forked from Github_Repos/cvw
		
	one bitt removed from inital lignment shift
This commit is contained in:
		
							parent
							
								
									7c19665dea
								
							
						
					
					
						commit
						1b4fa38510
					
				| @ -104,9 +104,9 @@ | ||||
| `define CVTLEN ((`NF<`XLEN) ? (`XLEN) : (`NF)) | ||||
| `define LLEN ((`FLEN<`XLEN) ? (`XLEN) : (`FLEN)) | ||||
| `define LOGCVTLEN $unsigned($clog2(`CVTLEN+1)) | ||||
| `define NORMSHIFTSZ ((`QLEN+`NF+1) > (3*`NF+8) ? (`QLEN+`NF+1) : (3*`NF+8)) | ||||
| `define NORMSHIFTSZ ((`QLEN+`NF+1) > (3*`NF+7) ? (`QLEN+`NF+1) : (3*`NF+7))//change | ||||
| `define LOGNORMSHIFTSZ ($clog2(`NORMSHIFTSZ)) | ||||
| `define CORRSHIFTSZ ((`DIVRESLEN+`NF) > (3*`NF+8) ? (`DIVRESLEN+`NF) : (3*`NF+6)) | ||||
| `define CORRSHIFTSZ ((`DIVRESLEN+`NF) > (3*`NF+7) ? (`DIVRESLEN+`NF) : (3*`NF+5))//change | ||||
| 
 | ||||
| // division constants | ||||
| `define RADIX 32'h2 | ||||
|  | ||||
| @ -37,18 +37,18 @@ module fma( | ||||
|     input logic                 XZero, YZero, ZZero, // is the input zero
 | ||||
|     input logic  [2:0]          OpCtrl,   // 000 = fmadd (X*Y)+Z,  001 = fmsub (X*Y)-Z,  010 = fnmsub -(X*Y)+Z,  011 = fnmadd -(X*Y)-Z,  100 = fmul (X*Y)
 | ||||
|     output logic                ZmSticky,  // sticky bit that is calculated during alignment
 | ||||
|     output logic [3*`NF+5:0]    Sm,           // the positive sum's significand
 | ||||
|     output logic [3*`NF+4:0]    Sm,//change           // the positive sum's significand
 | ||||
|     output logic                InvA,          // Was A inverted for effective subtraction (P-A or -P+A)
 | ||||
|     output logic                As,       // the aligned addend's sign (modified Z sign for other opperations)
 | ||||
|     output logic                Ps,          // the product's sign
 | ||||
|     output logic                Ss,          // the sum's sign
 | ||||
|     output logic [`NE+1:0]      Se, | ||||
|     output logic [$clog2(3*`NF+7)-1:0]          SCnt        // normalization shift count
 | ||||
|     output logic [$clog2(3*`NF+6)-1:0]          SCnt//change        // normalization shift count
 | ||||
| ); | ||||
| 
 | ||||
|     logic [2*`NF+1:0]   Pm;           // the product's significand in U(2.2Nf) format
 | ||||
|     logic [3*`NF+5:0]   Am;     // addend aligned's mantissa for addition in U(NF+5.2NF+1)
 | ||||
|     logic [3*`NF+5:0]   AmInv;   // aligned addend's mantissa possibly inverted
 | ||||
|     logic [3*`NF+4:0]   Am;//change     // addend aligned's mantissa for addition in U(NF+5.2NF+1)
 | ||||
|     logic [3*`NF+4:0]   AmInv; //change   // aligned addend's mantissa possibly inverted
 | ||||
|     logic [2*`NF+1:0]   PmKilled;      // the product's mantissa possibly killed
 | ||||
|     logic               KillProd;  // set the product to zero before addition if the product is too small to matter
 | ||||
|     logic [`NE+1:0]     Pe;       // the product's exponent B(NE+2.0) format; adds 2 bits to allow for size of number and negative sign
 | ||||
| @ -85,7 +85,8 @@ module fma( | ||||
|          | ||||
|     fmaadd add(.Am, .Pm, .Ze, .Pe, .Ps, .KillProd, .ZmSticky, .AmInv, .PmKilled, .InvA, .Sm, .Se, .Ss); | ||||
| 
 | ||||
|     fmalza #(3*`NF+6) lza(.A(AmInv), .Pm({PmKilled, 1'b0, InvA&Ps&ZmSticky&KillProd}), .Cin(InvA & ~(ZmSticky & ~KillProd)), .sub(InvA), .SCnt); | ||||
|     //change
 | ||||
|     fmalza #(3*`NF+5) lza(.A(AmInv), .Pm({PmKilled, 1'b0, InvA&Ps&ZmSticky&KillProd}), .Cin(InvA & ~(ZmSticky & ~KillProd)), .sub(InvA), .SCnt); | ||||
| endmodule | ||||
| 
 | ||||
| 
 | ||||
|  | ||||
| @ -31,7 +31,7 @@ | ||||
| `include "wally-config.vh" | ||||
| 
 | ||||
| module fmaadd( | ||||
|     input logic  [3*`NF+5:0]    Am, // aligned addend's mantissa for addition in U(NF+5.2NF+1)
 | ||||
|     input logic  [3*`NF+4:0]    Am, //change // aligned addend's mantissa for addition in U(NF+5.2NF+1)
 | ||||
|     input logic  [2*`NF+1:0]    Pm,       // the product's mantissa
 | ||||
|     input logic                 Ps, // the product sign and the alligend addeded's sign (Modified Z sign for other opperations)
 | ||||
|     input logic                InvA,          // invert the aligned addend
 | ||||
| @ -39,13 +39,13 @@ module fmaadd( | ||||
|     input logic                 ZmSticky, | ||||
|     input logic  [`NE-1:0]      Ze, | ||||
|     input logic  [`NE+1:0]      Pe, | ||||
|     output logic [3*`NF+5:0]    AmInv,  // aligned addend possibly inverted
 | ||||
|     output logic [3*`NF+4:0]    AmInv,//change // aligned addend possibly inverted
 | ||||
|     output logic [2*`NF+1:0]    PmKilled,     // the product's mantissa possibly killed
 | ||||
|     output logic                Ss,           | ||||
|     output logic [`NE+1:0]      Se, | ||||
|     output logic [3*`NF+5:0]    Sm           // the positive sum
 | ||||
|     output logic [3*`NF+4:0]    Sm//change           // the positive sum
 | ||||
| ); | ||||
|     logic [3*`NF+5:0]    PreSum, NegPreSum; // possibly negitive sum
 | ||||
|     logic [3*`NF+4:0]    PreSum, NegPreSum;//change // possibly negitive sum
 | ||||
|     logic [3*`NF+5:0]    PreSumdebug, NegPreSumdebug; // possibly negitive sum
 | ||||
|     logic                NegSum;        // was the sum negitive
 | ||||
|     logic                NegSumdebug;        // was the sum negitive
 | ||||
| @ -65,8 +65,8 @@ module fmaadd( | ||||
|     //          ie ~(InvA&ZmSticky&~KillProd)&InvA = (~ZmSticky|KillProd)&InvA
 | ||||
|     //      addend - prod where product is killed (and not exactly zero) then don't add +1 from negation 
 | ||||
|     //          ie ~(InvA&ZmSticky&KillProd)&InvA = (~ZmSticky|~KillProd)&InvA
 | ||||
|     assign {NegSum, PreSum} = {{`NF+3{1'b0}}, PmKilled, 2'b0} + {InvA, AmInv} + {{3*`NF+6{1'b0}}, (~ZmSticky|KillProd)&InvA}; | ||||
|     assign NegPreSum = Am + {{`NF+2{1'b1}}, ~PmKilled, 2'b0} + {(3*`NF+3)'(0), (~ZmSticky|~KillProd)&InvA, 2'b0}; | ||||
|     assign {NegSum, PreSum} = {{`NF+2{1'b0}}, PmKilled, 2'b0} + {InvA, AmInv} + {{3*`NF+5{1'b0}}, (~ZmSticky|KillProd)&InvA};//change
 | ||||
|     assign NegPreSum = Am + {{`NF+1{1'b1}}, ~PmKilled, 2'b0} + {(3*`NF+2)'(0), (~ZmSticky|~KillProd)&InvA, 2'b0};//change
 | ||||
|       | ||||
|     // Choose the positive sum and accompanying LZA result.
 | ||||
|     assign Sm = NegSum ? NegPreSum : PreSum; | ||||
|  | ||||
| @ -35,14 +35,14 @@ module fmaalign( | ||||
|     input logic  [`NE-1:0]      Xe, Ye, Ze,      // biased exponents in B(NE.0) format
 | ||||
|     input logic  [`NF:0]        Zm,      // significand in U(0.NF) format]
 | ||||
|     input logic                 XZero, YZero, ZZero, // is the input zero
 | ||||
|     output logic [3*`NF+5:0]    Am, // addend aligned for addition in U(NF+5.2NF+1)
 | ||||
|     output logic [3*`NF+4:0]    Am,//change // addend aligned for addition in U(NF+5.2NF+1)
 | ||||
|     output logic                ZmSticky,  // Sticky bit calculated from the aliged addend
 | ||||
|     output logic                KillProd       // should the product be set to zero
 | ||||
| ); | ||||
| 
 | ||||
|     logic [`NE+1:0]     ACnt;           // how far to shift the addend to align with the product in Q(NE+2.0) format
 | ||||
|     logic [4*`NF+5:0]   ZmShifted;        // output of the alignment shifter including sticky bits U(NF+5.3NF+1)
 | ||||
|     logic [4*`NF+5:0]   ZmPreshifted;     // input to the alignment shifter U(NF+5.3NF+1)
 | ||||
|     logic [4*`NF+4:0]   ZmShifted;//change        // output of the alignment shifter including sticky bits U(NF+5.3NF+1)
 | ||||
|     logic [4*`NF+4:0]   ZmPreshifted;//change     // input to the alignment shifter U(NF+5.3NF+1)
 | ||||
|     logic KillZ; | ||||
| 
 | ||||
|     ///////////////////////////////////////////////////////////////////////////////
 | ||||
| @ -53,16 +53,16 @@ module fmaalign( | ||||
|     //      - negitive means Z is larger, so shift Z left
 | ||||
|     //      - positive means the product is larger, so shift Z right
 | ||||
|     // This could have been done using Pe, but ACnt is on the critical path so we replicate logic for speed
 | ||||
|     assign ACnt = {2'b0, Xe} + {2'b0, Ye} - {2'b0, (`NE)'(`BIAS)} + (`NE+2)'(`NF+3) - {2'b0, Ze}; | ||||
|     assign ACnt = {2'b0, Xe} + {2'b0, Ye} - {2'b0, (`NE)'(`BIAS)} + (`NE+2)'(`NF+2) - {2'b0, Ze}; | ||||
| 
 | ||||
|     // Defualt Addition with only inital left shift
 | ||||
|     //          |   54'b0    |  106'b(product)  | 2'b0 |
 | ||||
|     //          |   53'b0    |  106'b(product)  | 2'b0 |
 | ||||
|     //          | addnend |
 | ||||
| 
 | ||||
|     assign ZmPreshifted = {Zm,(3*`NF+5)'(0)}; | ||||
|     assign ZmPreshifted = {Zm,(3*`NF+4)'(0)}; //change
 | ||||
|      | ||||
|     assign KillProd = (ACnt[`NE+1]&~ZZero)|XZero|YZero; | ||||
|     assign KillZ = $signed(ACnt)>$signed((`NE+2)'(3)*(`NE+2)'(`NF)+(`NE+2)'(5)); | ||||
|     assign KillZ = $signed(ACnt)>$signed((`NE+2)'(3)*(`NE+2)'(`NF)+(`NE+2)'(4));//change
 | ||||
| 
 | ||||
|     always_comb | ||||
|         begin | ||||
| @ -72,7 +72,7 @@ module fmaalign( | ||||
|         //          |   54'b0    |  106'b(product)  | 2'b0 |
 | ||||
|         //  | addnend |
 | ||||
|         if (KillProd) begin | ||||
|             ZmShifted = {(`NF+3)'(0), Zm, (2*`NF+2)'(0)}; | ||||
|             ZmShifted = {(`NF+2)'(0), Zm, (2*`NF+2)'(0)};//change
 | ||||
|             ZmSticky = ~(XZero|YZero); | ||||
| 
 | ||||
|         // If the addend is too small to effect the addition        
 | ||||
| @ -90,12 +90,12 @@ module fmaalign( | ||||
|         //                                  | addnend |
 | ||||
|         end else begin | ||||
|             ZmShifted = ZmPreshifted >> ACnt; | ||||
|             ZmSticky = |(ZmShifted[`NF-1:0]); | ||||
|             ZmSticky = |(ZmShifted[`NF-1:0]);  | ||||
| 
 | ||||
|         end | ||||
|     end | ||||
| 
 | ||||
|     assign Am = ZmShifted[4*`NF+5:`NF]; | ||||
|     assign Am = ZmShifted[4*`NF+4:`NF];//change
 | ||||
| 
 | ||||
| endmodule | ||||
| 
 | ||||
|  | ||||
| @ -42,7 +42,7 @@ module fmalza #(WIDTH) ( // [Schmookler & Nowka, Leading zero anticipation and d | ||||
|    logic [WIDTH-1:0]  B, P, G, K; | ||||
|     logic [WIDTH-1:0] Pp1, Gm1, Km1; | ||||
| 
 | ||||
|     assign B = {{(`NF+2){1'b0}}, Pm}; // Zero extend product
 | ||||
|     assign B = {{(`NF+1){1'b0}}, Pm};//change // Zero extend product
 | ||||
| 
 | ||||
|     assign P = A^B; | ||||
|     assign G = A&B; | ||||
|  | ||||
| @ -109,14 +109,14 @@ module fpu ( | ||||
|    logic 		      XExpMaxE;                           // is the exponent all ones (max value)
 | ||||
| 
 | ||||
|    // Fma Signals
 | ||||
|    logic [3*`NF+5:0] SmE, SmM;                        | ||||
|    logic [3*`NF+4:0] SmE, SmM;//change             
 | ||||
|    logic 			   ZmStickyE, ZmStickyM; | ||||
|    logic [`NE+1:0]   SeE,SeM; | ||||
|    logic 			   InvAE, InvAM; | ||||
|    logic 			   AsE, AsM; | ||||
|    logic 			   PsE, PsM; | ||||
|    logic 			   SsE, SsM; | ||||
|    logic [$clog2(3*`NF+7)-1:0] SCntE, SCntM; | ||||
|    logic [$clog2(3*`NF+6)-1:0] SCntE, SCntM;//change
 | ||||
| 
 | ||||
|    // Cvt Signals
 | ||||
|    logic [`NE:0]           CeE, CeM;    // the calculated expoent
 | ||||
| @ -352,8 +352,8 @@ module fpu ( | ||||
|             {XsE, YsE, XZeroE, YZeroE, ZZeroE, XInfE, YInfE, ZInfE, XNaNE, YNaNE, ZNaNE, XSNaNE, YSNaNE, ZSNaNE, ZDenormE}, | ||||
|             {XsM, YsM, XZeroM, YZeroM, ZZeroM, XInfM, YInfM, ZInfM, XNaNM, YNaNM, ZNaNM, XSNaNM, YSNaNM, ZSNaNM, ZDenormM});      | ||||
|    flopenrc #(1)  EMRegCmpFlg (clk, reset, FlushM, ~StallM, PreNVE, PreNVM);       | ||||
|    flopenrc #(3*`NF+6) EMRegFma2(clk, reset, FlushM, ~StallM, SmE, SmM);  | ||||
|   flopenrc #($clog2(3*`NF+7)+7+`NE) EMRegFma4(clk, reset, FlushM, ~StallM,  | ||||
|    flopenrc #(3*`NF+5) EMRegFma2(clk, reset, FlushM, ~StallM, SmE, SmM);//change 
 | ||||
|   flopenrc #($clog2(3*`NF+6)+7+`NE) EMRegFma4(clk, reset, FlushM, ~StallM, //change
 | ||||
|                            {ZmStickyE, InvAE, SCntE, AsE, PsE, SsE, SeE}, | ||||
|                            {ZmStickyM, InvAM, SCntM, AsM, PsM, SsM, SeM}); | ||||
|    flopenrc #(`NE+`LOGCVTLEN+`CVTLEN+4) EMRegCvt(clk, reset, FlushM, ~StallM,  | ||||
|  | ||||
| @ -30,15 +30,15 @@ | ||||
| `include "wally-config.vh" | ||||
| 
 | ||||
| module fmashiftcalc( | ||||
|     input logic  [3*`NF+5:0]            FmaSm,       // the positive sum
 | ||||
|     input logic  [$clog2(3*`NF+7)-1:0]  FmaSCnt,   // normalization shift count
 | ||||
|     input logic  [3*`NF+4:0]            FmaSm,//change       // the positive sum
 | ||||
|     input logic  [$clog2(3*`NF+6)-1:0]  FmaSCnt,//change   // normalization shift count
 | ||||
|     input logic  [`FMTBITS-1:0]         Fmt,       // precision 1 = double 0 = single
 | ||||
|     input logic [`NE+1:0] FmaSe, | ||||
|     output logic [`NE+1:0]              NormSumExp,          // exponent of the normalized sum not taking into account denormal or zero results
 | ||||
|     output logic                        FmaSZero,    // is the result denormalized - calculated before LZA corection
 | ||||
|     output logic                        FmaPreResultDenorm,    // is the result denormalized - calculated before LZA corection
 | ||||
|     output logic [$clog2(3*`NF+7)-1:0]  FmaShiftAmt,   // normalization shift count
 | ||||
|     output logic [3*`NF+7:0]            FmaShiftIn        // is the sum zero
 | ||||
|     output logic [$clog2(3*`NF+6)-1:0]  FmaShiftAmt,//change   // normalization shift count
 | ||||
|     output logic [3*`NF+6:0]            FmaShiftIn//change        // is the sum zero
 | ||||
| ); | ||||
|     logic [`NE+1:0]             PreNormSumExp;       // the exponent of the normalized sum with the `FLEN bias
 | ||||
|     logic [`NE+1:0] BiasCorr; | ||||
| @ -50,7 +50,7 @@ module fmashiftcalc( | ||||
|     // Determine if the sum is zero
 | ||||
|     assign FmaSZero = ~(|FmaSm); | ||||
|     // calculate the sum's exponent
 | ||||
|     assign PreNormSumExp = FmaSe + {{`NE+2-$unsigned($clog2(3*`NF+7)){1'b1}}, ~FmaSCnt} + (`NE+2)'(`NF+4); | ||||
|     assign PreNormSumExp = FmaSe + {{`NE+2-$unsigned($clog2(3*`NF+6)){1'b1}}, ~FmaSCnt} + (`NE+2)'(`NF+3);//change
 | ||||
| 
 | ||||
|     //convert the sum's exponent into the proper percision
 | ||||
|     if (`FPSIZES == 1) begin | ||||
| @ -150,7 +150,7 @@ module fmashiftcalc( | ||||
|     //  - shift once if killing a product and the result is denormalized
 | ||||
|     assign FmaShiftIn = {2'b0, FmaSm}; | ||||
|     if (`FPSIZES == 1) | ||||
|         assign FmaShiftAmt = FmaPreResultDenorm ? FmaSe[$clog2(3*`NF+7)-1:0]+($clog2(3*`NF+7))'(`NF+3): FmaSCnt+1; | ||||
|         assign FmaShiftAmt = FmaPreResultDenorm ? FmaSe[$clog2(3*`NF+6)-1:0]+($clog2(3*`NF+6))'(`NF+2): FmaSCnt+1;//change
 | ||||
|     else | ||||
|         assign FmaShiftAmt = FmaPreResultDenorm ? FmaSe[$clog2(3*`NF+7)-1:0]+($clog2(3*`NF+7))'(`NF+3)+BiasCorr[$clog2(3*`NF+7)-1:0]: FmaSCnt+1; | ||||
|         assign FmaShiftAmt = FmaPreResultDenorm ? FmaSe[$clog2(3*`NF+6)-1:0]+($clog2(3*`NF+6))'(`NF+2)+BiasCorr[$clog2(3*`NF+6)-1:0]: FmaSCnt+1;//change
 | ||||
| endmodule | ||||
|  | ||||
| @ -47,10 +47,10 @@ module postprocess ( | ||||
|     input logic                             FmaAs,   // the modified Z sign - depends on instruction
 | ||||
|     input logic                             FmaPs,      // the product's sign
 | ||||
|     input logic  [`NE+1:0]                  FmaSe, | ||||
|     input logic  [3*`NF+5:0]                FmaSm,       // the positive sum
 | ||||
|     input logic  [3*`NF+4:0]                FmaSm,//change      // the positive sum
 | ||||
|     input logic                             FmaZmS,  // sticky bit that is calculated during alignment
 | ||||
|     input logic                             FmaSs, | ||||
|     input logic  [$clog2(3*`NF+7)-1:0]      FmaSCnt,   // the normalization shift count
 | ||||
|     input logic  [$clog2(3*`NF+6)-1:0]      FmaSCnt,//change   // the normalization shift count
 | ||||
|     //divide signals
 | ||||
|     input logic                             DivS, | ||||
| //    input logic                             DivDone,
 | ||||
| @ -89,10 +89,10 @@ module postprocess ( | ||||
|     // fma signals
 | ||||
|     logic [`NE+1:0] FmaMe;     // exponent of the normalized sum
 | ||||
|     logic FmaSZero;        // is the sum zero
 | ||||
|     logic [3*`NF+7:0] FmaShiftIn;        // shift input
 | ||||
|     logic [3*`NF+6:0] FmaShiftIn;//change        // shift input
 | ||||
|     logic [`NE+1:0] NormSumExp;          // exponent of the normalized sum not taking into account denormal or zero results
 | ||||
|     logic FmaPreResultDenorm;    // is the result denormalized - calculated before LZA corection
 | ||||
|     logic [$clog2(3*`NF+7)-1:0] FmaShiftAmt;   // normalization shift count
 | ||||
|     logic [$clog2(3*`NF+6)-1:0] FmaShiftAmt;//change   // normalization shift count
 | ||||
|     // division singals
 | ||||
|     logic [`LOGNORMSHIFTSZ-1:0] DivShiftAmt; | ||||
|     logic [`NORMSHIFTSZ-1:0] DivShiftIn; | ||||
| @ -152,8 +152,8 @@ module postprocess ( | ||||
|     always_comb | ||||
|         case(PostProcSel) | ||||
|             2'b10: begin // fma
 | ||||
|                 ShiftAmt = {{`LOGNORMSHIFTSZ-$clog2(3*`NF+7){1'b0}}, FmaShiftAmt}; | ||||
|                 ShiftIn =  {FmaShiftIn, {`NORMSHIFTSZ-(3*`NF+8){1'b0}}}; | ||||
|                 ShiftAmt = {{`LOGNORMSHIFTSZ-$clog2(3*`NF+6){1'b0}}, FmaShiftAmt};//change
 | ||||
|                 ShiftIn =  {FmaShiftIn, {`NORMSHIFTSZ-(3*`NF+7){1'b0}}};//change
 | ||||
|             end | ||||
|             2'b00: begin // cvt
 | ||||
|                 ShiftAmt = {{`LOGNORMSHIFTSZ-$clog2(`CVTLEN+1){1'b0}}, CvtShiftAmt}; | ||||
|  | ||||
| @ -43,7 +43,7 @@ module shiftcorrection( | ||||
|     output logic [`NE+1:0]          Qe, | ||||
|     output logic [`NE+1:0]          FmaMe         // exponent of the normalized sum
 | ||||
| ); | ||||
|     logic [3*`NF+5:0]      CorrSumShifted;     // the shifted sum after LZA correction
 | ||||
|     logic [3*`NF+4:0]      CorrSumShifted;//change     // the shifted sum after LZA correction
 | ||||
|     logic [`CORRSHIFTSZ-1:0] CorrQmShifted; | ||||
|     logic                  ResDenorm;    // is the result denormalized
 | ||||
|     logic                  LZAPlus1; // add one or two to the sum's exponent due to LZA correction
 | ||||
| @ -56,7 +56,7 @@ module shiftcorrection( | ||||
|     assign CorrQmShifted = (LZAPlus1|(DivQe==1&~LZAPlus1)) ? Shifted[`NORMSHIFTSZ-2:`NORMSHIFTSZ-`CORRSHIFTSZ-1] : Shifted[`NORMSHIFTSZ-3:`NORMSHIFTSZ-`CORRSHIFTSZ-2]; | ||||
|     // if the result of the divider was calculated to be denormalized, then the result was correctly normalized, so select the top shifted bits
 | ||||
|     always_comb | ||||
|         if(FmaOp)                       Mf = {CorrSumShifted, {`CORRSHIFTSZ-(3*`NF+6){1'b0}}}; | ||||
|         if(FmaOp)                       Mf = {CorrSumShifted, {`CORRSHIFTSZ-(3*`NF+5){1'b0}}};//change
 | ||||
|         else if (DivOp&~DivResDenorm)   Mf = CorrQmShifted; | ||||
|         else                            Mf = Shifted[`NORMSHIFTSZ-1:`NORMSHIFTSZ-`CORRSHIFTSZ]; | ||||
|     // Determine sum's exponent
 | ||||
|  | ||||
| @ -94,8 +94,8 @@ module testbenchfp; | ||||
|   logic [`NE+1:0]	      Se; | ||||
|   logic 				        ZmSticky; | ||||
|   logic 					      KillProd;  | ||||
|   logic [$clog2(3*`NF+7)-1:0]	SCnt; | ||||
|   logic [3*`NF+5:0]	    Sm;        | ||||
|   logic [$clog2(3*`NF+6)-1:0]	SCnt; | ||||
|   logic [3*`NF+4:0]	    Sm;        | ||||
|   logic 			          InvA; | ||||
|   logic 			          NegSum; | ||||
|   logic 			          As; | ||||
|  | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user