forked from Github_Repos/cvw
adapted shifter in ppa.sv for widths beside 32 and 64
modified plotting and regression in ppaAnalyze.py
This commit is contained in:
parent
5c22bec023
commit
12c42cd507
@ -281,20 +281,21 @@ module ppa_shifter #(parameter WIDTH=32) (
|
|||||||
// For RV64, 32 and 64-bit shifts are needed, with sign extension.
|
// For RV64, 32 and 64-bit shifts are needed, with sign extension.
|
||||||
|
|
||||||
// funnel shifter input (see CMOS VLSI Design 4e Section 11.8.1, note Table 11.11 shift types wrong)
|
// funnel shifter input (see CMOS VLSI Design 4e Section 11.8.1, note Table 11.11 shift types wrong)
|
||||||
if (WIDTH == 64) begin:shifter // RV64 fix what about 128
|
if (WIDTH == 64 | WIDTH ==128) begin:shifter // RV64 or 128
|
||||||
always_comb // funnel mux
|
always_comb // funnel mux
|
||||||
if (W64) begin // 32-bit shifts
|
if (W64) begin // 32-bit shifts
|
||||||
if (Right)
|
if (Right)
|
||||||
if (Arith) z = {64'b0, {31{A[31]}}, A[31:0]};
|
if (Arith) z = {{WIDTH{1'b0}}, {WIDTH/2 -1{A[WIDTH/2 -1]}}, A[WIDTH/2 -1:0]};
|
||||||
else z = {95'b0, A[31:0]};
|
else z = {{WIDTH*3/2-1{1'b0}}, A[WIDTH/2 -1:0]};
|
||||||
else z = {32'b0, A[31:0], 63'b0};
|
else z = {{WIDTH/2{1'b0}}, A[WIDTH/2 -1:0], {WIDTH-1{1'b0}}};
|
||||||
end else begin
|
end else begin
|
||||||
if (Right)
|
if (Right)
|
||||||
if (Arith) z = {{63{A[63]}}, A};
|
if (Arith) z = {{WIDTH-1{A[WIDTH-1]}}, A};
|
||||||
else z = {63'b0, A};
|
else z = {{WIDTH-1{1'b0}}, A};
|
||||||
else z = {A, 63'b0};
|
else z = {A, {WIDTH-1{1'b0}}};
|
||||||
end
|
end
|
||||||
end else begin:shifter // RV32,
|
assign amttrunc = W64 ? {1'b0, Amt[$clog2(WIDTH)-2:0]} : Amt; // 32 or 64-bit shift
|
||||||
|
end else begin:shifter // RV32 or less
|
||||||
always_comb // funnel mux
|
always_comb // funnel mux
|
||||||
if (Right)
|
if (Right)
|
||||||
if (Arith) z = {{WIDTH-1{A[WIDTH-1]}}, A};
|
if (Arith) z = {{WIDTH-1{A[WIDTH-1]}}, A};
|
||||||
@ -302,7 +303,7 @@ module ppa_shifter #(parameter WIDTH=32) (
|
|||||||
else z = {A, {WIDTH-1{1'b0}}};
|
else z = {A, {WIDTH-1{1'b0}}};
|
||||||
assign amttrunc = Amt; // shift amount
|
assign amttrunc = Amt; // shift amount
|
||||||
end
|
end
|
||||||
assign amttrunc = (W64 & WIDTH==64) ? {1'b0, Amt[4:0]} : Amt; // 32 or 64-bit shift fix
|
|
||||||
|
|
||||||
// opposite offset for right shfits
|
// opposite offset for right shfits
|
||||||
assign offset = Right ? amttrunc : ~amttrunc;
|
assign offset = Right ? amttrunc : ~amttrunc;
|
||||||
|
@ -3,6 +3,7 @@ import subprocess
|
|||||||
import csv
|
import csv
|
||||||
import re
|
import re
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
import matplotlib.lines as lines
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
def getData():
|
def getData():
|
||||||
@ -32,6 +33,23 @@ def getData():
|
|||||||
|
|
||||||
return allSynths
|
return allSynths
|
||||||
|
|
||||||
|
def getVals(module, freq, var):
|
||||||
|
global allSynths
|
||||||
|
if (var == 'delay'):
|
||||||
|
ind = 3
|
||||||
|
units = " (ps)"
|
||||||
|
else:
|
||||||
|
ind = 4
|
||||||
|
units = " (square microns)"
|
||||||
|
|
||||||
|
widths = []
|
||||||
|
ivar = []
|
||||||
|
for oneSynth in allSynths:
|
||||||
|
if (oneSynth[0] == module) & (oneSynth[2] == freq):
|
||||||
|
widths += [oneSynth[1]]
|
||||||
|
ivar += [oneSynth[ind]]
|
||||||
|
return widths, ivar, units
|
||||||
|
|
||||||
def writeCSV(allSynths):
|
def writeCSV(allSynths):
|
||||||
file = open("ppaData.csv", "w")
|
file = open("ppaData.csv", "w")
|
||||||
writer = csv.writer(file)
|
writer = csv.writer(file)
|
||||||
@ -42,6 +60,17 @@ def writeCSV(allSynths):
|
|||||||
|
|
||||||
file.close()
|
file.close()
|
||||||
|
|
||||||
|
def polyfitR2(x, y, deg):
|
||||||
|
''' from internet, check math'''
|
||||||
|
z = np.polyfit(x, y, deg)
|
||||||
|
p = np.poly1d(z)
|
||||||
|
yhat = p(x) # or [p(z) for z in x]
|
||||||
|
ybar = np.sum(y)/len(y) # or sum(y)/len(y)
|
||||||
|
ssreg = np.sum((yhat-ybar)**2) # or sum([ (yihat - ybar)**2 for yihat in yhat])
|
||||||
|
sstot = np.sum((y - ybar)**2) # or sum([ (yi - ybar)**2 for yi in y])
|
||||||
|
r2 = ssreg / sstot
|
||||||
|
return p, r2
|
||||||
|
|
||||||
def plotPPA(module, freq, var):
|
def plotPPA(module, freq, var):
|
||||||
'''
|
'''
|
||||||
module: string module name
|
module: string module name
|
||||||
@ -49,47 +78,82 @@ def plotPPA(module, freq, var):
|
|||||||
var: string 'delay' or 'area'
|
var: string 'delay' or 'area'
|
||||||
plots chosen variable vs width for all matching syntheses with regression
|
plots chosen variable vs width for all matching syntheses with regression
|
||||||
'''
|
'''
|
||||||
global allSynths
|
|
||||||
ind = 3 if (var == 'delay') else 4
|
|
||||||
widths = []
|
|
||||||
ivar = []
|
|
||||||
for oneSynth in allSynths:
|
|
||||||
if (oneSynth[0] == module) & (oneSynth[2] == freq):
|
|
||||||
|
|
||||||
widths += [oneSynth[1]]
|
|
||||||
ivar += [oneSynth[ind]]
|
|
||||||
|
|
||||||
x = np.array(widths, dtype=np.int)
|
# A = np.vstack([x, np.ones(len(x))]).T
|
||||||
y = np.array(ivar, dtype=np.float)
|
# mcresid = np.linalg.lstsq(A, y, rcond=None)
|
||||||
|
# m, c = mcresid[0]
|
||||||
|
# resid = mcresid[1]
|
||||||
|
# r2 = 1 - resid / (y.size * y.var())
|
||||||
|
# p, r2p = polyfitR2(x, y, 2)
|
||||||
|
# zlog = np.polyfit(np.log(x), y, 1)
|
||||||
|
# plog = np.poly1d(zlog)
|
||||||
|
# xplog = np.log(xp)
|
||||||
|
# _ = plt.plot(x, m*x + c, 'r', label='Linear fit R^2='+ str(r2)[1:7])
|
||||||
|
# _ = plt.plot(xp, p(xp), label='Quadratic fit R^2='+ str(r2p)[:6])
|
||||||
|
# _ = plt.plot(xp, plog(xplog), label = 'Log fit')
|
||||||
|
|
||||||
A = np.vstack([x, np.ones(len(x))]).T
|
widths, ivar, units = getVals(module, freq, var)
|
||||||
m, c = np.linalg.lstsq(A, y, rcond=None)[0]
|
coefs, r2 = regress(widths, ivar)
|
||||||
|
|
||||||
z = np.polyfit(x, y, 2)
|
xp = np.linspace(8, 140, 200)
|
||||||
p = np.poly1d(z)
|
pred = [coefs[0] + x*coefs[1] + np.log(x)*coefs[2] + x*np.log(x)*coefs[3] for x in xp]
|
||||||
|
|
||||||
zlog = np.polyfit(np.log(x), y, 1)
|
r2p = round(r2[0], 4)
|
||||||
plog = np.poly1d(zlog)
|
rcoefs = [round(c, 3) for c in coefs]
|
||||||
|
|
||||||
xp = np.linspace(0, 140, 200)
|
l = "{} + {}*N + {}*log(N) + {}*Nlog(N)".format(*rcoefs)
|
||||||
xplog = np.log(xp)
|
legend_elements = [lines.Line2D([0], [0], color='steelblue', label=module),
|
||||||
|
lines.Line2D([0], [0], color='orange', label=l),
|
||||||
|
lines.Line2D([0], [0], ls='', label=' R^2='+ str(r2p))]
|
||||||
|
|
||||||
_ = plt.plot(x, y, 'o', label=module, markersize=10)
|
_ = plt.plot(widths, ivar, 'o', label=module, markersize=10)
|
||||||
_ = plt.plot(x, m*x + c, 'r', label='Linear fit')
|
_ = plt.plot(xp, pred)
|
||||||
_ = plt.plot(xp, p(xp), label='Quadratic fit')
|
_ = plt.legend(handles=legend_elements)
|
||||||
_ = plt.plot(xp, plog(xplog), label = 'Log fit')
|
|
||||||
_ = plt.legend()
|
|
||||||
_ = plt.xlabel("Width (bits)")
|
_ = plt.xlabel("Width (bits)")
|
||||||
_ = plt.ylabel(str.title(var))
|
_ = plt.ylabel(str.title(var) + units)
|
||||||
_ = plt.title("Target frequency " + str(freq))
|
_ = plt.title("Target frequency " + str(freq) + "MHz")
|
||||||
plt.show()
|
plt.show()
|
||||||
#fix square microns, picosec, end plots at 8 to stop negs, add equation to plots and R2
|
|
||||||
# try linear term with delay as well (w and wo)
|
def makePlots(mod):
|
||||||
|
plotPPA(mod, 5000, 'delay')
|
||||||
|
plotPPA(mod, 5000, 'area')
|
||||||
|
plotPPA(mod, 10, 'area')
|
||||||
|
|
||||||
|
def regress(widths, var):
|
||||||
|
|
||||||
|
mat = []
|
||||||
|
for w in widths:
|
||||||
|
row = [1, w, np.log(w), w*np.log(w)]
|
||||||
|
mat += [row]
|
||||||
|
|
||||||
|
y = np.array(var, dtype=np.float)
|
||||||
|
coefsResid = np.linalg.lstsq(mat, y, rcond=None)
|
||||||
|
coefs = coefsResid[0]
|
||||||
|
resid = coefsResid[1]
|
||||||
|
r2 = 1 - resid / (y.size * y.var())
|
||||||
|
return coefs, r2
|
||||||
|
|
||||||
|
def makeCoefTable():
|
||||||
|
file = open("ppaFitting.csv", "w")
|
||||||
|
writer = csv.writer(file)
|
||||||
|
writer.writerow(['Module', 'Variable', 'Freq', '1', 'N', 'log(N)', 'Nlog(N)', 'R^2'])
|
||||||
|
|
||||||
|
for mod in ['add', 'mult', 'comparator']:
|
||||||
|
for comb in [['delay', 5000], ['area', 5000], ['area', 10]]:
|
||||||
|
var = comb[0]
|
||||||
|
freq = comb[1]
|
||||||
|
widths, ivar, units = getVals(mod, freq, var)
|
||||||
|
coefs, r2 = regress(widths, ivar)
|
||||||
|
row = [mod] + comb + np.ndarray.tolist(coefs) + [r2[0]]
|
||||||
|
writer.writerow(row)
|
||||||
|
|
||||||
|
file.close()
|
||||||
|
|
||||||
allSynths = getData()
|
allSynths = getData()
|
||||||
|
|
||||||
writeCSV(allSynths)
|
writeCSV(allSynths)
|
||||||
|
|
||||||
plotPPA('mult', 5000, 'delay')
|
makePlots('shifter')
|
||||||
plotPPA('mult', 5000, 'area')
|
|
||||||
plotPPA('mult', 10, 'area')
|
# makeCoefTable()
|
||||||
|
|
||||||
|
10
synthDC/ppaFitting.csv
Normal file
10
synthDC/ppaFitting.csv
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
Module,Variable,Freq,1,N,log(N),Nlog(N),R^2
|
||||||
|
add,delay,5000,0.23935453005464438,0.015973094945355207,-0.058207695467226296,-0.002593789781151714,0.9902532112478974
|
||||||
|
add,area,5000,-1032.1274349672115,64.4386855922132,374.6678949053879,-3.2579193244904823,0.9999180068922152
|
||||||
|
add,area,10,-13.720004131149423,14.699999256147343,3.6067390521177815e-06,9.312480709428003e-08,1.0
|
||||||
|
mult,delay,5000,-0.21755360109289562,-0.00033127390710363004,0.36865114245083547,0.0004100845872014472,0.9999815499619515
|
||||||
|
mult,area,5000,-29928.193338752997,-11370.538120558254,39122.3984379376,2592.313970431163,0.9998454828501703
|
||||||
|
mult,area,10,-24112.991162714883,-8735.874000034026,30452.017533199683,1892.3032427172166,0.9999575675635335
|
||||||
|
comparator,delay,5000,0.18302939890710385,-0.001793523907103751,0.00950014684425352,0.0004195522734073458,0.9999387049502957
|
||||||
|
comparator,area,5000,1831.2076391201958,303.59984869227907,-1617.4342555852443,-44.475154143873425,0.9990603962758624
|
||||||
|
comparator,area,10,-0.23027509289593326,18.299023530396347,-8.48304611908023,-0.4881808064440773,0.9999674500675539
|
|
@ -14,12 +14,11 @@ def deleteRedundant(LoT):
|
|||||||
bashCommand = synthStr.format(*synth)
|
bashCommand = synthStr.format(*synth)
|
||||||
outputCPL = subprocess.check_output(['bash','-c', bashCommand])
|
outputCPL = subprocess.check_output(['bash','-c', bashCommand])
|
||||||
|
|
||||||
widths = ['128']
|
widths = ['8', '16', '32', '64', '128']
|
||||||
modules = ['mult']
|
modules = ['shifter']
|
||||||
freqs = ['5000']
|
freqs = ['10', '5000']
|
||||||
tech = 'sky90'
|
tech = 'sky90'
|
||||||
|
|
||||||
#to run: add 8 10, shifter 8 16 (check .sv!)
|
|
||||||
|
|
||||||
LoT = []
|
LoT = []
|
||||||
for module in modules:
|
for module in modules:
|
||||||
|
Loading…
Reference in New Issue
Block a user