Merge changes from main

This commit is contained in:
Jarred Allen 2021-03-18 18:58:10 -04:00
commit 279c09b27c
34 changed files with 644 additions and 252 deletions

View File

@ -63,16 +63,21 @@
// Peripheral memory space extends from BASE to BASE+RANGE
// Range should be a thermometer code with 0's in the upper bits and 1s in the lower bits
`define TIMBASE 32'h80000000
`define TIMRANGE 32'h07FFFFFF
`define BOOTTIMBASE 32'h00000000 //only needs to go from 0x1000 to 0x2FFF, extending to a power of 2
`define BOOTTIMRANGE 32'h00003FFF
`define CLINTBASE 32'h02000000
`define CLINTRANGE 32'h0000BFFF
//`define GPIOBASE 32'h10012000 // no GPIO in linux for now
//`define GPIORANGE 32'h000000FF
`define CLINTRANGE 32'h0000FFFF
`define PLICBASE 32'h0C000000
`define PLICRANGE 32'h0FFFFFFF
`define UARTBASE 32'h10000000
`define UARTRANGE 32'h00000007
`define VBD0BASE 32'h10001000
`define VBD0RANGE 32'h000001FF
// differing from Imperas' OVPSim by not having a VND0
`define GPIOBASE 32'h20000000
`define GPIORANGE 32'h000000FF
`define TIMBASE 32'h80000000
`define TIMRANGE 32'h07FFFFFF
// Bus Interface width
`define AHBW 64
@ -81,6 +86,8 @@
// Tie GPIO outputs back to inputs
`define GPIO_LOOPBACK_TEST 0
// Busybear special CSR config to match OVPSim
`define OVPSIM_CSR_CONFIG 1
// Hardware configuration
`define UART_PRESCALE 1
@ -90,3 +97,4 @@
`define TWO_BIT_PRELOAD "../config/busybear/twoBitPredictor.txt"
`define BTB_PRELOAD "../config/busybear/BTBPredictor.txt"
`define BPTYPE "BPGSHARE" // BPGLOBAL or BPTWOBIT or BPGSHARE

View File

@ -66,6 +66,8 @@
// Peripheral memory space extends from BASE to BASE+RANGE
// Range should be a thermometer code with 0's in the upper bits and 1s in the lower bits
`define BOOTTIMBASE 32'h00000000
`define BOOTTIMRANGE 32'h00003FFF
`define TIMBASE 32'h00000000
`define TIMRANGE 32'hFFFFFFFF
`define CLINTBASE 32'h02000000
@ -80,6 +82,8 @@
// Tie GPIO outputs back to inputs
`define GPIO_LOOPBACK_TEST 0
// Busybear special CSR config to match OVPSim
`define OVPSIM_CSR_CONFIG 0
// Hardware configuration
`define UART_PRESCALE 1
@ -91,3 +95,4 @@
`define TWO_BIT_PRELOAD "../config/coremark/twoBitPredictor.txt"
`define BTB_PRELOAD "../config/coremark/BTBPredictor.txt"
`define BPTYPE "BPGSHARE" // BPGLOBAL or BPTWOBIT or BPGSHARE

View File

@ -66,6 +66,8 @@
// Peripheral memory space extends from BASE to BASE+RANGE
// Range should be a thermometer code with 0's in the upper bits and 1s in the lower bits
`define BOOTTIMBASE 32'h00000000
`define BOOTTIMRANGE 32'h00003FFF
`define TIMBASE 32'h80000000
`define TIMRANGE 32'h000FFFFF
`define CLINTBASE 32'h02000000
@ -80,6 +82,8 @@
// Tie GPIO outputs back to inputs
`define GPIO_LOOPBACK_TEST 0
// Busybear special CSR config to match OVPSim
`define OVPSIM_CSR_CONFIG 0
// Hardware configuration
`define UART_PRESCALE 1

View File

@ -62,6 +62,8 @@
// Peripheral memory space extends from BASE to BASE+RANGE
// Range should be a thermometer code with 0's in the upper bits and 1s in the lower bits
`define BOOTTIMBASE 32'h00000000
`define BOOTTIMRANGE 32'h00003FFF
`define TIMBASE 32'h80000000
`define TIMRANGE 32'h0007FFFF
`define CLINTBASE 32'h02000000
@ -79,6 +81,8 @@
// Tie GPIO outputs back to inputs
`define GPIO_LOOPBACK_TEST 0
// Busybear special CSR config to match OVPSim
`define OVPSIM_CSR_CONFIG 0
// Hardware configuration
`define UART_PRESCALE 1
@ -88,3 +92,4 @@
`define TWO_BIT_PRELOAD "../config/rv32ic/twoBitPredictor.txt"
`define BTB_PRELOAD "../config/rv32ic/BTBPredictor.txt"
`define BPTYPE "BPGSHARE" // BPGLOBAL or BPTWOBIT or BPGSHARE

View File

@ -66,6 +66,8 @@
// Peripheral memory space extends from BASE to BASE+RANGE
// Range should be a thermometer code with 0's in the upper bits and 1s in the lower bits
`define BOOTTIMBASE 32'h00000000
`define BOOTTIMRANGE 32'h00003FFF
`define TIMBASE 32'h80000000
`define TIMRANGE 32'h0007FFFF
`define CLINTBASE 32'h02000000
@ -80,6 +82,8 @@
// Tie GPIO outputs back to inputs
`define GPIO_LOOPBACK_TEST 0
// Busybear special CSR config to match OVPSim
`define OVPSIM_CSR_CONFIG 0
// Hardware configuration
`define UART_PRESCALE 1
@ -91,3 +95,4 @@
`define TWO_BIT_PRELOAD "../config/rv64ic/twoBitPredictor.txt"
`define BTB_PRELOAD "../config/rv64ic/BTBPredictor.txt"
`define BPTYPE "BPGSHARE" // BPGLOBAL or BPTWOBIT or BPGSHARE

View File

@ -66,6 +66,8 @@
// Peripheral memory space extends from BASE to BASE+RANGE
// Range should be a thermometer code with 0's in the upper bits and 1s in the lower bits
`define BOOTTIMBASE 32'h00000000
`define BOOTTIMRANGE 32'h00003FFF
`define TIMBASE 32'h80000000
`define TIMRANGE 32'h0007FFFF
`define CLINTBASE 32'h02000000
@ -80,6 +82,8 @@
// Tie GPIO outputs back to inputs
`define GPIO_LOOPBACK_TEST 0
// Busybear special CSR config to match OVPSim
`define OVPSIM_CSR_CONFIG 0
// Hardware configuration
`define UART_PRESCALE 1
@ -91,3 +95,4 @@
`define TWO_BIT_PRELOAD "../config/rv64icfd/twoBitPredictor.txt"
`define BTB_PRELOAD "../config/rv64icfd/BTBPredictor.txt"
`define BPTYPE "BPGSHARE" // BPGLOBAL or BPTWOBIT or BPGSHARE

View File

@ -111,6 +111,6 @@ set DefaultRadix hexadecimal
-- Run the Simulation
#run 7402000
#run 12750
#run -all
run 5000
run -all
#run 21400
#quit

View File

@ -1,7 +1,8 @@
add wave /testbench/clk
add wave /testbench/reset
add wave -divider
#add wave /testbench/dut/hart/ebu/IReadF
add wave /testbench/dut/hart/DataStall
add wave /testbench/dut/hart/InstrStall
add wave /testbench/dut/hart/StallF
@ -44,6 +45,8 @@ add wave -hex /testbench/dut/hart/ifu/PCM
add wave -hex /testbench/dut/hart/ifu/InstrM
add wave /testbench/InstrMName
add wave /testbench/dut/uncore/dtim/memwrite
add wave -hex /testbench/dut/uncore/HADDR
add wave -hex /testbench/dut/uncore/HWDATA
add wave -divider
add wave -hex /testbench/dut/hart/ebu/MemReadM
@ -60,9 +63,12 @@ add wave -hex /testbench/dut/hart/ebu/CaptureDataM
add wave -hex /testbench/dut/hart/ebu/InstrStall
add wave -divider
<<<<<<< HEAD
add wave -hex /testbench/dut/uncore/dtim/*
add wave -divider
=======
>>>>>>> origin/main
add wave -hex /testbench/dut/hart/ifu/PCW
add wave -hex /testbench/dut/hart/ifu/InstrW
add wave /testbench/InstrWName
@ -72,4 +78,11 @@ add wave -hex /testbench/dut/hart/ieu/dp/ResultW
add wave -hex /testbench/dut/hart/ieu/dp/RdW
add wave -divider
<<<<<<< HEAD
add wave -hex -r /testbench/*
=======
add wave -hex /testbench/dut/uncore/dtim/*
add wave -divider
add wave -hex -r /testbench/*
>>>>>>> origin/main

View File

@ -53,4 +53,4 @@ add wave -hex /testbench/dut/hart/ieu/dp/ResultW
add wave -hex /testbench/dut/hart/ieu/dp/RdW
add wave -divider
#add ww
add wave -hex -r /testbench/*
add wave -hex -r /testbench/*

View File

@ -36,11 +36,9 @@ add wave -noupdate -group HDU -expand -group Flush -color Yellow /testbench/dut/
add wave -noupdate -group HDU -expand -group Stall -color Orange /testbench/dut/hart/StallF
add wave -noupdate -group HDU -expand -group Stall -color Orange /testbench/dut/hart/StallD
add wave -noupdate -group Bpred -expand -group direction -divider Update
add wave -noupdate -group Bpred -expand -group direction /testbench/dut/hart/ifu/bpred/DirPredictor/UpdatePC
add wave -noupdate -group Bpred -expand -group direction /testbench/dut/hart/ifu/bpred/DirPredictor/UpdateEN
add wave -noupdate -group Bpred -expand -group direction /testbench/dut/hart/ifu/bpred/DirPredictor/UpdatePCIndex
add wave -noupdate -group Bpred -expand -group direction /testbench/dut/hart/ifu/bpred/DirPredictor/UpdatePrediction
add wave -noupdate -group Bpred -expand -group direction /testbench/dut/hart/ifu/bpred/DirPredictor/memory/memory
add wave -noupdate -group Bpred -expand -group direction /testbench/dut/hart/ifu/bpred/Predictor/DirPredictor/UpdatePC
add wave -noupdate -group Bpred -expand -group direction /testbench/dut/hart/ifu/bpred/Predictor/DirPredictor/UpdateEN
add wave -noupdate -group Bpred -expand -group direction /testbench/dut/hart/ifu/bpred/Predictor/DirPredictor/UpdatePrediction
add wave -noupdate -group Bpred -group {bp wrong} /testbench/dut/hart/ifu/bpred/TargetWrongE
add wave -noupdate -group Bpred -group {bp wrong} /testbench/dut/hart/ifu/bpred/FallThroughWrongE
add wave -noupdate -group Bpred -group {bp wrong} /testbench/dut/hart/ifu/bpred/PredictionDirWrongE
@ -144,7 +142,7 @@ add wave -noupdate -group {function radix debug} /testbench/functionRadix/functi
add wave -noupdate -group {function radix debug} /testbench/functionRadix/function_radix/ProgramAddrIndex
add wave -noupdate -group {function radix debug} /testbench/functionRadix/function_radix/FunctionName
TreeUpdate [SetDefaultTree]
WaveRestoreCursors {{Cursor 2} {181681 ns} 0} {{Cursor 3} {20231927 ns} 0}
WaveRestoreCursors {{Cursor 2} {3758805 ns} 0}
quietly wave cursor active 1
configure wave -namecolwidth 250
configure wave -valuecolwidth 229
@ -160,4 +158,4 @@ configure wave -griddelta 40
configure wave -timeline 0
configure wave -timelineunits ns
update
WaveRestoreZoom {11339470 ns} {14752202 ns}
WaveRestoreZoom {1644110 ns} {15262484 ns}

View File

@ -50,19 +50,20 @@ module dmem (
output logic LoadMisalignedFaultM, LoadAccessFaultM,
output logic StoreMisalignedFaultM, StoreAccessFaultM,
// TLB management
//input logic [`XLEN-1:0] PageTableEntryM,
input logic [1:0] PrivilegeModeW,
input logic [`XLEN-1:0] PageTableEntryM,
input logic [`XLEN-1:0] SATP_REGW,
//input logic DTLBWriteM, DTLBFlushM,
input logic DTLBWriteM, // DTLBFlushM,
output logic DTLBMissM, DTLBHitM
);
logic SquashSCM;
// *** temporary hack until walker is hooked up -- Thomas F
logic [`XLEN-1:0] PageTableEntryM = '0;
// logic [`XLEN-1:0] PageTableEntryM = '0;
logic DTLBFlushM = '0;
logic DTLBWriteM = '0;
tlb #(3) dtlb(clk, reset, SATP_REGW, MemAdrM, PageTableEntryM, DTLBWriteM,
// logic DTLBWriteM = '0;
tlb #(3) dtlb(clk, reset, SATP_REGW, PrivilegeModeW, MemAdrM, PageTableEntryM, DTLBWriteM,
DTLBFlushM, MemPAdrM, DTLBMissM, DTLBHitM);
// Determine if an Unaligned access is taking place

View File

@ -46,8 +46,11 @@ module ahblite (
input logic MemReadM, MemWriteM,
input logic [`XLEN-1:0] WriteDataM,
input logic [1:0] MemSizeM,
// Signals from MMU ***
// MMUPAdr;
// Signals from MMU
input logic [`XLEN-1:0] MMUPAdr,
input logic MMUTranslate,
output logic [`XLEN-1:0] MMUReadPTE,
output logic MMUReady,
// Return from bus
output logic [`XLEN-1:0] ReadDataW,
// AHB-Lite external signals

View File

@ -0,0 +1,143 @@
///////////////////////////////////////////
// pagetablewalker.sv
//
// Written: tfleming@hmc.edu 2 March 2021
// Modified:
//
// Purpose: Page Table Walker
// Part of the Memory Management Unit (MMU)
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-config.vh"
`include "wally-constants.vh"
module pagetablewalker (
input logic clk, reset,
input logic [`XLEN-1:0] SATP_REGW,
input logic ITLBMissF, DTLBMissM,
input logic [`XLEN-1:0] PCF, MemAdrM,
output logic [`XLEN-1:0] PageTableEntryF, PageTableEntryM,
output logic ITLBWriteF, DTLBWriteM,
// *** handshake to tlbs probably not needed, since stalls take effect
// output logic TranslationComplete
// Signals from and to ahblite
input logic [`XLEN-1:0] MMUReadPTE,
input logic MMUReady,
output logic [`XLEN-1:0] MMUPAdr,
output logic MMUTranslate
);
logic SvMode;
logic [`PPN_BITS-1:0] BasePageTablePPN;
logic [`XLEN-1:0] DirectInstrPTE, DirectMemPTE;
logic [9:0] DirectPTEFlags = {2'b0, 8'b00001111};
// rv32 temp case
logic [`VPN_BITS-1:0] PCPageNumber;
logic [`VPN_BITS-1:0] MemAdrPageNumber;
assign BasePageTablePPN = SATP_REGW[`PPN_BITS-1:0];
assign PCPageNumber = PCF[`VPN_BITS+11:12];
assign MemAdrPageNumber = MemAdrM[`VPN_BITS+11:12];
generate
if (`XLEN == 32) begin
assign DirectInstrPTE = {PCPageNumber, DirectPTEFlags};
assign DirectMemPTE = {MemAdrPageNumber, DirectPTEFlags};
end else begin
assign DirectInstrPTE = {10'b0, PCPageNumber, DirectPTEFlags};
assign DirectMemPTE = {10'b0, MemAdrPageNumber, DirectPTEFlags};
end
endgenerate
flopenr #(`XLEN) instrpte(clk, reset, ITLBMissF, DirectInstrPTE, PageTableEntryF);
flopenr #(`XLEN) datapte(clk, reset, DTLBMissM, DirectMemPTE, PageTableEntryM);
flopr #(1) iwritesignal(clk, reset, ITLBMissF, ITLBWriteF);
flopr #(1) dwritesignal(clk, reset, DTLBMissM, DTLBWriteM);
/*
generate
if (`XLEN == 32) begin
assign SvMode = SATP_REGW[31];
logic VPN1 [9:0] = TranslationVAdr[31:22];
logic VPN0 [9:0] = TranslationVAdr[21:12]; // *** could optimize by not passing offset?
logic TranslationPAdr [33:0];
typedef enum {IDLE, DATA_LEVEL1, DATA_LEVEL0, DATA_LEAF, DATA FAULT} statetype;
statetype WalkerState, NextWalkerState;
always_ff @(posedge HCLK, negedge HRESETn)
if (~HRESETn) WalkerState <= #1 IDLE;
else WalkerState <= #1 NextWalkerState;
always_comb begin
NextWalkerState = 'X;
case (WalkerState)
IDLE: if (TLBMissM) NextWalkerState = LEVEL1;
else NextWalkerState = IDLE;
LEVEL1: if (HREADY && ValidEntry) NextWalkerState = LEVEL0;
else if (HREADY) NextWalkerState = FAULT;
else NextWalkerState = LEVEL1;
LEVEL2: if (HREADY && ValidEntry) NextWalkerState = LEAF;
else if (HREADY) NextWalkerState = FAULT;
else NextWalkerState = LEVEL2;
LEAF: NextWalkerState = IDLE;
endcase
end
always_ff @(posedge HCLK, negedge HRESETn)
if (~HRESETn) begin
TranslationPAdr <= '0;
PageTableEntryF <= '0;
TranslationComplete <= '0;
end else begin
// default values
case (NextWalkerState)
LEVEL1: TranslationPAdr <= {BasePageTablePPN, VPN1, 2'b00};
LEVEL2: TranslationPAdr <= {CurrentPPN, VPN0, 2'b00};
LEAF: begin
PageTableEntryF <= CurrentPageTableEntry;
TranslationComplete <= '1;
end
endcase
end
assign #1 Translate = (NextWalkerState == LEVEL1);
end else begin
// sv39 not yet implemented
assign SvMode = SATP_REGW[63];
end
endgenerate
// rv32 case
*/
endmodule

View File

@ -1,106 +0,0 @@
///////////////////////////////////////////
// pagetablewalker.sv
//
// Written: tfleming@hmc.edu 2 March 2021
// Modified:
//
// Purpose: Page Table Walker
// Part of the Memory Management Unit (MMU)
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-config.vh"
module pagetablewalker (
input logic clk, reset,
input logic [`XLEN-1:0] SATP_REGW,
input logic ITLBMissF, DTLBMissM,
input logic [`XLEN-1:0] TranslationVAdr,
input logic HCLK, HRESETn,
input logic HREADY,
output logic [`XLEN-1:0] PageTableEntryF, PageTableEntryM,
output logic ITLBWriteF, DTLBWriteM,
output logic TranslationComplete
);
/*
generate
if (`XLEN == 32) begin
logic Sv_Mode = satp[31]
end else begin
logic Sv_Mode [3:0] = satp[63:60]
end
endgenerate
*/
logic Sv_Mode = SATP_REGW[31];
logic BasePageTablePPN [21:0] = SATP_REGW[21:0];
logic VPN1 [9:0] = TranslationVAdr[31:22];
logic VPN0 [9:0] = TranslationVAdr[21:12]; // *** could optimize by not passing offset?
logic TranslationPAdr [33:0];
typedef enum {IDLE, DATA_LEVEL1, DATA_LEVEL0, DATA_LEAF, DATA FAULT} statetype;
statetype WalkerState, NextWalkerState;
always_ff @(posedge HCLK, negedge HRESETn)
if (~HRESETn) WalkerState <= #1 IDLE;
else WalkerState <= #1 NextWalkerState;
always_comb begin
NextWalkerState = 'X;
case (WalkerState)
IDLE: if (TLBMissM) NextWalkerState = LEVEL1;
else NextWalkerState = IDLE;
LEVEL1: if (HREADY && ValidEntry) NextWalkerState = LEVEL0;
else if (HREADY) NextWalkerState = FAULT;
else NextWalkerState = LEVEL1;
LEVEL2: if (HREADY && ValidEntry) NextWalkerState = LEAF;
else if (HREADY) NextWalkerState = FAULT;
else NextWalkerState = LEVEL2;
LEAF: NextWalkerState = IDLE;
endcase
end
always_ff @(posedge HCLK, negedge HRESETn)
if (~HRESETn) begin
TranslationPAdr <= '0;
PageTableEntryF <= '0;
TranslationComplete <= '0;
end else begin
// default values
case (NextWalkerState)
LEVEL1: TranslationPAdr <= {BasePageTablePPN, VPN1, 2'b00};
LEVEL2: TranslationPAdr <= {CurrentPPN, VPN0, 2'b00};
LEAF: begin
PageTableEntryF <= CurrentPageTableEntry;
TranslationComplete <= '1;
end
endcase
end
assign #1 Translate = (NextWalkerState == LEVEL1);
endmodule

View File

@ -117,7 +117,7 @@ module controller(
if (InstrD[31:27] == 5'b00010)
ControlsD = `CTRLW'b1_000_00_10_001_0_00_0_0_0_0_0_0_01_0; // lr
else if (InstrD[31:27] == 5'b00011)
ControlsD = `CTRLW'b1_101_01_01_101_0_00_0_0_0_0_0_0_01_0; // sc
ControlsD = `CTRLW'b1_101_01_01_100_0_00_0_0_0_0_0_0_01_0; // sc
else
ControlsD = `CTRLW'b1_101_01_11_001_0_00_0_0_0_0_0_0_10_0;; // amo
end else
@ -125,23 +125,23 @@ module controller(
7'b0110011: if (Funct7D == 7'b0000000 || Funct7D == 7'b0100000)
ControlsD = `CTRLW'b1_000_00_00_000_0_10_0_0_0_0_0_0_00_0; // R-type
else if (Funct7D == 7'b0000001 && `M_SUPPORTED)
ControlsD = `CTRLW'b1_000_00_00_100_0_00_0_0_0_0_0_1_00_0; // Multiply/Divide
ControlsD = `CTRLW'b1_000_00_00_011_0_00_0_0_0_0_0_1_00_0; // Multiply/Divide
else
ControlsD = `CTRLW'b0_000_00_00_000_0_00_0_0_0_0_0_0_00_1; // non-implemented instruction
7'b0110111: ControlsD = `CTRLW'b1_100_01_00_000_0_11_0_0_0_0_0_0_00_0; // lui
7'b0111011: if ((Funct7D == 7'b0000000 || Funct7D == 7'b0100000) && `XLEN == 64)
ControlsD = `CTRLW'b1_000_00_00_000_0_10_0_0_1_0_0_0_00_0; // R-type W instructions for RV64i
else if (Funct7D == 7'b0000001 && `M_SUPPORTED && `XLEN == 64)
ControlsD = `CTRLW'b1_000_00_00_100_0_00_0_0_1_0_0_1_00_0; // W-type Multiply/Divide
ControlsD = `CTRLW'b1_000_00_00_011_0_00_0_0_1_0_0_1_00_0; // W-type Multiply/Divide
else
ControlsD = `CTRLW'b0_000_00_00_000_0_00_0_0_0_0_0_0_00_1; // non-implemented instruction
7'b1100011: ControlsD = `CTRLW'b0_010_00_00_000_1_01_0_0_0_0_0_0_00_0; // beq
7'b1100111: ControlsD = `CTRLW'b1_000_00_00_010_0_00_1_1_0_0_0_0_00_0; // jalr
7'b1101111: ControlsD = `CTRLW'b1_011_00_00_010_0_00_1_0_0_0_0_0_00_0; // jal
7'b1100111: ControlsD = `CTRLW'b1_000_00_00_000_0_00_1_1_0_0_0_0_00_0; // jalr
7'b1101111: ControlsD = `CTRLW'b1_011_00_00_000_0_00_1_0_0_0_0_0_00_0; // jal
7'b1110011: if (Funct3D == 3'b000)
ControlsD = `CTRLW'b0_000_00_00_000_0_00_0_0_0_0_1_0_00_0; // privileged; decoded further in priveleged modules
else
ControlsD = `CTRLW'b1_000_00_00_011_0_00_0_0_0_1_0_0_00_0; // csrs
ControlsD = `CTRLW'b1_000_00_00_010_0_00_0_0_0_1_0_0_00_0; // csrs
default: ControlsD = `CTRLW'b0_000_00_00_000_0_00_0_0_0_0_0_0_00_1; // non-implemented instruction
endcase
endgenerate

View File

@ -51,7 +51,7 @@ module datapath (
input logic RegWriteW,
input logic SquashSCW,
input logic [2:0] ResultSrcW,
input logic [`XLEN-1:0] PCLinkW,
// input logic [`XLEN-1:0] PCLinkW,
input logic [`XLEN-1:0] CSRReadValW, ReadDataW, MulDivResultW,
// Hazard Unit signals
output logic [4:0] Rs1D, Rs2D, Rs1E, Rs2E,
@ -126,7 +126,7 @@ module datapath (
assign SCResultW = 0;
endgenerate
mux6 #(`XLEN) resultmux(ALUResultW, ReadDataW, PCLinkW, CSRReadValW, MulDivResultW, SCResultW, ResultSrcW, ResultW);
mux5 #(`XLEN) resultmux(ALUResultW, ReadDataW, CSRReadValW, MulDivResultW, SCResultW, ResultSrcW, ResultW);
/* -----\/----- EXCLUDED -----\/-----
// This mux4:1 no longer needs to include PCLinkW. This is set correctly in the execution stage.
// *** need to look at how the decoder is coded to fix.

View File

@ -49,7 +49,7 @@ module ieu (
output logic [2:0] Funct3M,
// Writeback stage
input logic [`XLEN-1:0] CSRReadValW, ReadDataW, MulDivResultW,
input logic [`XLEN-1:0] PCLinkW,
// input logic [`XLEN-1:0] PCLinkW,
output logic InstrValidW,
// hazards
input logic StallE, StallM, StallW,

View File

@ -66,14 +66,44 @@ module bpred
// Part 1 branch direction prediction
twoBitPredictor DirPredictor(.clk(clk),
.reset(reset),
.LookUpPC(PCNextF),
.Prediction(BPPredF),
// update
.UpdatePC(PCE),
.UpdateEN(InstrClassE[0]),
.UpdatePrediction(UpdateBPPredE));
generate
if (`BPTYPE == "BPTWOBIT") begin:Predictor
twoBitPredictor DirPredictor(.clk(clk),
.reset(reset),
.LookUpPC(PCNextF),
.Prediction(BPPredF),
// update
.UpdatePC(PCE),
.UpdateEN(InstrClassE[0]),
.UpdatePrediction(UpdateBPPredE));
end else if (`BPTYPE == "BPGLOBAL") begin:Predictor
globalHistoryPredictor DirPredictor(.clk(clk),
.reset(reset),
.*, // Stalls and flushes
.LookUpPC(PCNextF),
.Prediction(BPPredF),
// update
.UpdatePC(PCE),
.UpdateEN(InstrClassE[0]),
.PCSrcE(PCSrcE),
.UpdatePrediction(UpdateBPPredE));
end else if (`BPTYPE == "BPGSHARE") begin:Predictor
gsharePredictor DirPredictor(.clk(clk),
.reset(reset),
.*, // Stalls and flushes
.LookUpPC(PCNextF),
.Prediction(BPPredF),
// update
.UpdatePC(PCE),
.UpdateEN(InstrClassE[0]),
.PCSrcE(PCSrcE),
.UpdatePrediction(UpdateBPPredE));
end
endgenerate
// this predictor will have two pieces of data,
// 1) A direction (1 = Taken, 0 = Not Taken)

View File

@ -0,0 +1,109 @@
///////////////////////////////////////////
// globalHistoryPredictor.sv
//
// Written: Shreya Sanghai
// Email: ssanghai@hmc.edu
// Created: March 16, 2021
// Modified:
//
// Purpose: Global History Branch predictor with parameterized global history register
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-config.vh"
module globalHistoryPredictor
#(parameter int k = 10
)
(input logic clk,
input logic reset,
input logic StallF, StallD, StallE, FlushF, FlushD, FlushE,
input logic [`XLEN-1:0] LookUpPC,
output logic [1:0] Prediction,
// update
input logic [`XLEN-1:0] UpdatePC,
input logic UpdateEN, PCSrcE, /// *** need to add as input from bpred.sv
input logic [1:0] UpdatePrediction
);
logic [k-1:0] GHRF, GHRD, GHRE;
flopenr #(k) GlobalHistoryRegister(.clk(clk),
.reset(reset),
.en(UpdateEN),
.d({PCSrcE, GHRF[k-1:1] }),
.q(GHRF));
logic [1:0] PredictionMemory;
logic DoForwarding, DoForwardingF;
logic [1:0] UpdatePredictionF;
// for gshare xor the PC with the GHR
// TODO: change in sram memory2 module
// assign UpdatePCIndex = GHRE ^ UpdatePC;
// assign LookUpPCIndex = LookUpPC ^ GHR;
// Make Prediction by reading the correct address in the PHT and also update the new address in the PHT
// GHR referes to the address that the past k branches points to in the prediction stage
// GHRE refers to the address that the past k branches points to in the exectution stage
SRAM2P1R1W #(k, 2) PHT(.clk(clk),
.reset(reset),
.RA1(GHRF),
.RD1(PredictionMemory),
.REN1(1'b1),
.WA1(GHRE),
.WD1(UpdatePrediction),
.WEN1(UpdateEN),
.BitWEN1(2'b11));
// need to forward when updating to the same address as reading.
// first we compare to see if the update and lookup addreses are the same
assign DoForwarding = GHRF == GHRE;
// register the update value and the forwarding signal into the Fetch stage
// TODO: add stall logic ***
flopr #(1) DoForwardingReg(.clk(clk),
.reset(reset),
.d(DoForwarding),
.q(DoForwardingF));
flopr #(2) UpdatePredictionReg(.clk(clk),
.reset(reset),
.d(UpdatePrediction),
.q(UpdatePredictionF));
assign Prediction = DoForwardingF ? UpdatePredictionF : PredictionMemory;
//pipeline for GHR
flopenrc #(k) GHRDReg(.clk(clk),
.reset(reset),
.en(~StallD),
.clear(FlushD),
.d(GHRF),
.q(GHRD));
flopenrc #(k) GHREReg(.clk(clk),
.reset(reset),
.en(~StallE),
.clear(FlushE),
.d(GHRD),
.q(GHRE));
endmodule

View File

@ -0,0 +1,109 @@
///////////////////////////////////////////
// gshare.sv
//
// Written: Shreya Sanghai
// Email: ssanghai@hmc.edu
// Created: March 16, 2021
// Modified:
//
// Purpose: Gshare predictor with parameterized global history register
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-config.vh"
module gsharePredictor
#(parameter int k = 10
)
(input logic clk,
input logic reset,
input logic StallF, StallD, StallE, FlushF, FlushD, FlushE,
input logic [`XLEN-1:0] LookUpPC,
output logic [1:0] Prediction,
// update
input logic [`XLEN-1:0] UpdatePC,
input logic UpdateEN, PCSrcE,
input logic [1:0] UpdatePrediction
);
logic [k-1:0] GHRF, GHRD, GHRE;
logic [k-1:0] LookUpPCIndexD, LookUpPCIndexE;
logic [k-1:0] LookUpPCIndex, UpdatePCIndex;
logic [1:0] PredictionMemory;
logic DoForwarding, DoForwardingF;
logic [1:0] UpdatePredictionF;
flopenr #(k) GlobalHistoryRegister(.clk(clk),
.reset(reset),
.en(UpdateEN),
.d({PCSrcE, GHRF[k-1:1] }),
.q(GHRF));
// for gshare xor the PC with the GHR
assign UpdatePCIndex = GHRE ^ UpdatePC[k:1];
assign LookUpPCIndex = GHRF ^ LookUpPC[k:1];
// Make Prediction by reading the correct address in the PHT and also update the new address in the PHT
// GHR referes to the address that the past k branches points to in the prediction stage
// GHRE refers to the address that the past k branches points to in the exectution stage
SRAM2P1R1W #(k, 2) PHT(.clk(clk),
.reset(reset),
.RA1(LookUpPCIndex),
.RD1(PredictionMemory),
.REN1(1'b1),
.WA1(UpdatePCIndex),
.WD1(UpdatePrediction),
.WEN1(UpdateEN),
.BitWEN1(2'b11));
// need to forward when updating to the same address as reading.
// first we compare to see if the update and lookup addreses are the same
assign DoForwarding = LookUpPCIndex == UpdatePCIndex;
// register the update value and the forwarding signal into the Fetch stage
// TODO: add stall logic ***
flopr #(1) DoForwardingReg(.clk(clk),
.reset(reset),
.d(DoForwarding),
.q(DoForwardingF));
flopr #(2) UpdatePredictionReg(.clk(clk),
.reset(reset),
.d(UpdatePrediction),
.q(UpdatePredictionF));
assign Prediction = DoForwardingF ? UpdatePredictionF : PredictionMemory;
//pipeline for GHR
flopenrc #(k) LookUpDReg(.clk(clk),
.reset(reset),
.en(~StallD),
.clear(FlushD),
.d(LookUpPCIndex),
.q(LookUpPCIndexD));
flopenrc #(k) LookUpEReg(.clk(clk),
.reset(reset),
.en(~StallE),
.clear(FlushE),
.d(LookUpPCIndexD),
.q(LookUpPCIndexE));
endmodule

View File

@ -49,17 +49,17 @@ module ifu (
output logic [31:0] InstrD, InstrM,
output logic [`XLEN-1:0] PCM,
// Writeback
output logic [`XLEN-1:0] PCLinkW,
// output logic [`XLEN-1:0] PCLinkW,
// Faults
input logic IllegalBaseInstrFaultD,
output logic IllegalIEUInstrFaultD,
output logic InstrMisalignedFaultM,
output logic [`XLEN-1:0] InstrMisalignedAdrM,
// TLB management
//input logic [`XLEN-1:0] PageTableEntryF,
input logic [1:0] PrivilegeModeW,
input logic [`XLEN-1:0] PageTableEntryF,
input logic [`XLEN-1:0] SATP_REGW,
//input logic ITLBWriteF, ITLBFlushF,
// input logic [`XLEN-1:0] SATP,
input logic ITLBWriteF, // ITLBFlushF,
output logic ITLBMissF, ITLBHitF
);
@ -74,10 +74,10 @@ module ifu (
logic [`XLEN-1:0] ITLBInstrPAdrF, ICacheInstrPAdrF;
// *** temporary hack until walker is hooked up -- Thomas F
logic [`XLEN-1:0] PageTableEntryF = '0;
// logic [`XLEN-1:0] PageTableEntryF = '0;
logic ITLBFlushF = '0;
logic ITLBWriteF = '0;
tlb #(3) itlb(clk, reset, SATP_REGW, PCF, PageTableEntryF, ITLBWriteF, ITLBFlushF,
// logic ITLBWriteF = '0;
tlb #(3) itlb(clk, reset, SATP_REGW, PrivilegeModeW, PCF, PageTableEntryF, ITLBWriteF, ITLBFlushF,
ITLBInstrPAdrF, ITLBMissF, ITLBHitF);
// branch predictor signals
@ -203,8 +203,8 @@ module ifu (
// *** redo this
flopenr #(`XLEN) PCPDReg(clk, reset, ~StallD, PCPlus2or4F, PCLinkD);
flopenr #(`XLEN) PCPEReg(clk, reset, ~StallE, PCLinkD, PCLinkE);
flopenr #(`XLEN) PCPMReg(clk, reset, ~StallM, PCLinkE, PCLinkM);
flopenr #(`XLEN) PCPWReg(clk, reset, ~StallW, PCLinkM, PCLinkW);
// flopenr #(`XLEN) PCPMReg(clk, reset, ~StallM, PCLinkE, PCLinkM);
// /flopenr #(`XLEN) PCPWReg(clk, reset, ~StallW, PCLinkM, PCLinkW);
endmodule

View File

@ -1,5 +1,5 @@
///////////////////////////////////////////
// tlb_toy.sv
// tlb.sv
//
// Written: jtorrey@hmc.edu 16 February 2021
// Modified:
@ -60,6 +60,9 @@ module tlb #(parameter ENTRY_BITS = 3) (
// Current value of satp CSR (from privileged unit)
input [`XLEN-1:0] SATP_REGW,
// Current privilege level of the processeor
input [1:0] PrivilegeModeW,
// Virtual address input
input [`XLEN-1:0] VirtualAddress,
@ -77,6 +80,7 @@ module tlb #(parameter ENTRY_BITS = 3) (
);
logic SvMode;
logic Translate;
generate
if (`XLEN == 32) begin
@ -85,6 +89,11 @@ module tlb #(parameter ENTRY_BITS = 3) (
assign SvMode = SATP_REGW[63]; // currently just a boolean whether translation enabled
end
endgenerate
// *** Currently fake virtual memory being on for testing purposes
// *** DO NOT ENABLE UNLESS TESTING
// assign SvMode = 1;
assign Translate = SvMode & (PrivilegeModeW != `M_MODE);
// *** If we want to support multiple virtual memory modes (ie sv39 AND sv48),
// we could have some muxes that control which parameters are current.
@ -134,13 +143,13 @@ module tlb #(parameter ENTRY_BITS = 3) (
generate
if (`XLEN == 32) begin
mux2 #(`XLEN) addressmux(VirtualAddress, PhysicalAddressFull[31:0], SvMode, PhysicalAddress);
mux2 #(`XLEN) addressmux(VirtualAddress, PhysicalAddressFull[31:0], Translate, PhysicalAddress);
end else begin
mux2 #(`XLEN) addressmux(VirtualAddress, {8'b0, PhysicalAddressFull}, SvMode, PhysicalAddress);
mux2 #(`XLEN) addressmux(VirtualAddress, {8'b0, PhysicalAddressFull}, Translate, PhysicalAddress);
end
endgenerate
assign TLBMiss = ~TLBHit & ~(TLBWrite | TLBFlush) & SvMode;
assign TLBMiss = ~TLBHit & ~(TLBWrite | TLBFlush) & Translate;
endmodule
module tlb_ram #(parameter ENTRY_BITS = 3) (

View File

@ -33,7 +33,7 @@ module csr (
input logic [`XLEN-1:0] PCM, SrcAM,
input logic CSRReadM, CSRWriteM, TrapM, MTrapM, STrapM, UTrapM, mretM, sretM, uretM,
input logic TimerIntM, ExtIntM, SwIntM,
input logic InstrValidW, FloatRegWriteW, LoadStallD,
input logic InstrValidW, FloatRegWriteW, LoadStallD, BPPredWrongE,
input logic [1:0] NextPrivilegeModeM, PrivilegeModeW,
input logic [`XLEN-1:0] CauseM, NextFaultMtvalM,
output logic [1:0] STATUS_MPP,

View File

@ -29,7 +29,7 @@
module csrc (
input logic clk, reset,
input logic InstrValidW, LoadStallD, CSRMWriteM,
input logic InstrValidW, LoadStallD, CSRMWriteM, BPPredWrongE,
input logic [11:0] CSRAdrM,
input logic [1:0] PrivilegeModeW,
input logic [`XLEN-1:0] CSRWriteValM,
@ -62,7 +62,8 @@ module csrc (
assign MCOUNTEN[1] = 1'b0;
assign MCOUNTEN[2] = InstrValidW;
assign MCOUNTEN[3] = LoadStallD;
assign MCOUNTEN[`COUNTERS:4] = 0;
assign MCOUNTEN[4] = BPPredWrongE;
assign MCOUNTEN[`COUNTERS:5] = 0;
genvar j;
generate

View File

@ -125,11 +125,12 @@ module csrm #(parameter
flopenr #(`XLEN) MEPCreg(clk, reset, WriteMEPCM, NextEPCM, MEPC_REGW);
flopenr #(`XLEN) MCAUSEreg(clk, reset, WriteMCAUSEM, NextCauseM, MCAUSE_REGW);
flopenr #(`XLEN) MTVALreg(clk, reset, WriteMTVALM, NextMtvalM, MTVAL_REGW);
`ifndef BUSYBEAR
flopenl #(32) MCOUNTERENreg(clk, reset, WriteMCOUNTERENM, CSRWriteValM[31:0], allones, MCOUNTEREN_REGW);
`else
flopenl #(32) MCOUNTERENreg(clk, reset, WriteMCOUNTERENM, {CSRWriteValM[31:2],1'b0,CSRWriteValM[0]}, 32'b0, MCOUNTEREN_REGW);
`endif
generate
if (`OVPSIM_CSR_CONFIG)
flopenl #(32) MCOUNTERENreg(clk, reset, WriteMCOUNTERENM, {CSRWriteValM[31:2],1'b0,CSRWriteValM[0]}, 32'b0, MCOUNTEREN_REGW);
else
flopenl #(32) MCOUNTERENreg(clk, reset, WriteMCOUNTERENM, CSRWriteValM[31:0], allones, MCOUNTEREN_REGW);
endgenerate
flopenl #(32) MCOUNTINHIBITreg(clk, reset, WriteMCOUNTINHIBITM, CSRWriteValM[31:0], allones, MCOUNTINHIBIT_REGW);
flopenr #(`XLEN) PMPADDR0reg(clk, reset, WritePMPADDR0M, CSRWriteValM, PMPADDR0_REGW);
// PMPCFG registers are a pair of 64-bit in RV64 and four 32-bit in RV32

View File

@ -82,11 +82,10 @@ module csrs #(parameter
flopenl #(`XLEN) SCAUSEreg(clk, reset, WriteSCAUSEM, NextCauseM, zero, SCAUSE_REGW);
flopenr #(`XLEN) STVALreg(clk, reset, WriteSTVALM, NextMtvalM, STVAL_REGW);
flopenr #(`XLEN) SATPreg(clk, reset, WriteSATPM, CSRWriteValM, SATP_REGW);
`ifndef BUSYBEAR
flopenl #(32) SCOUNTERENreg(clk, reset, WriteSCOUNTERENM, CSRWriteValM[31:0], allones, SCOUNTEREN_REGW);
`else
flopenl #(32) SCOUNTERENreg(clk, reset, WriteSCOUNTERENM, {CSRWriteValM[31:2],1'b0,CSRWriteValM[0]}, 32'b0, SCOUNTEREN_REGW);
`endif
if (`OVPSIM_CSR_CONFIG)
flopenl #(32) SCOUNTERENreg(clk, reset, WriteSCOUNTERENM, {CSRWriteValM[31:2],1'b0,CSRWriteValM[0]}, 32'b0, SCOUNTEREN_REGW);
else
flopenl #(32) SCOUNTERENreg(clk, reset, WriteSCOUNTERENM, CSRWriteValM[31:0], allones, SCOUNTEREN_REGW);
if (`N_SUPPORTED) begin
logic WriteSEDELEGM, WriteSIDELEGM;
assign WriteSEDELEGM = CSRSWriteM && (CSRAdrM == SEDELEG);

View File

@ -36,7 +36,7 @@ module privileged (
output logic [`XLEN-1:0] CSRReadValW,
output logic [`XLEN-1:0] PrivilegedNextPCM,
output logic RetM, TrapM,
input logic InstrValidW, FloatRegWriteW, LoadStallD,
input logic InstrValidW, FloatRegWriteW, LoadStallD, BPPredWrongE,
input logic PrivilegedM,
input logic InstrMisalignedFaultM, InstrAccessFaultF, IllegalIEUInstrFaultD,
input logic LoadMisalignedFaultM, LoadAccessFaultM,
@ -44,12 +44,13 @@ module privileged (
input logic TimerIntM, ExtIntM, SwIntM,
input logic [`XLEN-1:0] InstrMisalignedAdrM, MemAdrM,
input logic [4:0] SetFflagsM,
output logic [1:0] PrivilegeModeW,
output logic [`XLEN-1:0] SATP_REGW,
output logic [2:0] FRM_REGW,
input logic FlushD, FlushE, FlushM, StallD, StallW
);
logic [1:0] NextPrivilegeModeM, PrivilegeModeW;
logic [1:0] NextPrivilegeModeM;
logic [`XLEN-1:0] CauseM, NextFaultMtvalM;
logic [`XLEN-1:0] MEPC_REGW, SEPC_REGW, UEPC_REGW, UTVEC_REGW, STVEC_REGW, MTVEC_REGW;

View File

@ -33,9 +33,7 @@ module imem (
/* verilator lint_off UNDRIVEN */
logic [`XLEN-1:0] RAM[`TIMBASE>>(1+`XLEN/32):(`TIMRANGE+`TIMBASE)>>(1+`XLEN/32)];
`ifdef BOOTTIMBASE
logic [`XLEN-1:0] bootram[`BOOTTIMBASE>>(1+`XLEN/32):(`BOOTTIMRANGE+`BOOTTIMBASE)>>(1+`XLEN/32)];
`endif
/* verilator lint_on UNDRIVEN */
logic [31:0] adrbits; // needs to be 32 bits to index RAM
logic [`XLEN-1:0] rd;
@ -46,21 +44,13 @@ module imem (
else assign adrbits = AdrF[31:3];
endgenerate
`ifndef BOOTTIMBASE
assign #2 rd = RAM[adrbits]; // word aligned
`else
assign #2 rd = (AdrF < (`TIMBASE >> 1)) ? bootram[adrbits] : RAM[adrbits]; // busybear: 2 memory options
`endif
// hack right now for unaligned 32-bit instructions
// eventually this will need to cause a stall like a cache miss
// when the instruction wraps around a cache line
// could be optimized to only stall when the instruction wrapping is 32 bits
`ifndef BOOTTIMBASE
assign #2 rd2 = RAM[adrbits+1][15:0];
`else
assign #2 rd2 = (AdrF < (`TIMBASE >> 1)) ? bootram[adrbits+1][15:0] : RAM[adrbits+1][15:0]; //busybear: 2 memory options
`endif
generate
if (`XLEN==32) begin
assign InstrF = AdrF[1] ? {rd2[15:0], rd[31:16]} : rd;
@ -68,9 +58,11 @@ module imem (
end else begin
assign InstrF = AdrF[2] ? (AdrF[1] ? {rd2[15:0], rd[63:48]} : rd[63:32])
: (AdrF[1] ? rd[47:16] : rd[31:0]);
`ifndef BOOTTIMBASE
`ifndef BUSYBEAR
assign InstrAccessFaultF = |AdrF[`XLEN-1:32] | ~&({AdrF[31:1],1'b0} ~^ `TIMBASE | `TIMRANGE);
`else
// *** this is just a hack since the logic above seems scary ***
// TODO: this should be removed when InstrAccessFaultF works with bootram also
assign InstrAccessFaultF = 0; //busybear: for now, i know we're not doing this
`endif
end

View File

@ -64,23 +64,17 @@ module uncore (
logic HSELTimD, HSELCLINTD, HSELGPIOD, HSELUARTD;
logic HRESPTim, HRESPCLINT, HRESPGPIO, HRESPUART;
logic HREADYTim, HREADYCLINT, HREADYGPIO, HREADYUART;
`ifdef BOOTTIMBASE
logic [`XLEN-1:0] HREADBootTim;
logic HSELBootTim, HSELBootTimD, HRESPBootTim, HREADYBootTim;
logic [1:0] MemRWboottim;
`endif
logic UARTIntr;// *** will need to tie INTR to an interrupt handler
// AHB Address decoder
adrdec timdec(HADDR, `TIMBASE, `TIMRANGE, HSELTim);
`ifdef BOOTTIMBASE
adrdec boottimdec(HADDR, `BOOTTIMBASE, `BOOTTIMRANGE, HSELBootTim);
`endif
adrdec clintdec(HADDR, `CLINTBASE, `CLINTRANGE, HSELCLINT);
`ifdef GPIOBASE
adrdec gpiodec(HADDR, `GPIOBASE, `GPIORANGE, HSELGPIO);
`endif
adrdec uartdec(HADDR, `UARTBASE, `UARTRANGE, PreHSELUART);
assign HSELUART = PreHSELUART && (HSIZE == 3'b000); // only byte writes to UART are supported
@ -89,15 +83,11 @@ module uncore (
// tightly integrated memory
dtim #(.BASE(`TIMBASE), .RANGE(`TIMRANGE)) dtim (.*);
`ifdef BOOTTIMBASE
dtim #(.BASE(`BOOTTIMBASE), .RANGE(`BOOTTIMRANGE)) bootdtim(.HSELTim(HSELBootTim), .HREADTim(HREADBootTim), .HRESPTim(HRESPBootTim), .HREADYTim(HREADYBootTim), .*);
`endif
// memory-mapped I/O peripherals
clint clint(.HADDR(HADDR[15:0]), .*);
`ifdef GPIOBASE
gpio gpio(.HADDR(HADDR[7:0]), .*); // *** may want to add GPIO interrupts
`endif
uart uart(.HADDR(HADDR[2:0]), .TXRDYb(), .RXRDYb(), .INTR(UARTIntr), .SIN(UARTSin), .SOUT(UARTSout),
.DSRb(1'b1), .DCDb(1'b1), .CTSb(1'b0), .RIb(1'b1),
.RTSb(), .DTRb(), .OUT1b(), .OUT2b(), .*);
@ -105,50 +95,22 @@ module uncore (
// mux could also include external memory
// AHB Read Multiplexer
assign HRDATA = ({`XLEN{HSELTimD}} & HREADTim) | ({`XLEN{HSELCLINTD}} & HREADCLINT) |
`ifdef GPIOBASE
({`XLEN{HSELGPIOD}} & HREADGPIO) |
`endif
`ifdef BOOTTIMBASE
({`XLEN{HSELBootTimD}} & HREADBootTim) |
`endif
({`XLEN{HSELGPIOD}} & HREADGPIO) | ({`XLEN{HSELBootTimD}} & HREADBootTim) |
({`XLEN{HSELUARTD}} & HREADUART);
assign HRESP = HSELTimD & HRESPTim | HSELCLINTD & HRESPCLINT |
`ifdef GPIOBASE
HSELGPIOD & HRESPGPIO |
`endif
`ifdef BOOTTIMBASE
HSELBootTimD & HRESPBootTim |
`endif
HSELUARTD & HRESPUART;
assign HREADY = HSELTimD & HREADYTim | HSELCLINTD & HREADYCLINT |
`ifdef GPIOBASE
HSELGPIOD & HREADYGPIO |
`endif
`ifdef BOOTTIMBASE
HSELBootTimD & HREADYBootTim |
`endif
HSELUARTD & HREADYUART;
assign HRESP = HSELTimD & HRESPTim | HSELCLINTD & HRESPCLINT | HSELGPIOD & HRESPGPIO |
HSELBootTimD & HRESPBootTim | HSELUARTD & HRESPUART;
assign HREADY = HSELTimD & HREADYTim | HSELCLINTD & HREADYCLINT | HSELGPIOD & HREADYGPIO |
HSELBootTimD & HREADYBootTim | HSELUARTD & HREADYUART;
// Faults
assign DataAccessFaultM = ~(HSELTimD | HSELCLINTD |
`ifdef GPIOBASE
HSELGPIOD |
`endif
`ifdef BOOTTIMBASE
HSELBootTimD |
`endif
HSELUARTD);
assign DataAccessFaultM = ~(HSELTimD | HSELCLINTD | HSELGPIOD | HSELBootTimD | HSELUARTD);
// Address Decoder Delay (figure 4-2 in spec)
flopr #(1) hseltimreg(HCLK, ~HRESETn, HSELTim, HSELTimD);
flopr #(1) hselclintreg(HCLK, ~HRESETn, HSELCLINT, HSELCLINTD);
`ifdef GPIOBASE
flopr #(1) hselgpioreg(HCLK, ~HRESETn, HSELGPIO, HSELGPIOD);
`endif
flopr #(1) hseluartreg(HCLK, ~HRESETn, HSELUART, HSELUARTD);
`ifdef BOOTTIMBASE
flopr #(1) hselboottimreg(HCLK, ~HRESETn, HSELBootTim, HSELBootTimD);
`endif
endmodule

View File

@ -93,11 +93,14 @@ module wallypipelinedhart (
logic ITLBMissF, ITLBHitF;
logic DTLBMissM, DTLBHitM;
logic [`XLEN-1:0] SATP_REGW;
logic [1:0] PrivilegeModeW;
logic [`XLEN-1:0] PageTableEntryF, PageTableEntryM;
// ICache stalls
// IMem stalls
logic ICacheStallF;
logic [`XLEN-1:0] MMUPAdr, MMUReadPTE;
logic MMUTranslate, MMUReady;
// bus interface to dmem
logic MemReadM, MemWriteM;
@ -109,7 +112,7 @@ module wallypipelinedhart (
logic InstrReadF;
logic DataStall, InstrStall;
logic InstrAckD, MemAckW;
logic BPPredWrongE;
logic BPPredWrongE;
ifu ifu(.InstrInF(InstrRData), .*); // instruction fetch unit: PC, branch prediction, instruction cache
@ -124,7 +127,7 @@ module wallypipelinedhart (
.Funct7M(InstrM[31:25]),
.*);
// walker walker(.*); *** // can send addresses to ahblite, send out pagetablestall
pagetablewalker pagetablewalker(.*); // can send addresses to ahblite, send out pagetablestall
// *** can connect to hazard unit
// changing from this to the line above breaks the program. auipc at 104 fails; seems to be flushed.
// Would need to insertinstruction as InstrD, not InstrF

View File

@ -101,7 +101,7 @@ module testbench_busybear();
$readmemh("/courses/e190ax/busybear_boot/ram.txt", dut.uncore.dtim.RAM);
$readmemh("/courses/e190ax/busybear_boot/bootmem.txt", dut.imem.bootram, 'h1000 >> 3);
$readmemh("/courses/e190ax/busybear_boot/ram.txt", dut.imem.RAM);
$readmemb(`TWO_BIT_PRELOAD, dut.hart.ifu.bpred.DirPredictor.memory.memory);
$readmemb(`TWO_BIT_PRELOAD, dut.hart.ifu.bpred.Predictor.DirPredictor.PHT.memory);
$readmemb(`BTB_PRELOAD, dut.hart.ifu.bpred.TargetPredictor.memory.memory);
end

View File

@ -48,7 +48,7 @@ module testbench();
// pick tests based on modes supported
initial
tests = {"../../imperas-riscv-tests/riscv-ovpsim-plus/examples/CoreMark/coremark.RV64I.bare.elf.memfile", "1000"};
tests = {"../../imperas-riscv-tests/riscv-ovpsim-plus/examples/CoreMark/coremark.RV64IM.bare.elf.memfile", "1000"};
string signame, memfilename;
logic [31:0] GPIOPinsIn, GPIOPinsOut, GPIOPinsEn;
logic UARTSin, UARTSout;
@ -74,10 +74,10 @@ module testbench();
memfilename = tests[0];
$readmemh(memfilename, dut.imem.RAM);
$readmemh(memfilename, dut.uncore.dtim.RAM);
for(j=2371; j < 65535; j = j+1)
for(j=268437829; j < 268566528; j = j+1)
dut.uncore.dtim.RAM[j] = 64'b0;
// ProgramAddrMapFile = "../../imperas-riscv-tests/riscv-ovpsim-plus/examples/CoreMark/coremark.RV64I.bare.elf.objdump.addr";
// ProgramAddrMapFile = "../../imperas-riscv-tests/riscv-ovpsim-plus/examples/CoreMark/coremark.RV64I.bare.elf.objdump.lab";
// ProgramAddrMapFile = "../../imperas-riscv-tests/riscv-ovpsim-plus/examples/CoreMark/coremark.RV64IM.bare.elf.objdump.addr";
// ProgramAddrMapFile = "../../imperas-riscv-tests/riscv-ovpsim-plus/examples/CoreMark/coremark.RV64IM.bare.elf.objdump.lab";
reset = 1; # 22; reset = 0;
end
// generate clock to sequence tests
@ -95,7 +95,7 @@ module testbench();
end
initial begin
$readmemb(`TWO_BIT_PRELOAD, dut.hart.ifu.bpred.DirPredictor.memory.memory);
$readmemb(`TWO_BIT_PRELOAD, dut.hart.ifu.bpred.Predictor.DirPredictor.PHT.memory);
$readmemb(`BTB_PRELOAD, dut.hart.ifu.bpred.TargetPredictor.memory.memory);
end

View File

@ -483,7 +483,7 @@ string tests32i[] = {
// initialize the branch predictor
initial begin
$readmemb(`TWO_BIT_PRELOAD, dut.hart.ifu.bpred.DirPredictor.memory.memory);
$readmemb(`TWO_BIT_PRELOAD, dut.hart.ifu.bpred.Predictor.DirPredictor.PHT.memory);
$readmemb(`BTB_PRELOAD, dut.hart.ifu.bpred.TargetPredictor.memory.memory);
end

View File

@ -27,9 +27,13 @@ PTE_W = 1 << 2
PTE_R = 1 << 1
PTE_V = 1 << 0
PTE_PTR_MASK = ~(PTE_W | PTE_R | PTE_X)
pgdir = []
pages = {}
testcase_num = 0
signature_len = 2000
signature = [0xff for _ in range(signature_len)]
@ -41,6 +45,7 @@ class Architecture:
def __init__(self, xlen):
if (xlen == 32):
self.PTESIZE = 4
self.PTE_BITS = 32
self.VPN_BITS = 20
self.VPN_SEGMENT_BITS = 10
@ -50,6 +55,7 @@ class Architecture:
self.LEVELS = 2
elif (xlen == 64):
self.PTESIZE = 8
self.PTE_BITS = 54
self.VPN_BITS = 27
self.VPN_SEGMENT_BITS = 9
@ -62,15 +68,15 @@ class Architecture:
self.PGSIZE = 2**12
self.NPTENTRIES = self.PGSIZE // self.PTESIZE
self.PTE_BITS = 8 * self.PTESIZE
self.OFFSET_BITS = 12
self.FLAG_BITS = 8
self.VA_BITS = self.VPN_BITS + self.OFFSET_BITS
class PageTableEntry:
def __init__(self, ppn, flags, arch):
assert 0 <= ppn and ppn < 2**arch.PPN_BITS, "Invalid physical page number for PTE"
assert 0 <= flags and flags < 2**arch.FLAG_BITS, "Invalid flags for PTE"
self.ppn = ppn
self.ppn = ppn
self.flags = flags
self.arch = arch
@ -79,47 +85,133 @@ class PageTableEntry:
def __str__(self):
return "0x{0:0{1}x}".format(self.entry(), self.arch.PTESIZE*2)
def __repr__(self):
return f"<ppn: {hex(self.ppn)}, flags: {self.flags:08b}>"
class PageTable:
"""
Represents a single level of the page table, with
Represents a single level of the page table, located at some physical page
number `ppn` with symbol `name`, using a specified architecture `arch`.
"""
def __init__(self, name, arch):
def __init__(self, name, ppn, arch):
self.table = {}
self.name = name
self.ppn = ppn
self.arch = arch
def add_entry(self, vpn_segment, ppn_segment, flags, linked_table = None):
self.children = 0
pages[ppn] = self
def add_entry(self, vpn_segment, ppn, flags):
if not (0 <= vpn_segment < 2**self.arch.VPN_SEGMENT_BITS):
raise ValueError("Invalid virtual page segment number")
self.table[vpn_segment] = (PageTableEntry(ppn_segment, flags, self.arch), linked_table)
self.table[vpn_segment] = PageTableEntry(ppn, flags, self.arch)
def add_mapping(self, va, pa, flags):
if not (0 <= va < 2**self.arch.VPN_BITS):
"""
Maps a virtual address `va` to a physical address `pa` with given `flags`,
creating missing page table levels as needed.
"""
if not (0 <= va < 2**self.arch.VA_BITS):
raise ValueError("Invalid virtual page number")
for level in range(self.arch.LEVELS - 1, -1, -1):
vpn = virtual_to_vpn(va, self.arch)
ppn = pa >> self.arch.OFFSET_BITS
current_level = self
pathname = self.name
for level in range(self.arch.LEVELS - 1, -1, -1):
if level == 0:
current_level.add_entry(vpn[level], ppn, flags)
elif vpn[level] in current_level.table:
current_level = pages[current_level.table[vpn[level]].ppn]
pathname += f"_{current_level.name}"
else:
next_level_ppn = next_ppn()
current_level.add_entry(vpn[level], next_level_ppn, flags & PTE_PTR_MASK)
pathname += f"_t{current_level.children}"
current_level.children += 1
pages[next_level_ppn] = PageTable(pathname, next_level_ppn, self.arch)
current_level = pages[next_level_ppn]
def assembly(self):
# Sort the page table
entries = list(sorted(self.table.items(), key=lambda item: item[0]))
current_index = 0
# Align the table
asm = f".balign {self.arch.PGSIZE}\n{self.name}:\n"
for entry in entries:
vpn_index, (pte, _) = entry
vpn_index, pte = entry
if current_index < vpn_index:
asm += f" .fill {vpn_index - current_index}, {self.arch.PTESIZE}, 0\n"
asm += f" .4byte {str(pte)}\n"
asm += f" .{self.arch.PTESIZE}byte {str(pte)}\n"
current_index = vpn_index + 1
if current_index < self.arch.NPTENTRIES:
asm += f" .fill {self.arch.NPTENTRIES - current_index}, {self.arch.PTESIZE}, 0\n"
return asm
def __str__(self):
return self.assembly()
def __repr__(self):
return f"<table: {self.table}>"
##################################
# functions
##################################
def virtual_to_vpn(vaddr, arch):
if not (0 <= vaddr < 2**arch.VA_BITS):
raise ValueError("Invalid physical address")
page_number = [0 for _ in range(arch.LEVELS)]
vaddr = vaddr >> arch.OFFSET_BITS
mask = 2**arch.VPN_SEGMENT_BITS - 1
for level in range(arch.LEVELS):
page_number[level] = vaddr & mask
vaddr = vaddr >> arch.VPN_SEGMENT_BITS
return page_number
INITIAL_PPN = 0x80002
next_free_ppn = INITIAL_PPN
def next_ppn():
global next_free_ppn
ppn = next_free_ppn
next_free_ppn += 1
return ppn
def print_pages():
for page in pages:
print(pages[page])
##################################
# helper variables
##################################
rv32 = Architecture(32)
rv64 = Architecture(64)
if __name__ == "__main__":
arch = rv64
pgdir = PageTable("page_directory", next_ppn(), arch)
# Directly map the first 20 pages of RAM
for page in range(20):
vaddr = 0x80000000 + (arch.PGSIZE * page)
paddr = 0x80000000 + (arch.PGSIZE * page)
pgdir.add_mapping(vaddr, paddr, PTE_R | PTE_W | PTE_U | PTE_X | PTE_V)
"""
supervisor_pgdir = PageTable("sdir", next_ppn(), rv64)
supervisor_pgdir.add_mapping(0x80000000, 0x80000000, PTE_R | PTE_W | PTE_X)
supervisor_pgdir.add_mapping(0x80000001, 0x80000001, PTE_R | PTE_W | PTE_X)
supervisor_pgdir.add_mapping(0x80001000, 0x80000000, PTE_R | PTE_W | PTE_X)
supervisor_pgdir.add_mapping(0xffff0000, 0x80000000, PTE_R | PTE_W | PTE_X)
"""
print_pages()