR_WIDTH = $clog2(RANGE/8);
localparam OFFSET = $clog2(`XLEN/8);
// Rising HREADY edge detector
/* // Rising HREADY edge detector
// Indicates when ram is finishing up
// Needed because HREADY may go high for other reasons,
// and we only want to write data when finishing up.
flopenr #(1) prevhreadyRamreg(HCLK,~HRESETn, 1'b1, HREADYRam,prevHREADYRam);
assign risingHREADYRam = HREADYRam & ~prevHREADYRam;
assign risingHREADYRam = HREADYRam & ~prevHREADYRam;*/
always @(posedge HCLK)
HWADDR <= #1 A;
bram2p1r1w #(`XLEN/8, 8, ADDR_WDITH, `FPGA)
memory(.clk(HCLK), .enaA(1'b1),
/*
bram2p1r1w #(`XLEN/8, 8, ADDR_WDITH, `FPGA)
memory(.clk(HCLK), .reA(1'b1),
.addrA(A[ADDR_WDITH+OFFSET-1:OFFSET]), .doutA(HREADRam),
.enaB(memwrite & risingHREADYRam), .weB(ByteMaskM),
.addrB(HWADDR[ADDR_WDITH+OFFSET-1:OFFSET]), .dinB(HWDATA));
.weB(memwrite & risingHREADYRam), .bweB(ByteMaskM),
.addrB(HWADDR[ADDR_WDITH+OFFSET-1:OFFSET]), .dinB(HWDATA)); */
// On writes, use address delayed by one cycle to sync with HWDATA
mux2 #(32) adrmux(HADDR, HADDRD, memwriteD, RamAddr);
// single-ported RAM
bram1p1rw #(`XLEN/8, 8, ADDR_WIDTH)
memory(.clk(HCLK), .we(memwriteD), .bwe(ByteMask), .addr(RamAddr[ADDR_WIDTH+OFFSET-1:OFFSET]), .dout(HREADRam), .din(HWDATA));
endmodule

View File

@ -0,0 +1,107 @@
///////////////////////////////////////////
// ram_orig.sv
//
// Written: David_Harris@hmc.edu 9 January 2021
// Modified:
//
// Purpose: On-chip RAM, external to core
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module ram_orig #(parameter BASE=0, RANGE = 65535) (
input logic HCLK, HRESETn,
input logic HSELRam,
input logic [31:0] HADDR,
input logic HWRITE,
input logic HREADY,
input logic [1:0] HTRANS,
input logic [`XLEN-1:0] HWDATA,
input logic [3:0] HSIZED,
output logic [`XLEN-1:0] HREADRam,
output logic HRESPRam, HREADYRam
);
// Desired changes.
// 1. find a way to merge read and write address into 1 port.
// 2. remove all unnecessary latencies. (HREADY needs to be able to constant high.)
// 3. implement burst.
// 4. remove the configurable latency.
logic [`XLEN/8-1:0] ByteMaskM;
logic [31:0] HWADDR, A;
logic prevHREADYRam, risingHREADYRam;
logic initTrans;
logic memwrite;
logic [3:0] busycount;
swbytemask swbytemask(.Size(HSIZED[1:0]), .Adr(HWADDR[2:0]), .ByteMask(ByteMaskM));
assign initTrans = HREADY & HSELRam & (HTRANS != 2'b00);
// *** this seems like a weird way to use reset
flopenr #(1) memwritereg(HCLK, 1'b0, initTrans | ~HRESETn, HSELRam & HWRITE, memwrite);
flopenr #(32) haddrreg(HCLK, 1'b0, initTrans | ~HRESETn, HADDR, A);
// busy FSM to extend READY signal
always @(posedge HCLK, negedge HRESETn)
if (~HRESETn) begin
busycount <= 0;
HREADYRam <= #1 0;
end else begin
if (initTrans) begin
busycount <= 0;
HREADYRam <= #1 0;
end else if (~HREADYRam) begin
if (busycount == 0) begin // Ram latency, for testing purposes. *** test with different values such as 2
HREADYRam <= #1 1;
end else begin
busycount <= busycount + 1;
end
end
end
assign HRESPRam = 0; // OK
localparam ADDR_WDITH = $clog2(RANGE/8);
localparam OFFSET = $clog2(`XLEN/8);
// Rising HREADY edge detector
// Indicates when ram is finishing up
// Needed because HREADY may go high for other reasons,
// and we only want to write data when finishing up.
flopenr #(1) prevhreadyRamreg(HCLK,~HRESETn, 1'b1, HREADYRam,prevHREADYRam);
assign risingHREADYRam = HREADYRam & ~prevHREADYRam;
always @(posedge HCLK)
HWADDR <= #1 A;
bram2p1r1w #(`XLEN/8, 8, ADDR_WDITH, `FPGA)
memory(.clk(HCLK), .reA(1'b1),
.addrA(A[ADDR_WDITH+OFFSET-1:OFFSET]), .doutA(HREADRam),
.weB(memwrite & risingHREADYRam), .bweB(ByteMaskM),
.addrB(HWADDR[ADDR_WDITH+OFFSET-1:OFFSET]), .dinB(HWDATA));
endmodule

View File

@ -92,7 +92,7 @@ module uncore (
// generate
// on-chip RAM
if (`RAM_SUPPORTED) begin : ram
ram #(
ram_orig #(
.BASE(`RAM_BASE), .RANGE(`RAM_RANGE)) ram (
.HCLK, .HRESETn,
.HSELRam, .HADDR,
@ -102,7 +102,7 @@ module uncore (
end
if (`BOOTROM_SUPPORTED) begin : bootrom
ram #(.BASE(`BOOTROM_BASE), .RANGE(`BOOTROM_RANGE))
ram_orig #(.BASE(`BOOTROM_BASE), .RANGE(`BOOTROM_RANGE))
bootrom(
.HCLK, .HRESETn,
.HSELRam(HSELBootRom), .HADDR,
@ -194,7 +194,7 @@ module uncore (
({`XLEN{HSELSDCD}} & HREADSDC);
assign HRESP = HSELRamD & HRESPRam |
HSELEXTD & HRESPEXT |
HSELEXTD & HRESPEXT |
HSELCLINTD & HRESPCLINT |
HSELPLICD & HRESPPLIC |
HSELGPIOD & HRESPGPIO |
@ -203,7 +203,7 @@ module uncore (
HSELSDC & HRESPSDC;
assign HREADY = HSELRamD & HREADYRam |
HSELEXTD & HREADYEXT |
HSELEXTD & HREADYEXT |
HSELCLINTD & HREADYCLINT |
HSELPLICD & HREADYPLIC |
HSELGPIOD & HREADYGPIO |

View File

@ -82,7 +82,7 @@ module wallypipelinedcore (
logic StoreAmoMisalignedFaultM, StoreAmoAccessFaultM;
logic InvalidateICacheM, FlushDCacheM;
logic PCSrcE;
logic CSRWritePendingDEM;
logic CSRWriteFencePendingDEM;
logic DivBusyE;
logic LoadStallD, StoreStallD, MDUStallD, CSRRdStallD;
logic SquashSCW;
@ -101,7 +101,6 @@ module wallypipelinedcore (
// memory management unit signals
logic ITLBWriteF;
logic ITLBFlushF, DTLBFlushM;
logic ITLBMissF;
logic [`XLEN-1:0] SATP_REGW;
logic STATUS_MXR, STATUS_SUM, STATUS_MPRV;
@ -109,7 +108,7 @@ module wallypipelinedcore (
logic [1:0] PrivilegeModeW;
logic [`XLEN-1:0] PTE;
logic [1:0] PageType;
logic wfiM, IntPendingM;
logic sfencevmaM, wfiM, IntPendingM;
logic SelHPTW;
// PMA checker signals
@ -196,7 +195,7 @@ module wallypipelinedcore (
// mmu management
.PrivilegeModeW, .PTE, .PageType, .SATP_REGW,
.STATUS_MXR, .STATUS_SUM, .STATUS_MPRV,
.STATUS_MPP, .ITLBWriteF, .ITLBFlushF,
.STATUS_MPP, .ITLBWriteF, .sfencevmaM,
.ITLBMissF,
// pmp/pma (inside mmu) signals. *** temporarily from AHB bus but eventually replace with internal versions pre H
@ -238,7 +237,7 @@ module wallypipelinedcore (
.FPUStallD, .LoadStallD, .MDUStallD, .CSRRdStallD,
.PCSrcE,
.CSRReadM, .CSRWriteM, .PrivilegedM,
.CSRWritePendingDEM, .StoreStallD
.CSRWriteFencePendingDEM, .StoreStallD
); // integer execution unit: integer register file, datapath and controller
@ -268,7 +267,7 @@ module wallypipelinedcore (
.STATUS_MPRV, // from csr
.STATUS_MPP, // from csr
.DTLBFlushM, // connects to privilege
.sfencevmaM, // connects to privilege
.LoadPageFaultM, // connects to privilege
.StoreAmoPageFaultM, // connects to privilege
.LoadMisalignedFaultM, // connects to privilege
@ -310,13 +309,13 @@ module wallypipelinedcore (
hazard hzu(
.BPPredWrongE, .CSRWritePendingDEM, .RetM, .TrapM,
.BPPredWrongE, .CSRWriteFencePendingDEM, .RetM, .TrapM,
.LoadStallD, .StoreStallD, .MDUStallD, .CSRRdStallD,
.LSUStallM, .IFUStallF,
.FPUStallD, .FStallD,
.DivBusyE, .FDivBusyE,
.EcallFaultM, .BreakpointFaultM,
.InvalidateICacheM, .wfiM, .IntPendingM,
.wfiM, .IntPendingM,
// Stall & flush outputs
.StallF, .StallD, .StallE, .StallM, .StallW,
.FlushF, .FlushD, .FlushE, .FlushM, .FlushW
@ -330,7 +329,7 @@ module wallypipelinedcore (
.CSRReadM, .CSRWriteM, .SrcAM, .PCM,
.InstrM, .CSRReadValW, .PrivilegedNextPCM,
.RetM, .TrapM,
.ITLBFlushF, .DTLBFlushM,
.sfencevmaM,
.InstrValidM, .CommittedM,
.FRegWriteM, .LoadStallD,
.BPPredDirWrongM, .BTBPredPCWrongM,
@ -359,8 +358,7 @@ module wallypipelinedcore (
assign RetM = 0;
assign TrapM = 0;
assign wfiM = 0;
assign ITLBFlushF = 0;
assign DTLBFlushM = 0;
assign sfencevmaM = 0;
assign BigEndianM = 0;
end
if (`M_SUPPORTED) begin:mdu

View File

@ -1,13 +1,16 @@
all: sqrttestgen testgen
all: sqrttestgen testgen qst2
sqrttestgen: sqrttestgen.c
gcc sqrttestgen.c -lm -o sqrttestgen
testgen: testgen.c
gcc testgen.c -lm -o testgen
qst2: qst2.c
gcc qst2.c -lm -o qst2
gcc -lm -o testgen testgen.c
./testgen
exptestgen: exptestgen.c
gcc -lm -o exptestgen exptestgen.c
./exptestgen

Some files were not shown because too many files have changed in this diff Show More