forked from Github_Repos/cvw
Merge branch 'main' of https://github.com/davidharrishmc/riscv-wally into main
This commit is contained in:
commit
13352eccda
@ -35,7 +35,7 @@ add wave -hex /testbench/dut/hart/ieu/dp/SrcAE
|
||||
add wave -hex /testbench/dut/hart/ieu/dp/SrcBE
|
||||
add wave -hex /testbench/dut/hart/ieu/dp/ALUResultE
|
||||
#add wave /testbench/dut/hart/ieu/dp/PCSrcE
|
||||
add wave /testbench/dut/hart/mdu/genblk1/div/StartDivideE
|
||||
add wave /testbench/dut/hart/mdu/genblk1/div/DivStartE
|
||||
add wave /testbench/dut/hart/mdu/DivBusyE
|
||||
add wave -hex /testbench/dut/hart/mdu/genblk1/div/RemM
|
||||
add wave -hex /testbench/dut/hart/mdu/genblk1/div/QuotM
|
||||
|
@ -31,104 +31,104 @@ module intdivrestoring (
|
||||
input logic clk,
|
||||
input logic reset,
|
||||
input logic StallM, FlushM,
|
||||
input logic SignedDivideE, W64E,
|
||||
input logic StartDivideE,
|
||||
input logic DivSignedE, W64E,
|
||||
input logic DivE,
|
||||
input logic [`XLEN-1:0] SrcAE, SrcBE,
|
||||
output logic BusyE, DivDoneM,
|
||||
output logic DivBusyE,
|
||||
output logic [`XLEN-1:0] QuotM, RemM
|
||||
);
|
||||
|
||||
logic [`XLEN-1:0] WE[`DIV_BITSPERCYCLE:0];
|
||||
logic [`XLEN-1:0] XQE[`DIV_BITSPERCYCLE:0];
|
||||
logic [`XLEN-1:0] DSavedE, XSavedE, XSavedM, DinE, XinE, DnE, DAbsBE, XnE, XInitE, WM, XQM, WnM, XQnM;
|
||||
logic [`XLEN-1:0] WM[`DIV_BITSPERCYCLE:0];
|
||||
logic [`XLEN-1:0] XQM[`DIV_BITSPERCYCLE:0];
|
||||
logic [`XLEN-1:0] DinE, XinE, DnE, DAbsBE, DAbsBM, XnE, XInitE, WnM, XQnM;
|
||||
localparam STEPBITS = $clog2(`XLEN/`DIV_BITSPERCYCLE);
|
||||
logic [STEPBITS:0] step;
|
||||
logic Div0E, Div0M;
|
||||
logic DivInitE, SignXE, SignXM, SignDE, SignDM, NegWM, NegQM;
|
||||
logic SignedDivideM;
|
||||
logic DivStartE, SignXE, SignXM, SignDE, SignDM, NegWM, NegQM;
|
||||
logic BusyE, DivDoneM;
|
||||
|
||||
logic [`XLEN-1:0] WNextE, XQNextE;
|
||||
|
||||
// save inputs on the negative edge of the execute clock.
|
||||
// This is unusual practice, but the inputs are not guaranteed to be stable due to some hazard and forwarding logic.
|
||||
// Saving the inputs is the most hardware-efficient way to fix the issue.
|
||||
flopen #(`XLEN) xsavereg(~clk, StartDivideE, SrcAE, XSavedE);
|
||||
flopen #(`XLEN) dsavereg(~clk, StartDivideE, SrcBE, DSavedE);
|
||||
//////////////////////////////
|
||||
// Execute Stage: prepare for division calculation with control logic, W logic and absolute values, initialize W and XQ
|
||||
//////////////////////////////
|
||||
|
||||
// Divider control signals
|
||||
assign DivStartE = DivE & ~BusyE & ~DivDoneM & ~StallM;
|
||||
assign DivBusyE = BusyE | DivStartE;
|
||||
|
||||
// Handle sign extension for W-type instructions
|
||||
generate
|
||||
if (`XLEN == 64) begin // RV64 has W-type instructions
|
||||
mux2 #(`XLEN) xinmux(XSavedE, {XSavedE[31:0], 32'b0}, W64E, XinE);
|
||||
mux2 #(`XLEN) dinmux(DSavedE, {{32{DSavedE[31]&SignedDivideE}}, DSavedE[31:0]}, W64E, DinE);
|
||||
end else begin // RV32 has no W-type instructions
|
||||
assign XinE = XSavedE;
|
||||
assign DinE = DSavedE;
|
||||
mux2 #(`XLEN) xinmux(SrcAE, {SrcAE[31:0], 32'b0}, W64E, XinE);
|
||||
mux2 #(`XLEN) dinmux(SrcBE, {{32{SrcBE[31]&DivSignedE}}, SrcBE[31:0]}, W64E, DinE);
|
||||
end else begin // RV32 has no W-type instructions
|
||||
assign XinE = SrcAE;
|
||||
assign DinE = SrcBE;
|
||||
end
|
||||
endgenerate
|
||||
|
||||
// Extract sign bits and check fo division by zero
|
||||
assign SignDE = DinE[`XLEN-1];
|
||||
assign SignXE = XinE[`XLEN-1];
|
||||
assign SignDE = DivSignedE & DinE[`XLEN-1];
|
||||
assign SignXE = DivSignedE & XinE[`XLEN-1];
|
||||
assign Div0E = (DinE == 0);
|
||||
|
||||
// pipeline registers
|
||||
flopenrc #(1) SignedDivideMReg(clk, reset, FlushM, ~StallM, SignedDivideE, SignedDivideM);
|
||||
flopenrc #(1) Div0eMReg(clk, reset, FlushM, ~StallM, Div0E, Div0M);
|
||||
flopenrc #(1) SignDMReg(clk, reset, FlushM, ~StallM, SignDE, SignDM);
|
||||
flopenrc #(1) SignXMReg(clk, reset, FlushM, ~StallM, SignXE, SignXM);
|
||||
flopenrc #(`XLEN) XSavedMReg(clk, reset, FlushM, ~StallM, XSavedE, XSavedM); // is this truly necessary?
|
||||
|
||||
// Take absolute value for signed operations, and negate D to handle subtraction in divider stages
|
||||
neg #(`XLEN) negd(DinE, DnE);
|
||||
mux2 #(`XLEN) dabsmux(DnE, DinE, SignedDivideE & SignDE, DAbsBE); // take absolute value for signed operations, and negate for subtraction setp
|
||||
mux2 #(`XLEN) dabsmux(DnE, DinE, SignDE, DAbsBE); // take absolute value for signed operations, and negate for subtraction setp
|
||||
neg #(`XLEN) negx(XinE, XnE);
|
||||
mux2 #(`XLEN) xabsmux(XinE, XnE, SignedDivideE & SignXE, XInitE); // need original X as remainder if doing divide by 0
|
||||
mux3 #(`XLEN) xabsmux(XinE, XnE, SrcAE, {Div0E, SignXE}, XInitE); // take absolute value for signed operations, or keep original value for divide by 0
|
||||
|
||||
// initialization multiplexers on first cycle of operation (one cycle after start is asserted)
|
||||
mux2 #(`XLEN) wmux(WM, {`XLEN{1'b0}}, DivInitE, WE[0]);
|
||||
mux2 #(`XLEN) xmux(XQM, XInitE, DivInitE, XQE[0]);
|
||||
// initialization multiplexers on first cycle of operation
|
||||
mux2 #(`XLEN) wmux(WM[`DIV_BITSPERCYCLE], {`XLEN{1'b0}}, DivStartE, WNextE);
|
||||
mux2 #(`XLEN) xmux(XQM[`DIV_BITSPERCYCLE], XInitE, DivStartE, XQNextE);
|
||||
|
||||
//////////////////////////////
|
||||
// Memory Stage: division iterations, output sign correction
|
||||
//////////////////////////////
|
||||
|
||||
// registers before division steps
|
||||
flopen #(`XLEN) wreg(clk, DivBusyE, WNextE, WM[0]);
|
||||
flopen #(`XLEN) xreg(clk, DivBusyE, XQNextE, XQM[0]);
|
||||
flopen #(`XLEN) dabsreg(clk, DivStartE, DAbsBE, DAbsBM);
|
||||
flopen #(3) Div0eMReg(clk, DivStartE, {Div0E, SignDE, SignXE}, {Div0M, SignDM, SignXM});
|
||||
|
||||
// one copy of divstep for each bit produced per cycle
|
||||
generate
|
||||
genvar i;
|
||||
for (i=0; i<`DIV_BITSPERCYCLE; i = i+1)
|
||||
intdivrestoringstep divstep(WE[i], XQE[i], DAbsBE, WE[i+1], XQE[i+1]);
|
||||
intdivrestoringstep divstep(WM[i], XQM[i], DAbsBM, WM[i+1], XQM[i+1]);
|
||||
endgenerate
|
||||
|
||||
// registers after division steps
|
||||
flopen #(`XLEN) wreg(clk, BusyE, WE[`DIV_BITSPERCYCLE], WM);
|
||||
flopen #(`XLEN) xreg(clk, BusyE, XQE[`DIV_BITSPERCYCLE], XQM);
|
||||
|
||||
// Output selection logic in Memory Stage
|
||||
// On final setp of signed operations, negate outputs as needed
|
||||
assign NegWM = SignedDivideM & SignXM; // Remainder should have same sign as X
|
||||
assign NegQM = SignedDivideM & (SignXM ^ SignDM); // Quotient should be negative if one operand is positive and the other is negative
|
||||
neg #(`XLEN) wneg(WM, WnM);
|
||||
neg #(`XLEN) qneg(XQM, XQnM);
|
||||
// On final setp of signed operations, negate outputs as needed to get correct sign
|
||||
assign NegWM = SignXM; // Remainder should have same sign as X
|
||||
assign NegQM = SignXM ^ SignDM; // Quotient should be negative if one operand is positive and the other is negative
|
||||
neg #(`XLEN) qneg(XQM[0], XQnM);
|
||||
neg #(`XLEN) wneg(WM[0], WnM);
|
||||
// Select appropriate output: normal, negated, or for divide by zero
|
||||
mux3 #(`XLEN) qmux(XQM, XQnM, {`XLEN{1'b1}}, {Div0M, NegQM}, QuotM); // Q taken from XQ register, negated if necessary, or all 1s when dividing by zero
|
||||
mux3 #(`XLEN) remmux(WM, WnM, XSavedM, {Div0M, NegWM}, RemM); // REM taken from W register, negated if necessary, or from X when dividing by zero
|
||||
mux3 #(`XLEN) qmux(XQM[0], XQnM, {`XLEN{1'b1}}, {Div0M, NegQM}, QuotM); // Q taken from XQ register, negated if necessary, or all 1s when dividing by zero
|
||||
mux3 #(`XLEN) remmux(WM[0], WnM, XQM[0], {Div0M, NegWM}, RemM); // REM taken from W register, negated if necessary, or from X when dividing by zero
|
||||
|
||||
// Divider FSM to sequence Init, Busy, and Done
|
||||
always_ff @(posedge clk)
|
||||
//////////////////////////////
|
||||
// Divider FSM to sequence Busy and Done
|
||||
//////////////////////////////
|
||||
|
||||
always_ff @(posedge clk)
|
||||
if (reset) begin
|
||||
BusyE = 0; DivDoneM = 0; step = 0; DivInitE = 0;
|
||||
end else if (StartDivideE & ~StallM) begin
|
||||
BusyE = 0; DivDoneM = 0; step = 0;
|
||||
end else if (DivStartE) begin
|
||||
step = 0;
|
||||
if (Div0E) DivDoneM = 1;
|
||||
else begin
|
||||
BusyE = 1; step = 0; DivInitE = 1;
|
||||
end
|
||||
end else if (BusyE & ~DivDoneM) begin // pause one cycle at beginning of signed operations for absolute value
|
||||
DivInitE = 0;
|
||||
else BusyE = 1;
|
||||
end else if (BusyE) begin // pause one cycle at beginning of signed operations for absolute value
|
||||
step = step + 1;
|
||||
if (step[STEPBITS] | (`XLEN==64) & W64E & step[STEPBITS-1]) begin // complete in half the time for W-type instructions
|
||||
step = 0;
|
||||
BusyE = 0;
|
||||
DivDoneM = 1;
|
||||
end
|
||||
end else if (DivDoneM) begin
|
||||
DivDoneM = StallM;
|
||||
BusyE = 0;
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
/* verilator lint_on UNOPTFLAT */
|
||||
|
@ -48,8 +48,8 @@ module muldiv (
|
||||
logic [`XLEN-1:0] QuotM, RemM;
|
||||
logic [`XLEN*2-1:0] ProdE, ProdM;
|
||||
|
||||
logic StartDivideE, BusyE, DivDoneM;
|
||||
logic SignedDivideE;
|
||||
logic DivE;
|
||||
logic DivSignedE;
|
||||
logic W64M;
|
||||
|
||||
// Multiplier
|
||||
@ -58,11 +58,10 @@ module muldiv (
|
||||
|
||||
// Divide
|
||||
// Start a divide when a new division instruction is received and the divider isn't already busy or finishing
|
||||
assign StartDivideE = MulDivE & Funct3E[2] & ~BusyE & ~DivDoneM;
|
||||
assign DivBusyE = StartDivideE | BusyE;
|
||||
assign SignedDivideE = ~Funct3E[0];
|
||||
assign DivE = MulDivE & Funct3E[2];
|
||||
assign DivSignedE = ~Funct3E[0];
|
||||
intdivrestoring div(.clk, .reset, .StallM, .FlushM,
|
||||
.SignedDivideE, .W64E, .StartDivideE, .SrcAE, .SrcBE, .BusyE, .DivDoneM, .QuotM, .RemM);
|
||||
.DivSignedE, .W64E, .DivE, .SrcAE, .SrcBE, .DivBusyE, .QuotM, .RemM);
|
||||
|
||||
// Result multiplexer
|
||||
always_comb
|
||||
|
Loading…
Reference in New Issue
Block a user