This commit is contained in:
bbracker 2021-07-17 14:46:38 -04:00
commit 18fb282a37
6 changed files with 154 additions and 447 deletions

View File

@ -32,7 +32,6 @@ vlog -work work_busybear +incdir+../config/busybear +incdir+../config/shared ..
# start and run simulation # start and run simulation
# remove +acc flag for faster sim during regressions if there is no need to access internal signals # remove +acc flag for faster sim during regressions if there is no need to access internal signals
vopt work_busybear.testbench -o workopt_busybear vopt work_busybear.testbench -o workopt_busybear
vsim workopt_busybear -suppress 8852,12070 vsim workopt_busybear -suppress 8852,12070
run -all run -all

View File

@ -38,6 +38,13 @@ switch $argc {
# remove +acc flag for faster sim during regressions if there is no need to access internal signals # remove +acc flag for faster sim during regressions if there is no need to access internal signals
vopt work_$2.testbench -work work_$2 -o workopt_$2 vopt work_$2.testbench -work work_$2 -o workopt_$2
vsim -lib work_$2 workopt_$2 vsim -lib work_$2 workopt_$2
# Adding coverage increases runtime from 2:00 to 4:29. Can't run it all the time
#vopt work_$2.testbench -work work_$2 -o workopt_$2 +cover=sbectf
#vsim -coverage -lib work_$2 workopt_$2
run -all run -all
#coverage report -file wally-pipelined-coverage.txt
# These aren't doing anything helpful
#coverage report -memory
#profile report -calltree -file wally-pipelined-calltree.rpt -cutoff 2
quit quit

View File

@ -121,7 +121,6 @@ module lsu
logic [`XLEN-1:0] PageTableEntryM; logic [`XLEN-1:0] PageTableEntryM;
logic DTLBWriteM; logic DTLBWriteM;
logic [`XLEN-1:0] HPTWReadPTE; logic [`XLEN-1:0] HPTWReadPTE;
logic MMUReady;
logic HPTWStall; logic HPTWStall;
logic [`XLEN-1:0] HPTWPAdrE; logic [`XLEN-1:0] HPTWPAdrE;
logic [`XLEN-1:0] HPTWPAdrM; logic [`XLEN-1:0] HPTWPAdrM;
@ -164,7 +163,6 @@ module lsu
.ITLBWriteF(ITLBWriteF), .ITLBWriteF(ITLBWriteF),
.DTLBWriteM(DTLBWriteM), .DTLBWriteM(DTLBWriteM),
.HPTWReadPTE(HPTWReadPTE), .HPTWReadPTE(HPTWReadPTE),
.MMUReady(HPTWReady),
.HPTWStall(HPTWStall), .HPTWStall(HPTWStall),
.HPTWPAdrE(HPTWPAdrE), .HPTWPAdrE(HPTWPAdrE),
.HPTWPAdrM(HPTWPAdrM), .HPTWPAdrM(HPTWPAdrM),

View File

@ -34,8 +34,6 @@ module lsuArb
input logic HPTWRead, input logic HPTWRead,
input logic [`XLEN-1:0] HPTWPAdrE, input logic [`XLEN-1:0] HPTWPAdrE,
input logic [`XLEN-1:0] HPTWPAdrM, input logic [`XLEN-1:0] HPTWPAdrM,
// to page table walker.
//output logic [`XLEN-1:0] HPTWReadPTE,
output logic HPTWStall, output logic HPTWStall,
// from CPU // from CPU
@ -94,7 +92,6 @@ module lsuArb
// demux the inputs from LSU to walker or cpu's data port. // demux the inputs from LSU to walker or cpu's data port.
assign ReadDataW = SelPTW ? `XLEN'b0 : ReadDataWfromDCache; // probably can avoid this demux assign ReadDataW = SelPTW ? `XLEN'b0 : ReadDataWfromDCache; // probably can avoid this demux
//assign HPTWReadPTE = SelPTW ? ReadDataWfromDCache : `XLEN'b0 ; // probably can avoid this demux
assign SquashSCW = SelPTW ? 1'b0 : SquashSCWfromDCache; assign SquashSCW = SelPTW ? 1'b0 : SquashSCWfromDCache;
assign DataMisalignedM = SelPTW ? 1'b0 : DataMisalignedMfromDCache; assign DataMisalignedM = SelPTW ? 1'b0 : DataMisalignedMfromDCache;
// *** need to rename DcacheStall and Datastall. // *** need to rename DcacheStall and Datastall.

View File

@ -29,11 +29,6 @@
`include "wally-config.vh" `include "wally-config.vh"
/* ***
TO-DO:
- Implement faults on accessed/dirty behavior
*/
module pagetablewalker module pagetablewalker
( (
// Control signals // Control signals
@ -54,7 +49,6 @@ module pagetablewalker
// *** modify to send to LSU // *** KMG: These are inputs/results from the ahblite whose addresses should have already been checked, so I don't think they need to be sent through the LSU // *** modify to send to LSU // *** KMG: These are inputs/results from the ahblite whose addresses should have already been checked, so I don't think they need to be sent through the LSU
input logic [`XLEN-1:0] HPTWReadPTE, input logic [`XLEN-1:0] HPTWReadPTE,
input logic MMUReady,
input logic HPTWStall, input logic HPTWStall,
// *** modify to send to LSU // *** modify to send to LSU
@ -74,463 +68,179 @@ module pagetablewalker
if (`MEM_VIRTMEM) begin if (`MEM_VIRTMEM) begin
// Internal signals // Internal signals
// register TLBs translation miss requests // register TLBs translation miss requests
logic ITLBMissFQ, DTLBMissMQ; logic DTLBWalk;
logic [`PPN_BITS-1:0] BasePageTablePPN; logic [`PPN_BITS-1:0] BasePageTablePPN;
logic [`XLEN-1:0] TranslationVAdr; logic [`XLEN-1:0] TranslationVAdr;
logic [`XLEN-1:0] SavedPTE, CurrentPTE; logic [`XLEN-1:0] CurrentPTE;
logic [`PA_BITS-1:0] TranslationPAdr; logic [`PA_BITS-1:0] TranslationPAdr;
logic [`PPN_BITS-1:0] CurrentPPN; logic [`PPN_BITS-1:0] CurrentPPN;
logic [`SVMODE_BITS-1:0] SvMode; logic MemWrite;
logic MemStore; logic Executable, Writable, Readable, Valid;
logic MegapageMisaligned, GigapageMisaligned, TerapageMisaligned;
// PTE Control Bits logic ValidPTE, LeafPTE, ValidLeafPTE, ValidNonLeafPTE;
logic Dirty, Accessed, Global, User,
Executable, Writable, Readable, Valid;
// PTE descriptions
logic ValidPTE, AccessAlert, MegapageMisaligned, BadMegapage, LeafPTE;
// Outputs of walker
logic [`XLEN-1:0] PageTableEntry;
logic StartWalk; logic StartWalk;
logic EndWalk; logic EndWalk;
typedef enum {LEVEL0_SET_ADRE,
LEVEL0_WDV,
LEVEL0,
LEVEL1_SET_ADRE,
LEVEL1_WDV,
LEVEL1,
LEVEL2_SET_ADRE,
LEVEL2_WDV,
LEVEL2,
LEVEL3_SET_ADRE,
LEVEL3_WDV,
LEVEL3,
LEAF,
IDLE,
FAULT} statetype;
statetype WalkerState, NextWalkerState, PreviousWalkerState;
logic PRegEn; logic PRegEn;
logic SelDataTranslation; logic [1:0] NextPageType;
logic AnyTLBMissM;
flop #(`XLEN) HPTWPAdrMReg(.clk(clk),
.d(HPTWPAdrE),
.q(HPTWPAdrM));
typedef enum {LEVEL0_SET_ADR, LEVEL0_READ, LEVEL0,
LEVEL1_SET_ADR, LEVEL1_READ, LEVEL1,
LEVEL2_SET_ADR, LEVEL2_READ, LEVEL2,
LEVEL3_SET_ADR, LEVEL3_READ, LEVEL3,
LEAF, IDLE, FAULT} statetype;
statetype WalkerState, NextWalkerState, InitialWalkerState;
logic [`SVMODE_BITS-1:0] SvMode;
assign SvMode = SATP_REGW[`XLEN-1:`XLEN-`SVMODE_BITS]; assign SvMode = SATP_REGW[`XLEN-1:`XLEN-`SVMODE_BITS];
assign BasePageTablePPN = SATP_REGW[`PPN_BITS-1:0]; assign BasePageTablePPN = SATP_REGW[`PPN_BITS-1:0];
assign MemWrite = MemRWM[0];
assign MemStore = MemRWM[0]; // Determine which address to translate
assign TranslationVAdr = DTLBWalk ? MemAdrM : PCF;
// Prefer data address translations over instruction address translations flop #(`XLEN) HPTWPAdrMReg(clk, HPTWPAdrE, HPTWPAdrM);
assign TranslationVAdr = (SelDataTranslation) ? MemAdrM : PCF; flopenrc #(1) TLBMissMReg(clk, reset, EndWalk, StartWalk | EndWalk, DTLBMissM, DTLBWalk);
assign SelDataTranslation = DTLBMissMQ | DTLBMissM; flopenl #(.TYPE(statetype)) WalkerStateReg(clk, reset, 1'b1, NextWalkerState, IDLE, WalkerState);
flopenr #(`XLEN) PTEReg(clk, reset, PRegEn, HPTWReadPTE, CurrentPTE); // Capture page table entry from data cache
assign CurrentPPN = CurrentPTE[`PPN_BITS+9:10];
flopenrc #(1) assign StartWalk = (WalkerState == IDLE) & (DTLBMissM | ITLBMissF);
DTLBMissMReg(.clk(clk), assign EndWalk = (WalkerState == LEAF) || (WalkerState == FAULT);
.reset(reset),
.en(StartWalk | EndWalk),
.clear(EndWalk),
.d(DTLBMissM),
.q(DTLBMissMQ));
flopenrc #(1)
ITLBMissMReg(.clk(clk),
.reset(reset),
.en(StartWalk | EndWalk),
.clear(EndWalk),
.d(ITLBMissF),
.q(ITLBMissFQ));
flopenl #(.TYPE(statetype)) WalkerStateReg(clk, reset, 1'b1, NextWalkerState, IDLE, WalkerState);
flopenl #(.TYPE(statetype)) PreviousWalkerStateReg(clk, reset, 1'b1, WalkerState, IDLE, PreviousWalkerState);
assign AnyTLBMissM = DTLBMissM | ITLBMissF;
assign StartWalk = WalkerState == IDLE & AnyTLBMissM;
assign EndWalk = WalkerState == LEAF || WalkerState == FAULT;
// unswizzle PTE bits
assign {Dirty, Accessed, Global, User,
Executable, Writable, Readable, Valid} = CurrentPTE[7:0];
// Assign PTE descriptors common across all XLEN values // Assign PTE descriptors common across all XLEN values
// For non-leaf PTEs, D, A, U bits are reserved and ignored. They do not cause faults while walking the page table
assign {Executable, Writable, Readable, Valid} = CurrentPTE[3:0];
assign LeafPTE = Executable | Writable | Readable; assign LeafPTE = Executable | Writable | Readable;
assign ValidPTE = Valid && ~(Writable && ~Readable); assign ValidPTE = Valid && ~(Writable && ~Readable);
assign AccessAlert = ~Accessed | (MemStore & ~Dirty); assign ValidLeafPTE = ValidPTE & LeafPTE;
assign ValidNonLeafPTE = ValidPTE & ~LeafPTE;
// Assign specific outputs to general outputs // Assign specific outputs to general outputs
assign PageTableEntryF = PageTableEntry; // *** try to eliminate this duplication, but attempts caused MMU to hang
assign PageTableEntryM = PageTableEntry; assign PageTableEntryF = CurrentPTE;
assign PageTableEntryM = CurrentPTE;
// generate assign SelPTW = (WalkerState != IDLE) & (WalkerState != FAULT);
if (`XLEN == 32) begin assign DTLBWriteM = (WalkerState == LEAF) & DTLBWalk;
logic [9:0] VPN1, VPN0; assign ITLBWriteF = (WalkerState == LEAF) & ~DTLBWalk;
// Raise faults. DTLBMiss
assign WalkerInstrPageFaultF = (WalkerState == FAULT) & ~DTLBWalk;
assign WalkerLoadPageFaultM = (WalkerState == FAULT) & DTLBWalk & ~MemWrite;
assign WalkerStorePageFaultM = (WalkerState == FAULT) & DTLBWalk & MemWrite;
// State transition logic assign PRegEn = (NextWalkerState == LEVEL3) | (NextWalkerState == LEVEL2) | (NextWalkerState == LEVEL1) | (NextWalkerState == LEVEL0);
always_comb begin assign HPTWRead = (WalkerState == LEVEL3_READ) | (WalkerState == LEVEL2_READ) | (WalkerState == LEVEL1_READ) | (WalkerState == LEVEL0_READ);
PRegEn = 1'b0;
TranslationPAdr = '0;
HPTWRead = 1'b0;
PageTableEntry = '0;
PageType = '0;
DTLBWriteM = '0;
ITLBWriteF = '0;
WalkerInstrPageFaultF = 1'b0; // FSM to track PageType based on the levels of the page table traversed
WalkerLoadPageFaultM = 1'b0; flopr #(2) PageTypeReg(clk, reset, NextPageType, PageType);
WalkerStorePageFaultM = 1'b0; always_comb
case (WalkerState)
LEVEL3: NextPageType = 2'b11; // terapage
LEVEL2: NextPageType = 2'b10; // gigapage
LEVEL1: NextPageType = 2'b01; // megapage
LEVEL0: NextPageType = 2'b00; // kilopage
default: NextPageType = PageType;
endcase
SelPTW = 1'b1; // TranslationPAdr mux
if (`XLEN==32) begin
logic [9:0] VPN1, VPN0;
assign VPN1 = TranslationVAdr[31:22];
assign VPN0 = TranslationVAdr[21:12];
always_comb
case (WalkerState)
LEVEL1_SET_ADR: TranslationPAdr = {BasePageTablePPN, VPN1, 2'b00};
LEVEL1_READ: TranslationPAdr = {BasePageTablePPN, VPN1, 2'b00};
LEVEL1: if (NextWalkerState == LEAF) TranslationPAdr = {2'b00, TranslationVAdr[31:0]}; // ***check this and similar in LEVEL0 and LEAF
else TranslationPAdr = {CurrentPPN, VPN0, 2'b00};
LEVEL0_SET_ADR: TranslationPAdr = {CurrentPPN, VPN0, 2'b00};
LEVEL0_READ: TranslationPAdr = {CurrentPPN, VPN0, 2'b00};
LEVEL0: TranslationPAdr = {2'b00, TranslationVAdr[31:0]};
LEAF: TranslationPAdr = {2'b00, TranslationVAdr[31:0]};
default: TranslationPAdr = 0; // cause seg fault if this is improperly used
endcase
end else begin
logic [8:0] VPN3, VPN2, VPN1, VPN0;
assign VPN3 = TranslationVAdr[47:39];
assign VPN2 = TranslationVAdr[38:30];
assign VPN1 = TranslationVAdr[29:21];
assign VPN0 = TranslationVAdr[20:12];
always_comb
case (WalkerState)
LEVEL3_SET_ADR: TranslationPAdr = {BasePageTablePPN, VPN3, 3'b000};
LEVEL3_READ: TranslationPAdr = {BasePageTablePPN, VPN3, 3'b000};
LEVEL3: if (NextWalkerState == LEAF) TranslationPAdr = TranslationVAdr[`PA_BITS-1:0];
else TranslationPAdr = {(SvMode == `SV48) ? CurrentPPN : BasePageTablePPN, VPN2, 3'b000};
LEVEL2_SET_ADR: TranslationPAdr = {(SvMode == `SV48) ? CurrentPPN : BasePageTablePPN, VPN2, 3'b000};
LEVEL2_READ: TranslationPAdr = {(SvMode == `SV48) ? CurrentPPN : BasePageTablePPN, VPN2, 3'b000};
LEVEL2: if (NextWalkerState == LEAF) TranslationPAdr = TranslationVAdr[`PA_BITS-1:0];
else TranslationPAdr = {CurrentPPN, VPN1, 3'b000};
LEVEL1_SET_ADR: TranslationPAdr = {CurrentPPN, VPN1, 3'b000};
LEVEL1_READ: TranslationPAdr = {CurrentPPN, VPN1, 3'b000};
LEVEL1: if (NextWalkerState == LEAF) TranslationPAdr = TranslationVAdr[`PA_BITS-1:0];
else TranslationPAdr = {CurrentPPN, VPN0, 3'b000};
LEVEL0_SET_ADR: TranslationPAdr = {CurrentPPN, VPN0, 3'b000};
LEVEL0_READ: TranslationPAdr = {CurrentPPN, VPN0, 3'b000};
LEVEL0: TranslationPAdr = TranslationVAdr[`PA_BITS-1:0];
LEAF: TranslationPAdr = TranslationVAdr[`PA_BITS-1:0];
default: TranslationPAdr = 0; // cause seg fault if this is improperly used
endcase
end
if (`XLEN == 32) begin
assign InitialWalkerState = LEVEL1_SET_ADR;
assign TerapageMisaligned = 0; // not applicable
assign GigapageMisaligned = 0; // not applicable
assign MegapageMisaligned = |(CurrentPPN[9:0]); // must have zero PPN0
assign HPTWPAdrE = TranslationPAdr[31:0]; // ***not right?
end else begin
assign InitialWalkerState = (SvMode == `SV48) ? LEVEL3_SET_ADR : LEVEL2_SET_ADR;
assign TerapageMisaligned = |(CurrentPPN[26:0]); // must have zero PPN2, PPN1, PPN0
assign GigapageMisaligned = |(CurrentPPN[17:0]); // must have zero PPN1 and PPN0
assign MegapageMisaligned = |(CurrentPPN[8:0]); // must have zero PPN0
assign HPTWPAdrE = {{(`XLEN-`PA_BITS){1'b0}}, TranslationPAdr[`PA_BITS-1:0]};
end
// Page Table Walker FSM
// ***Is there a w ay to reduce the number of cycles needed to do the walk?
always_comb
case (WalkerState) case (WalkerState)
IDLE: begin IDLE: if (StartWalk) NextWalkerState = InitialWalkerState;
SelPTW = 1'b0; else NextWalkerState = IDLE;
if (AnyTLBMissM & SvMode == `SV32) begin LEVEL3_SET_ADR: NextWalkerState = LEVEL3_READ;
NextWalkerState = LEVEL1_SET_ADRE; LEVEL3_READ: if (HPTWStall) NextWalkerState = LEVEL3_READ;
end else begin else NextWalkerState = LEVEL3;
NextWalkerState = IDLE; LEVEL3: if (ValidLeafPTE && ~TerapageMisaligned) NextWalkerState = LEAF;
end else if (ValidNonLeafPTE) NextWalkerState = LEVEL2_SET_ADR;
end else NextWalkerState = FAULT;
LEVEL2_SET_ADR: NextWalkerState = LEVEL2_READ;
LEVEL1_SET_ADRE: begin LEVEL2_READ: if (HPTWStall) NextWalkerState = LEVEL2_READ;
NextWalkerState = LEVEL1_WDV; else NextWalkerState = LEVEL2;
TranslationPAdr = {BasePageTablePPN, VPN1, 2'b00}; LEVEL2: if (ValidLeafPTE && ~GigapageMisaligned) NextWalkerState = LEAF;
end else if (ValidNonLeafPTE) NextWalkerState = LEVEL1_SET_ADR;
else NextWalkerState = FAULT;
LEVEL1_WDV: begin LEVEL1_SET_ADR: NextWalkerState = LEVEL1_READ;
TranslationPAdr = {BasePageTablePPN, VPN1, 2'b00}; LEVEL1_READ: if (HPTWStall) NextWalkerState = LEVEL1_READ;
HPTWRead = 1'b1; else NextWalkerState = LEVEL1;
if (HPTWStall) begin LEVEL1: if (ValidLeafPTE && ~MegapageMisaligned) NextWalkerState = LEAF;
NextWalkerState = LEVEL1_WDV; else if (ValidNonLeafPTE) NextWalkerState = LEVEL0_SET_ADR;
end else begin else NextWalkerState = FAULT;
NextWalkerState = LEVEL1; LEVEL0_SET_ADR: NextWalkerState = LEVEL0_READ;
PRegEn = 1'b1; LEVEL0_READ: if (HPTWStall) NextWalkerState = LEVEL0_READ;
end else NextWalkerState = LEVEL0;
end LEVEL0: if (ValidLeafPTE) NextWalkerState = LEAF;
else NextWalkerState = FAULT;
LEVEL1: begin LEAF: NextWalkerState = IDLE;
// *** <FUTURE WORK> According to the architecture, we should FAULT: NextWalkerState = IDLE;
// fault upon finding a superpage that is misaligned or has 0
// access bit. The following commented line of code is
// supposed to perform that check. However, it is untested.
if (ValidPTE && LeafPTE && ~BadMegapage) begin
NextWalkerState = LEAF;
TranslationPAdr = {2'b00, TranslationVAdr[31:0]};
end
// else if (ValidPTE && LeafPTE) NextWalkerState = LEAF; // *** Once the above line is properly tested, delete this line.
else if (ValidPTE && ~LeafPTE) begin
NextWalkerState = LEVEL0_SET_ADRE;
TranslationPAdr = {CurrentPPN, VPN0, 2'b00};
HPTWRead = 1'b1;
end else begin
NextWalkerState = FAULT;
end
end
LEVEL0_SET_ADRE: begin
NextWalkerState = LEVEL0_WDV;
TranslationPAdr = {CurrentPPN, VPN0, 2'b00};
end
LEVEL0_WDV: begin
TranslationPAdr = {CurrentPPN, VPN0, 2'b00};
HPTWRead = 1'b1;
if (HPTWStall) begin
NextWalkerState = LEVEL0_WDV;
end else begin
NextWalkerState = LEVEL0;
PRegEn = 1'b1;
end
end
LEVEL0: begin
if (ValidPTE & LeafPTE & ~AccessAlert) begin
NextWalkerState = LEAF;
TranslationPAdr = {2'b00, TranslationVAdr[31:0]};
end else begin
NextWalkerState = FAULT;
end
end
LEAF: begin
NextWalkerState = IDLE;
PageTableEntry = CurrentPTE;
PageType = (PreviousWalkerState == LEVEL1) ? 2'b01 : 2'b00; // *** not sure about this mux?
DTLBWriteM = DTLBMissMQ;
ITLBWriteF = ~DTLBMissMQ; // Prefer data over instructions
TranslationPAdr = {2'b00, TranslationVAdr[31:0]};
end
FAULT: begin
SelPTW = 1'b0;
NextWalkerState = IDLE;
WalkerInstrPageFaultF = ~DTLBMissMQ;
WalkerLoadPageFaultM = DTLBMissMQ && ~MemStore;
WalkerStorePageFaultM = DTLBMissMQ && MemStore;
end
// Default case should never happen, but is included for linter.
default: NextWalkerState = IDLE;
endcase
end
// A megapage is a Level 1 leaf page. This page must have zero PPN[0].
assign MegapageMisaligned = |(CurrentPPN[9:0]);
assign BadMegapage = MegapageMisaligned || AccessAlert; // *** Implement better access/dirty scheme
assign VPN1 = TranslationVAdr[31:22];
assign VPN0 = TranslationVAdr[21:12];
// Capture page table entry from data cache
// *** may need to delay reading this value until the next clock cycle.
// The clk to q latency of the SRAM in the data cache will be long.
// I cannot see directly using this value. This is no different than
// a load delay hazard. This will require rewriting the walker fsm.
// also need a new signal to save. Should be a mealy output of the fsm
// request followed by ~stall.
flopenr #(32) ptereg(clk, reset, PRegEn, HPTWReadPTE, SavedPTE);
//mux2 #(32) ptemux(SavedPTE, HPTWReadPTE, PRegEn, CurrentPTE);
assign CurrentPTE = SavedPTE;
assign CurrentPPN = CurrentPTE[`PPN_BITS+9:10];
// Assign outputs to ahblite
// *** Currently truncate address to 32 bits. This must be changed if
// we support larger physical address spaces
assign HPTWPAdrE = TranslationPAdr[31:0];
end else begin
logic [8:0] VPN3, VPN2, VPN1, VPN0;
logic TerapageMisaligned, GigapageMisaligned, BadTerapage, BadGigapage;
always_comb begin
PRegEn = 1'b0;
TranslationPAdr = '0;
HPTWRead = 1'b0;
PageTableEntry = '0;
PageType = '0;
DTLBWriteM = '0;
ITLBWriteF = '0;
WalkerInstrPageFaultF = 1'b0;
WalkerLoadPageFaultM = 1'b0;
WalkerStorePageFaultM = 1'b0;
SelPTW = 1'b1;
case (WalkerState)
IDLE: begin
SelPTW = 1'b0;
if (AnyTLBMissM & SvMode == `SV48) begin
NextWalkerState = LEVEL3_SET_ADRE;
end else if (AnyTLBMissM & SvMode == `SV39) begin
NextWalkerState = LEVEL2_SET_ADRE;
end else begin
NextWalkerState = IDLE;
end
end
LEVEL3_SET_ADRE: begin
NextWalkerState = LEVEL3_WDV;
TranslationPAdr = {BasePageTablePPN, VPN3, 3'b000};
end
LEVEL3_WDV: begin
TranslationPAdr = {BasePageTablePPN, VPN3, 3'b000};
HPTWRead = 1'b1;
if (HPTWStall) begin
NextWalkerState = LEVEL3_WDV;
end else begin
NextWalkerState = LEVEL3;
PRegEn = 1'b1;
end
end
LEVEL3: begin
// *** <FUTURE WORK> According to the architecture, we should
// fault upon finding a superpage that is misaligned or has 0
// access bit. The following commented line of code is
// supposed to perform that check. However, it is untested.
if (ValidPTE && LeafPTE && ~BadTerapage) begin
NextWalkerState = LEAF;
TranslationPAdr = TranslationVAdr[`PA_BITS-1:0];
end
// else if (ValidPTE && LeafPTE) NextWalkerState = LEAF; // *** Once the above line is properly tested, delete this line.
else if (ValidPTE && ~LeafPTE) begin
NextWalkerState = LEVEL2_SET_ADRE;
TranslationPAdr = {(SvMode == `SV48) ? CurrentPPN : BasePageTablePPN, VPN2, 3'b000};
end else begin
NextWalkerState = FAULT;
end
end
LEVEL2_SET_ADRE: begin
NextWalkerState = LEVEL2_WDV;
TranslationPAdr = {(SvMode == `SV48) ? CurrentPPN : BasePageTablePPN, VPN2, 3'b000};
end
LEVEL2_WDV: begin
TranslationPAdr = {(SvMode == `SV48) ? CurrentPPN : BasePageTablePPN, VPN2, 3'b000};
HPTWRead = 1'b1;
if (HPTWStall) begin
NextWalkerState = LEVEL2_WDV;
end else begin
NextWalkerState = LEVEL2;
PRegEn = 1'b1;
end
end
LEVEL2: begin
// *** <FUTURE WORK> According to the architecture, we should
// fault upon finding a superpage that is misaligned or has 0
// access bit. The following commented line of code is
// supposed to perform that check. However, it is untested.
if (ValidPTE && LeafPTE && ~BadGigapage) begin
NextWalkerState = LEAF;
TranslationPAdr = TranslationVAdr[`PA_BITS-1:0];
end
// else if (ValidPTE && LeafPTE) NextWalkerState = LEAF; // *** Once the above line is properly tested, delete this line.
else if (ValidPTE && ~LeafPTE) begin
NextWalkerState = LEVEL1_SET_ADRE;
TranslationPAdr = {CurrentPPN, VPN1, 3'b000};
end else begin
NextWalkerState = FAULT;
end
end
LEVEL1_SET_ADRE: begin
NextWalkerState = LEVEL1_WDV;
TranslationPAdr = {CurrentPPN, VPN1, 3'b000};
end
LEVEL1_WDV: begin
TranslationPAdr = {CurrentPPN, VPN1, 3'b000};
HPTWRead = 1'b1;
if (HPTWStall) begin
NextWalkerState = LEVEL1_WDV;
end else begin
NextWalkerState = LEVEL1;
PRegEn = 1'b1;
end
end
LEVEL1: begin
// *** <FUTURE WORK> According to the architecture, we should
// fault upon finding a superpage that is misaligned or has 0
// access bit. The following commented line of code is
// supposed to perform that check. However, it is untested.
if (ValidPTE && LeafPTE && ~BadMegapage) begin
NextWalkerState = LEAF;
TranslationPAdr = TranslationVAdr[`PA_BITS-1:0];
end
// else if (ValidPTE && LeafPTE) NextWalkerState = LEAF; // *** Once the above line is properly tested, delete this line.
else if (ValidPTE && ~LeafPTE) begin
NextWalkerState = LEVEL0_SET_ADRE;
TranslationPAdr = {CurrentPPN, VPN0, 3'b000};
end else begin
NextWalkerState = FAULT;
end
end
LEVEL0_SET_ADRE: begin
NextWalkerState = LEVEL0_WDV;
TranslationPAdr = {CurrentPPN, VPN0, 3'b000};
end
LEVEL0_WDV: begin
TranslationPAdr = {CurrentPPN, VPN0, 3'b000};
HPTWRead = 1'b1;
if (HPTWStall) begin
NextWalkerState = LEVEL0_WDV;
end else begin
NextWalkerState = LEVEL0;
PRegEn = 1'b1;
end
end
LEVEL0: begin
if (ValidPTE && LeafPTE && ~AccessAlert) begin
NextWalkerState = LEAF;
TranslationPAdr = TranslationVAdr[`PA_BITS-1:0];
end else begin
NextWalkerState = FAULT;
end
end
LEAF: begin
PageTableEntry = CurrentPTE;
PageType = (PreviousWalkerState == LEVEL3) ? 2'b11 : // *** not sure about this mux?
((PreviousWalkerState == LEVEL2) ? 2'b10 :
((PreviousWalkerState == LEVEL1) ? 2'b01 : 2'b00));
DTLBWriteM = DTLBMissMQ;
ITLBWriteF = ~DTLBMissMQ; // Prefer data over instructions
TranslationPAdr = TranslationVAdr[`PA_BITS-1:0];
NextWalkerState = IDLE;
end
FAULT: begin
SelPTW = 1'b0;
NextWalkerState = IDLE;
WalkerInstrPageFaultF = ~DTLBMissMQ;
WalkerLoadPageFaultM = DTLBMissMQ && ~MemStore;
WalkerStorePageFaultM = DTLBMissMQ && MemStore;
end
// Default case should never happen
default: begin default: begin
NextWalkerState = IDLE; $error("Default state in HPTW should be unreachable");
end NextWalkerState = IDLE; // should never be reached
end
endcase endcase
end
// A terapage is a level 3 leaf page. This page must have zero PPN[2],
// zero PPN[1], and zero PPN[0]
assign TerapageMisaligned = |(CurrentPPN[26:0]);
// A gigapage is a Level 2 leaf page. This page must have zero PPN[1] and
// zero PPN[0]
assign GigapageMisaligned = |(CurrentPPN[17:0]);
// A megapage is a Level 1 leaf page. This page must have zero PPN[0].
assign MegapageMisaligned = |(CurrentPPN[8:0]);
assign BadTerapage = TerapageMisaligned || AccessAlert; // *** Implement better access/dirty scheme
assign BadGigapage = GigapageMisaligned || AccessAlert; // *** Implement better access/dirty scheme
assign BadMegapage = MegapageMisaligned || AccessAlert; // *** Implement better access/dirty scheme
assign VPN3 = TranslationVAdr[47:39];
assign VPN2 = TranslationVAdr[38:30];
assign VPN1 = TranslationVAdr[29:21];
assign VPN0 = TranslationVAdr[20:12];
// Capture page table entry from ahblite
flopenr #(`XLEN) ptereg(clk, reset, PRegEn, HPTWReadPTE, SavedPTE);
//mux2 #(`XLEN) ptemux(SavedPTE, HPTWReadPTE, PRegEn, CurrentPTE);
assign CurrentPTE = SavedPTE;
assign CurrentPPN = CurrentPTE[`PPN_BITS+9:10];
// *** Major issue. We need the full virtual address here.
// When the TLB's are update it use use the orignal address
// *** Currently truncate address to 32 bits. This must be changed if
// we support larger physical address spaces
assign HPTWPAdrE = {{(`XLEN-`PA_BITS){1'b0}}, TranslationPAdr[`PA_BITS-1:0]};
end
//endgenerate
end else begin end else begin
assign HPTWPAdrE = 0; assign HPTWPAdrE = 0;
assign HPTWRead = 0; assign HPTWRead = 0;

View File

@ -283,7 +283,6 @@ string tests32f[] = '{
"rv64i/WALLY-SLLI", "3000", "rv64i/WALLY-SLLI", "3000",
"rv64i/WALLY-SRLI", "3000", "rv64i/WALLY-SRLI", "3000",
"rv64i/WALLY-SRAI", "3000", "rv64i/WALLY-SRAI", "3000",
"rv64i/WALLY-JAL", "4000", "rv64i/WALLY-JAL", "4000",
"rv64i/WALLY-JALR", "3000", "rv64i/WALLY-JALR", "3000",
"rv64i/WALLY-STORE", "3000", "rv64i/WALLY-STORE", "3000",
@ -512,10 +511,6 @@ string tests32f[] = '{
logic DCacheFlushDone, DCacheFlushStart; logic DCacheFlushDone, DCacheFlushStart;
logic [`XLEN-1:0] debug;
assign debug = dut.uncore.dtim.RAM[536872960];
flopenr #(`XLEN) PCWReg(clk, reset, ~dut.hart.ieu.dp.StallW, dut.hart.ifu.PCM, PCW); flopenr #(`XLEN) PCWReg(clk, reset, ~dut.hart.ieu.dp.StallW, dut.hart.ifu.PCM, PCW);
flopenr #(32) InstrWReg(clk, reset, ~dut.hart.ieu.dp.StallW, dut.hart.ifu.InstrM, InstrW); flopenr #(32) InstrWReg(clk, reset, ~dut.hart.ieu.dp.StallW, dut.hart.ifu.InstrM, InstrW);
@ -746,6 +741,7 @@ module riscvassertions();
initial begin initial begin
assert (`PMP_ENTRIES == 0 || `PMP_ENTRIES==16 || `PMP_ENTRIES==64) else $error("Illegal number of PMP entries"); assert (`PMP_ENTRIES == 0 || `PMP_ENTRIES==16 || `PMP_ENTRIES==64) else $error("Illegal number of PMP entries");
assert (`F_SUPPORTED || ~`D_SUPPORTED) else $error("Can't support double without supporting float"); assert (`F_SUPPORTED || ~`D_SUPPORTED) else $error("Can't support double without supporting float");
assert (`XLEN == 64 || ~`D_SUPPORTED) else $error("Wally does not yet support D extensions on RV32");
end end
endmodule endmodule