This commit is contained in:
Ross Thompson 2023-02-19 22:54:27 -06:00
commit 0d79c0cebe
50 changed files with 800 additions and 517 deletions

3
.gitignore vendored
View File

@ -101,3 +101,6 @@ sim/branch.log
/fpga/generator/sim/syn-funcsim.v
external
sim/results
tests/wally-riscv-arch-test/riscv-test-suite/rv*i_m/I/src/*.S
tests/wally-riscv-arch-test/riscv-test-suite/rv*i_m/I/Makefrag

View File

@ -209,6 +209,12 @@ It is most convenient if the sysadmin installs riscof into the servers Python
However, riscof can also be installed and run locally by individual users.
### Other Python libraries
While a sysadmin is installing Python libraries, it's worth doing some more that will be needed by visualization scripts.
$ sudo pip3 install matplotlib scipy sklearn adjustText lief
### Install Verilator
Verilator is a free Verilog simulator with a good Lint tool used to catch errors in the SystemVerilog code. It is needed to run regression.

View File

@ -40,8 +40,9 @@
`define ZICSR_SUPPORTED 1
`define ZIFENCEI_SUPPORTED 1
`define ZICOUNTERS_SUPPORTED 1
`define ZFH_SUPPORTED 0
`define COUNTERS 32
`define ZFH_SUPPORTED 0
`define SSTC_SUPPORTED 1
// LSU microarchitectural Features
`define BUS_SUPPORTED 1
@ -131,6 +132,7 @@
`define BPRED_SUPPORTED 1
`define BPRED_TYPE "BP_GSHARE_FORWARD" // BPLOCALPAg or BPGLOBAL or BPTWOBIT or BPGSHARE
`define BPRED_SIZE 10
`define BTB_SIZE (`BPRED_SIZE)
`define HPTW_WRITES_SUPPORTED 1

View File

@ -43,6 +43,7 @@
`define ZICOUNTERS_SUPPORTED 1
`define ZFH_SUPPORTED 0
`define COUNTERS 32
`define SSTC_SUPPORTED 1
// LSU microarchitectural Features
`define BUS_SUPPORTED 1
@ -140,6 +141,7 @@
`define BPRED_SUPPORTED 1
`define BPRED_TYPE "BP_GSHARE_FORWARD" // BPLOCALPAg or BPGLOBAL or BPTWOBIT or BPGSHARE or BPSPECULATIVEGLOBAL or BPSPECULATIVEGSHARE or BPOLDGSHARE or BPOLDGSHARE2
`define BPRED_SIZE 10
`define BTB_SIZE (`BPRED_SIZE)
`define HPTW_WRITES_SUPPORTED 1

View File

@ -44,6 +44,7 @@
`define COUNTERS 0
`define ZICOUNTERS_SUPPORTED 0
`define ZFH_SUPPORTED 0
`define SSTC_SUPPORTED 0
// LSU microarchitectural Features
`define BUS_SUPPORTED 1
@ -135,6 +136,7 @@
`define BPRED_SUPPORTED 0
`define BPRED_TYPE "BP_GSHARE_FORWARD" // BPLOCALPAg or BPGLOBAL or BPTWOBIT or BPGSHARE
`define BPRED_SIZE 10
`define BTB_SIZE (`BPRED_SIZE)
`define HPTW_WRITES_SUPPORTED 0

View File

@ -43,6 +43,7 @@
`define COUNTERS 32
`define ZICOUNTERS_SUPPORTED 1
`define ZFH_SUPPORTED 0
`define SSTC_SUPPORTED 0
// LSU microarchitectural Features
`define BUS_SUPPORTED 1
@ -134,6 +135,7 @@
`define BPRED_SUPPORTED 1
`define BPRED_TYPE "BP_GSHARE_FORWARD" // BPLOCALPAg or BPGLOBAL or BPTWOBIT or BPGSHARE
`define BPRED_SIZE 10
`define BTB_SIZE (`BPRED_SIZE)
`define HPTW_WRITES_SUPPORTED 0

View File

@ -44,6 +44,7 @@
`define COUNTERS 32
`define ZICOUNTERS_SUPPORTED 0
`define ZFH_SUPPORTED 0
`define SSTC_SUPPORTED 0
// LSU microarchitectural Features
`define BUS_SUPPORTED 0
@ -135,6 +136,7 @@
`define BPRED_SUPPORTED 0
`define BPRED_TYPE "BP_GSHARE_FORWARD" // BPLOCALPAg or BPGLOBAL or BPTWOBIT or BPGSHARE
`define BPRED_SIZE 10
`define BTB_SIZE (`BPRED_SIZE)
`define HPTW_WRITES_SUPPORTED 0

View File

@ -43,6 +43,7 @@
`define COUNTERS 32
`define ZICOUNTERS_SUPPORTED 1
`define ZFH_SUPPORTED 0
`define SSTC_SUPPORTED 0
// LSU microarchitectural Features
`define BUS_SUPPORTED 1
@ -67,7 +68,7 @@
// Integer Divider Configuration
// IDIV_BITSPERCYCLE must be 1, 2, or 4
`define IDIV_BITSPERCYCLE 4
`define IDIV_BITSPERCYCLE 2
`define IDIV_ON_FPU 0
// Legal number of PMP entries are 0, 16, or 64
@ -134,6 +135,7 @@
`define BPRED_SUPPORTED 0
`define BPRED_TYPE "BP_GSHARE_FORWARD" // BPLOCALPAg or BPGLOBAL or BPTWOBIT or BPGSHARE
`define BPRED_SIZE 10
`define BTB_SIZE (`BPRED_SIZE)
`define HPTW_WRITES_SUPPORTED 0

View File

@ -44,6 +44,7 @@
`define COUNTERS 32
`define ZICOUNTERS_SUPPORTED 1
`define ZFH_SUPPORTED 1
`define SSTC_SUPPORTED 0
// LSU microarchitectural Features
`define BUS_SUPPORTED 1
@ -137,6 +138,7 @@
`define BPRED_SUPPORTED 1
`define BPRED_TYPE "BP_GSHARE_FORWARD" // BPLOCALPAg or BPGLOBAL or BPTWOBIT or BPGSHARE
`define BPRED_SIZE 10
`define BTB_SIZE (`BPRED_SIZE)
`define HPTW_WRITES_SUPPORTED 0

View File

@ -44,6 +44,7 @@
`define COUNTERS 32
`define ZICOUNTERS_SUPPORTED 1
`define ZFH_SUPPORTED 0
`define SSTC_SUPPORTED 0
// LSU microarchitectural Features
`define BUS_SUPPORTED 1
@ -137,6 +138,7 @@
`define BPRED_SUPPORTED 1
`define BPRED_TYPE "BP_GSHARE_FORWARD" // BPLOCALPAg or BPGLOBAL or BPTWOBIT or BPGSHARE or BPSPECULATIVEGLOBAL or BPSPECULATIVEGSHARE or BPOLDGSHARE or BPOLDGSHARE2
`define BPRED_SIZE 10
`define BTB_SIZE (`BPRED_SIZE)
`define HPTW_WRITES_SUPPORTED 0

View File

@ -44,6 +44,7 @@
`define COUNTERS 32
`define ZICOUNTERS_SUPPORTED 0
`define ZFH_SUPPORTED 0
`define SSTC_SUPPORTED 0
// LSU microarchitectural Features
`define BUS_SUPPORTED 0
@ -137,6 +138,7 @@
`define BPRED_SUPPORTED 0
`define BPRED_TYPE "BPGSHARE" // BPLOCALPAg or BPGLOBAL or BPTWOBIT or BPGSHARE
`define BPRED_SIZE 10
`define BTB_SIZE (`BPRED_SIZE)
`define HPTW_WRITES_SUPPORTED 0

View File

@ -49,7 +49,7 @@ module fdivsqrtpostproc(
logic [`DIVb+3:0] W, Sum, DM;
logic [`DIVb:0] PreQmM;
logic NegStickyM;
logic weq0E, weq0M, WZeroM;
logic weq0E, WZeroM;
logic [`XLEN-1:0] IntDivResultM;
//////////////////////////
@ -81,7 +81,6 @@ module fdivsqrtpostproc(
//////////////////////////
flopenr #(1) WZeroMReg(clk, reset, ~StallM, WZeroE, WZeroM);
flopenr #(1) WeqZeroMReg(clk, reset, ~StallM, weq0E, weq0M);
//////////////////////////
// Memory Stage: Postprocessing

View File

@ -129,7 +129,6 @@ module fdivsqrtpreproc (
// pipeline registers
flopen #(1) mdureg(clk, IFDivStartE, IntDivE, IntDivM);
flopen #(1) w64reg(clk, IFDivStartE, W64E, W64M);
flopen #(1) altbreg(clk, IFDivStartE, ALTBE, ALTBM);
flopen #(1) negquotreg(clk, IFDivStartE, NegQuotE, NegQuotM);
flopen #(1) bzeroreg(clk, IFDivStartE, BZeroE, BZeroM);
@ -137,6 +136,8 @@ module fdivsqrtpreproc (
flopen #(`DIVBLEN+1) nreg(clk, IFDivStartE, nE, nM);
flopen #(`DIVBLEN+1) mreg(clk, IFDivStartE, mE, mM);
flopen #(`XLEN) srcareg(clk, IFDivStartE, AE, AM);
if (`XLEN==64)
flopen #(1) w64reg(clk, IFDivStartE, W64E, W64M);
end else begin // Int not supported
assign IFNormLenX = {Xm, {(`DIVb-`NF-1){1'b0}}};

View File

@ -110,6 +110,7 @@ module fpu (
logic XInfE, YInfE, ZInfE; // is the input infinity - execute stage
logic XInfM, YInfM, ZInfM; // is the input infinity - memory stage
logic XExpMaxE; // is the exponent all ones (max value)
logic [`FLEN-1:0] XPostBoxE; // X after fixing bad NaN box. Needed for 1-input operations
// Fma Signals
logic FmaAddSubE; // Multiply by 1.0 when adding or subtracting
@ -200,23 +201,20 @@ module fpu (
mux3 #(`FLEN) fzemux (FRD3E, FResultW, PreFpResM, ForwardZE, PreZE);
// Select NAN-boxed value of Y = 1.0 in proper format for fma to add/subtract X*Y+Z
generate
if(`FPSIZES == 1) assign BoxedOneE = {2'b0, {`NE-1{1'b1}}, (`NF)'(0)};
else if(`FPSIZES == 2)
mux2 #(`FLEN) fonemux ({{`FLEN-`LEN1{1'b1}}, 2'b0, {`NE1-1{1'b1}}, (`NF1)'(0)}, {2'b0, {`NE-1{1'b1}}, (`NF)'(0)}, FmtE, BoxedOneE); // NaN boxing zeroes
else if(`FPSIZES == 3 | `FPSIZES == 4)
mux4 #(`FLEN) fonemux ({{`FLEN-`S_LEN{1'b1}}, 2'b0, {`S_NE-1{1'b1}}, (`S_NF)'(0)},
{{`FLEN-`D_LEN{1'b1}}, 2'b0, {`D_NE-1{1'b1}}, (`D_NF)'(0)},
{{`FLEN-`H_LEN{1'b1}}, 2'b0, {`H_NE-1{1'b1}}, (`H_NF)'(0)},
{2'b0, {`NE-1{1'b1}}, (`NF)'(0)}, FmtE, BoxedOneE); // NaN boxing zeroes
endgenerate
if(`FPSIZES == 1) assign BoxedOneE = {2'b0, {`NE-1{1'b1}}, (`NF)'(0)};
else if(`FPSIZES == 2)
mux2 #(`FLEN) fonemux ({{`FLEN-`LEN1{1'b1}}, 2'b0, {`NE1-1{1'b1}}, (`NF1)'(0)}, {2'b0, {`NE-1{1'b1}}, (`NF)'(0)}, FmtE, BoxedOneE); // NaN boxing zeroes
else if(`FPSIZES == 3 | `FPSIZES == 4)
mux4 #(`FLEN) fonemux ({{`FLEN-`S_LEN{1'b1}}, 2'b0, {`S_NE-1{1'b1}}, (`S_NF)'(0)},
{{`FLEN-`D_LEN{1'b1}}, 2'b0, {`D_NE-1{1'b1}}, (`D_NF)'(0)},
{{`FLEN-`H_LEN{1'b1}}, 2'b0, {`H_NE-1{1'b1}}, (`H_NF)'(0)},
{2'b0, {`NE-1{1'b1}}, (`NF)'(0)}, FmtE, BoxedOneE); // NaN boxing zeroes
assign FmaAddSubE = OpCtrlE[2]&OpCtrlE[1]&(FResSelE==2'b01)&(PostProcSelE==2'b10);
mux2 #(`FLEN) fyaddmux (PreYE, BoxedOneE, FmaAddSubE, YE); // Force Y to be 1 for add/subtract
// Select NAN-boxed value of Z = 0.0 in proper format for FMA for multiply X*Y+Z
// For add and subtract, Z comes from second source operand
generate
if(`FPSIZES == 1) assign BoxedZeroE = 0;
if(`FPSIZES == 1) assign BoxedZeroE = 0;
else if(`FPSIZES == 2)
mux2 #(`FLEN) fmulzeromux ({{`FLEN-`LEN1{1'b1}}, {`LEN1{1'b0}}}, (`FLEN)'(0), FmtE, BoxedZeroE); // NaN boxing zeroes
else if(`FPSIZES == 3 | `FPSIZES == 4)
@ -224,7 +222,6 @@ module fpu (
{{`FLEN-`D_LEN{1'b1}}, {`D_LEN{1'b0}}},
{{`FLEN-`H_LEN{1'b1}}, {`H_LEN{1'b0}}},
(`FLEN)'(0), FmtE, BoxedZeroE); // NaN boxing zeroes
endgenerate
assign FmaZSelE = {OpCtrlE[2]&OpCtrlE[1], OpCtrlE[2]&~OpCtrlE[1]};
mux3 #(`FLEN) fzmulmux (PreZE, BoxedZeroE, PreYE, FmaZSelE, ZE);
@ -234,7 +231,7 @@ module fpu (
.XNaN(XNaNE), .YNaN(YNaNE), .ZNaN(ZNaNE), .XSNaN(XSNaNE), .XEn(XEnE),
.YSNaN(YSNaNE), .ZSNaN(ZSNaNE), .XSubnorm(XSubnormE),
.XZero(XZeroE), .YZero(YZeroE), .ZZero(ZZeroE), .XInf(XInfE), .YInf(YInfE),
.ZEn(ZEnE), .ZInf(ZInfE), .XExpMax(XExpMaxE));
.ZEn(ZEnE), .ZInf(ZInfE), .XExpMax(XExpMaxE), .XPostBox(XPostBoxE));
// fused multiply add: fadd/sub, fmul, fmadd/fnmadd/fmsub/fnmsub
fma fma (.Xs(XsE), .Ys(YsE), .Zs(ZsE), .Xe(XeE), .Ye(YeE), .Ze(ZeE), .Xm(XmE), .Ym(YmE), .Zm(ZmE),
@ -255,7 +252,7 @@ module fpu (
.CmpFpRes(CmpFpResE), .CmpIntRes(CmpIntResE));
// sign injection: fsgnj/fsgnjx/fsgnjn
fsgninj fsgninj(.OpCtrl(OpCtrlE[1:0]), .Xs(XsE), .Ys(YsE), .X(XE), .Fmt(FmtE), .SgnRes(SgnResE));
fsgninj fsgninj(.OpCtrl(OpCtrlE[1:0]), .Xs(XsE), .Ys(YsE), .X(XPostBoxE), .Fmt(FmtE), .SgnRes(SgnResE));
// classify: fclass
fclassify fclassify (.Xs(XsE), .XSubnorm(XSubnormE), .XZero(XZeroE), .XNaN(XNaNE),
@ -268,7 +265,6 @@ module fpu (
// NaN Box SrcA to convert integer to requested FP size
generate
if(`FPSIZES == 1) assign AlignedSrcAE = {{`FLEN-`XLEN{1'b1}}, ForwardedSrcAE};
else if(`FPSIZES == 2)
mux2 #(`FLEN) SrcAMux ({{`FLEN-`LEN1{1'b1}}, ForwardedSrcAE[`LEN1-1:0]}, {{`FLEN-`XLEN{1'b1}}, ForwardedSrcAE}, FmtE, AlignedSrcAE);
@ -277,14 +273,12 @@ module fpu (
{{`FLEN-`D_LEN{1'b1}}, ForwardedSrcAE[`D_LEN-1:0]},
{{`FLEN-`H_LEN{1'b1}}, ForwardedSrcAE[`H_LEN-1:0]},
{{`FLEN-`XLEN{1'b1}}, ForwardedSrcAE}, FmtE, AlignedSrcAE); // NaN boxing zeroes
endgenerate
// select a result that may be written to the FP register
mux3 #(`FLEN) FResMux(SgnResE, AlignedSrcAE, CmpFpResE, {OpCtrlE[2], &OpCtrlE[1:0]}, PreFpResE);
assign PreNVE = CmpNVE&(OpCtrlE[2]|FWriteIntE);
// select the result that may be written to the integer register - to IEU
generate
if(`FPSIZES == 1)
assign SgnExtXE = XE;
else if(`FPSIZES == 2)
@ -294,7 +288,7 @@ module fpu (
{{`FLEN-`S_LEN{XsE}}, XE[`S_LEN-1:0]},
{{`FLEN-`D_LEN{XsE}}, XE[`D_LEN-1:0]},
XE, FmtE, SgnExtXE);
endgenerate
if (`FLEN>`XLEN)
assign IntSrcXE = SgnExtXE[`XLEN-1:0];
else

View File

@ -39,7 +39,8 @@ module unpack (
output logic XSubnorm, // is X subnormal
output logic XZero, YZero, ZZero, // is XYZ zero
output logic XInf, YInf, ZInf, // is XYZ infinity
output logic XExpMax // does X have the maximum exponent (NaN or Inf)
output logic XExpMax, // does X have the maximum exponent (NaN or Inf)
output logic [`FLEN-1:0] XPostBox // X after being properly NaN-boxed
);
logic XExpNonZero, YExpNonZero, ZExpNonZero; // is the exponent of XYZ non-zero
@ -48,14 +49,17 @@ module unpack (
unpackinput unpackinputX (.In(X), .Fmt, .Sgn(Xs), .Exp(Xe), .Man(Xm), .En(XEn),
.NaN(XNaN), .SNaN(XSNaN), .ExpNonZero(XExpNonZero),
.Zero(XZero), .Inf(XInf), .ExpMax(XExpMax), .FracZero(XFracZero), .Subnorm(XSubnorm));
.Zero(XZero), .Inf(XInf), .ExpMax(XExpMax), .FracZero(XFracZero),
.Subnorm(XSubnorm), .PostBox(XPostBox));
unpackinput unpackinputY (.In(Y), .Fmt, .Sgn(Ys), .Exp(Ye), .Man(Ym), .En(YEn),
.NaN(YNaN), .SNaN(YSNaN), .ExpNonZero(YExpNonZero),
.Zero(YZero), .Inf(YInf), .ExpMax(YExpMax), .FracZero(YFracZero), .Subnorm());
.Zero(YZero), .Inf(YInf), .ExpMax(YExpMax), .FracZero(YFracZero),
.Subnorm(), .PostBox());
unpackinput unpackinputZ (.In(Z), .Fmt, .Sgn(Zs), .Exp(Ze), .Man(Zm), .En(ZEn),
.NaN(ZNaN), .SNaN(ZSNaN), .ExpNonZero(ZExpNonZero),
.Zero(ZZero), .Inf(ZInf), .ExpMax(ZExpMax), .FracZero(ZFracZero), .Subnorm());
.Zero(ZZero), .Inf(ZInf), .ExpMax(ZExpMax), .FracZero(ZFracZero),
.Subnorm(), .PostBox());
endmodule

View File

@ -40,12 +40,13 @@ module unpackinput (
output logic Inf, // is the number infinity
output logic ExpNonZero, // is the exponent not zero
output logic FracZero, // is the fraction zero
output logic ExpMax, // does In have the maximum exponent (NaN or Inf)
output logic Subnorm // is the number subnormal
output logic ExpMax, // does In have the maximum exponent (NaN or Inf)
output logic Subnorm, // is the number subnormal
output logic [`FLEN-1:0] PostBox // Number reboxed correctly as a NaN
);
logic [`NF-1:0] Frac; // Fraction of XYZ
logic BadNaNBox; // is the NaN boxing bad
logic BadNaNBox; // incorrectly NaN Boxed
if (`FPSIZES == 1) begin // if there is only one floating point format supported
assign BadNaNBox = 0;
@ -54,6 +55,7 @@ module unpackinput (
assign ExpNonZero = |In[`FLEN-2:`NF]; // is the exponent non-zero
assign Exp = {In[`FLEN-2:`NF+1], In[`NF]|~ExpNonZero}; // exponent. subnormal numbers have effective biased exponent of 1
assign ExpMax = &In[`FLEN-2:`NF]; // is the exponent all 1's
assign PostBox = In;
end else if (`FPSIZES == 2) begin // if there are 2 floating point formats supported
// largest format | smaller format
@ -75,9 +77,15 @@ module unpackinput (
// double and half
assign BadNaNBox = ~(Fmt|(&In[`FLEN-1:`LEN1])); // Check NaN boxing
always_comb
if (BadNaNBox) begin
// PostBox = {{(`FLEN-`LEN1){1'b1}}, 1'b1, {(`NE1+1){1'b1}}, In[`LEN1-`NE1-3:0]};
PostBox = {{(`FLEN-`LEN1){1'b1}}, 1'b1, {(`NE1+1){1'b1}}, {(`LEN1-`NE1-2){1'b0}}};
end else
PostBox = In;
// choose sign bit depending on format - 1=larger precsion 0=smaller precision
assign Sgn = Fmt ? In[`FLEN-1] : In[`LEN1-1];
assign Sgn = Fmt ? In[`FLEN-1] : (BadNaNBox ? 0 : In[`LEN1-1]); // improperly boxed NaNs are treated as positive
// extract the fraction, add trailing zeroes to the mantissa if nessisary
assign Frac = Fmt ? In[`NF-1:0] : {In[`NF1-1:0], (`NF-`NF1)'(0)};
@ -128,8 +136,23 @@ module unpackinput (
default: BadNaNBox = 1'bx;
endcase
always_comb
if (BadNaNBox) begin
case (Fmt)
`FMT: PostBox = In;
// `FMT1: PostBox = {{(`FLEN-`LEN1){1'b1}}, 1'b1, {(`NE1+1){1'b1}}, In[`LEN1-`NE1-3:0]};
// `FMT2: PostBox = {{(`FLEN-`LEN2){1'b1}}, 1'b1, {(`NE2+1){1'b1}}, In[`LEN2-`NE2-3:0]};
`FMT1: PostBox = {{(`FLEN-`LEN1){1'b1}}, 1'b1, {(`NE1+1){1'b1}}, {(`LEN1-`NE1-2){1'b0}}};
`FMT2: PostBox = {{(`FLEN-`LEN2){1'b1}}, 1'b1, {(`NE2+1){1'b1}}, {(`LEN2-`NE2-2){1'b0}}};
default: PostBox = 'x;
endcase
end else
PostBox = In;
// extract the sign bit
always_comb
if (BadNaNBox) Sgn = 0; // improperly boxed NaNs are treated as positive
else
case (Fmt)
`FMT: Sgn = In[`FLEN-1];
`FMT1: Sgn = In[`LEN1-1];
@ -137,7 +160,7 @@ module unpackinput (
default: Sgn = 1'bx;
endcase
// extract the fraction
// extract the fraction
always_comb
case (Fmt)
`FMT: Frac = In[`NF-1:0];
@ -200,8 +223,24 @@ module unpackinput (
2'b10: BadNaNBox = ~&In[`Q_LEN-1:`H_LEN];
endcase
always_comb
if (BadNaNBox) begin
case (Fmt)
2'b11: PostBox = In;
// 2'b01: PostBox = {{(`Q_LEN-`D_LEN){1'b1}}, 1'b1, {(`D_NE+1){1'b1}}, In[`D_LEN-`D_NE-3:0]};
// 2'b00: PostBox = {{(`Q_LEN-`S_LEN){1'b1}}, 1'b1, {(`S_NE+1){1'b1}}, In[`S_LEN-`S_NE-3:0]};
// 2'b10: PostBox = {{(`Q_LEN-`H_LEN){1'b1}}, 1'b1, {(`H_NE+1){1'b1}}, In[`H_LEN-`H_NE-3:0]};
2'b01: PostBox = {{(`Q_LEN-`D_LEN){1'b1}}, 1'b1, {(`D_NE+1){1'b1}}, {(`D_LEN-`D_NE-2){1'b0}}};
2'b00: PostBox = {{(`Q_LEN-`S_LEN){1'b1}}, 1'b1, {(`S_NE+1){1'b1}}, {(`S_LEN-`S_NE-2){1'b0}}};
2'b10: PostBox = {{(`Q_LEN-`H_LEN){1'b1}}, 1'b1, {(`H_NE+1){1'b1}}, {(`H_LEN-`H_NE-2){1'b0}}};
endcase
end else
PostBox = In;
// extract sign bit
always_comb
if (BadNaNBox) Sgn = 0; // improperly boxed NaNs are treated as positive
else
case (Fmt)
2'b11: Sgn = In[`Q_LEN-1];
2'b01: Sgn = In[`D_LEN-1];

View File

@ -34,7 +34,7 @@
`include "wally-config.vh"
module ram1p1rwbe #(parameter DEPTH=128, WIDTH=256) (
module ram1p1rwbe #(parameter DEPTH=64, WIDTH=44) (
input logic clk,
input logic ce,
input logic [$clog2(DEPTH)-1:0] addr,
@ -49,17 +49,17 @@ module ram1p1rwbe #(parameter DEPTH=128, WIDTH=256) (
// ***************************************************************************
// TRUE SRAM macro
// ***************************************************************************
if (`USE_SRAM == 1 && WIDTH == 128 && DEPTH == 64) begin
if ((`USE_SRAM == 1) & (WIDTH == 128) & (DEPTH == 64)) begin // Cache data subarray
genvar index;
// 64 x 128-bit SRAM
logic [WIDTH-1:0] BitWriteMask;
for (index=0; index < WIDTH; index++)
assign BitWriteMask[index] = bwe[index/8];
TS1N28HPCPSVTB64X128M4SW sram1A (.CLK(clk), .CEB(~ce), .WEB(~we),
ram1p1rwbe_64x128 sram1A (.CLK(clk), .CEB(~ce), .WEB(~we),
.A(addr), .D(din),
.BWEB(~BitWriteMask), .Q(dout));
end else if (`USE_SRAM == 1 && WIDTH == 44 && DEPTH == 64) begin
end else if ((`USE_SRAM == 1) & (WIDTH == 44) & (DEPTH == 64)) begin // RV64 cache tag
genvar index;
// 64 x 44-bit SRAM
logic [WIDTH-1:0] BitWriteMask;
@ -69,23 +69,13 @@ module ram1p1rwbe #(parameter DEPTH=128, WIDTH=256) (
.A(addr), .D(din),
.BWEB(~BitWriteMask), .Q(dout));
end else if (`USE_SRAM == 1 && WIDTH == 128 && DEPTH == 32) begin
genvar index;
// 64 x 128-bit SRAM
logic [WIDTH-1:0] BitWriteMask;
for (index=0; index < WIDTH; index++)
assign BitWriteMask[index] = bwe[index/8];
TS1N28HPCPSVTB64X128M4SW sram1A (.CLK(clk), .CEB(~ce), .WEB(~we),
.A(addr), .D(din),
.BWEB(~BitWriteMask), .Q(dout));
end else if (`USE_SRAM == 1 && WIDTH == 22 && DEPTH == 32) begin
end else if ((`USE_SRAM == 1) & (WIDTH == 22) & (DEPTH == 64)) begin // RV32 cache tag
genvar index;
// 64 x 22-bit SRAM
logic [WIDTH-1:0] BitWriteMask;
for (index=0; index < WIDTH; index++)
assign BitWriteMask[index] = bwe[index/8];
ram1p1rwbe_64x44 sram1B (.CLK(clk), .CEB(~ce), .WEB(~we),
ram1p1rwbe_64x22 sram1B (.CLK(clk), .CEB(~ce), .WEB(~we),
.A(addr), .D(din),
.BWEB(~BitWriteMask), .Q(dout));
@ -96,8 +86,14 @@ module ram1p1rwbe #(parameter DEPTH=128, WIDTH=256) (
integer i;
// Read
always_ff @(posedge clk)
if(ce) dout <= #1 RAM[addr];
logic [$clog2(DEPTH)-1:0] addrd;
flopen #($clog2(DEPTH)) adrreg(clk, ce, addr, addrd);
assign dout = RAM[addrd];
/* // Read
always_ff @(posedge clk)
if(ce) dout <= #1 mem[addr]; */
// Write divided into part for bytes and part for extra msbs
// Questa sim version 2022.3_2 does not allow multiple drivers for RAM when using always_ff.

View File

@ -35,7 +35,7 @@ module ram1p1rwbe_64x128(
);
// replace "generic64x128RAM" with "TS1N..64X128.." module from your memory vendor
ts1n28hpcpsvtb64x128m4sw sramIP (.CLK, .CEB, .WEB, .A, .D, .BWEB, .Q);
// generic64x128RAM sramIP (.CLK, .CEB, .WEB, .A, .D, .BWEB, .Q);
//generic64x128RAM sramIP (.CLK, .CEB, .WEB, .A, .D, .BWEB, .Q);
TS1N28HPCPSVTB64X128M4SW sramIP(.CLK, .CEB, .WEB, .A, .D, .BWEB, .Q);
endmodule

View File

@ -29,12 +29,16 @@ module ram1p1rwbe_64x22(
input logic CEB,
input logic WEB,
input logic [5:0] A,
input logic [127:0] D,
input logic [127:0] BWEB,
output logic [127:0] Q
input logic [21:0] D,
input logic [21:0] BWEB,
output logic [21:0] Q
);
// replace "generic64x22RAM" with "TS1N..64X22.." module from your memory vendor
generic64x22RAM sramIP (.CLK, .CEB, .WEB, .A, .D, .BWEB, .Q);
// use part of a larger RAM to avoid generating more flavors of RAM
logic [43:0] Qfull;
TS1N28HPCPSVTB64X44M4SW sramIP(.CLK, .CEB, .WEB, .A, .D({22'b0, D[21:0]}), .BWEB({22'b0, BWEB[21:0]}), .Q(Qfull));
assign Q = Qfull[21:0];
// genericRAM #(64, 22) sramIP (.CLK, .CEB, .WEB, .A, .D, .BWEB, .Q);
endmodule

View File

@ -29,13 +29,13 @@ module ram1p1rwbe_64x44(
input logic CEB,
input logic WEB,
input logic [5:0] A,
input logic [43:0] D,
input logic [43:0] BWEB,
output logic [43:0] Q
input logic [43:0] D,
input logic [43:0] BWEB,
output logic [43:0] Q
);
// replace "generic64x44RAM" with "TS1N..64X44.." module from your memory vendor
TS1N28HPCPSVTB64X44M4SW sramIP (.CLK, .CEB, .WEB, .A, .D, .BWEB, .Q);
//generic64x44RAM sramIP (.CLK, .CEB, .WEB, .A, .D, .BWEB, .Q);
// generic64x44RAM sramIP (.CLK, .CEB, .WEB, .A, .D, .BWEB, .Q);
TS1N28HPCPSVTB64X44M4SW sramIP(.CLK, .CEB, .WEB, .A, .D, .BWEB, .Q);
endmodule

View File

@ -33,7 +33,7 @@
`include "wally-config.vh"
module ram2p1r1wbe #(parameter DEPTH=128, WIDTH=256) (
module ram2p1r1wbe #(parameter DEPTH=1024, WIDTH=68) (
input logic clk,
input logic ce1, ce2,
input logic [$clog2(DEPTH)-1:0] ra1,
@ -45,12 +45,14 @@ module ram2p1r1wbe #(parameter DEPTH=128, WIDTH=256) (
);
logic [WIDTH-1:0] mem[DEPTH-1:0];
localparam SRAMWIDTH = 32;
localparam SRAMNUMSETS = SRAMWIDTH/WIDTH;
// ***************************************************************************
// TRUE Smem macro
// ***************************************************************************
if (`USE_SRAM == 1 && WIDTH == 68 && DEPTH == 1024) begin
if ((`USE_SRAM == 1) & (WIDTH == 68) & (DEPTH == 1024)) begin
ram2p1r1wbe_1024x68 memory1(.CLKA(clk), .CLKB(clk),
.CEBA(~ce1), .CEBB(~ce2),
@ -62,7 +64,7 @@ module ram2p1r1wbe #(parameter DEPTH=128, WIDTH=256) (
.QA(rd1),
.QB());
end else if (`USE_SRAM == 1 && WIDTH == 36 && DEPTH == 1024) begin
end else if ((`USE_SRAM == 1) & (WIDTH == 36) & (DEPTH == 1024)) begin
ram2p1r1wbe_1024x36 memory1(.CLKA(clk), .CLKB(clk),
.CEBA(~ce1), .CEBB(~ce2),
@ -74,10 +76,7 @@ module ram2p1r1wbe #(parameter DEPTH=128, WIDTH=256) (
.QA(rd1),
.QB());
end else if (`USE_SRAM == 1 && WIDTH == 2 && DEPTH == 1024) begin
localparam SRAMWIDTH = 32;
localparam SRAMNUMSETS = SRAMWIDTH/WIDTH;
end else if ((`USE_SRAM == 1) & (WIDTH == 2) & (DEPTH == 1024)) begin
logic [SRAMWIDTH-1:0] SRAMReadData;
logic [SRAMWIDTH-1:0] SRAMWriteData;
@ -107,104 +106,6 @@ module ram2p1r1wbe #(parameter DEPTH=128, WIDTH=256) (
.QA(SRAMReadData),
.QB());
end else if (`USE_SRAM == 1 && WIDTH == 2 && DEPTH == 4096) begin
localparam SRAMWIDTH = 64;
localparam SRAMNUMSETS = SRAMWIDTH/WIDTH;
logic [SRAMWIDTH-1:0] SRAMReadData;
logic [SRAMWIDTH-1:0] SRAMWriteData;
logic [SRAMWIDTH-1:0] RD1Sets[SRAMNUMSETS-1:0];
logic [SRAMNUMSETS-1:0] SRAMBitMaskPre;
logic [SRAMWIDTH-1:0] SRAMBitMask;
logic [$clog2(DEPTH)-1:0] RA1Q;
onehotdecoder #($clog2(SRAMNUMSETS)) oh1(wa2[$clog2(SRAMNUMSETS)-1:0], SRAMBitMaskPre);
genvar index;
for (index = 0; index < SRAMNUMSETS; index++) begin:readdatalinesetsmux
assign RD1Sets[index] = SRAMReadData[(index*WIDTH)+WIDTH-1 : (index*WIDTH)];
assign SRAMWriteData[index*2+1:index*2] = wd2;
assign SRAMBitMask[index*2+1:index*2] = {2{SRAMBitMaskPre[index]}};
end
flopen #($clog2(DEPTH)) mem_reg1 (clk, ce1, ra1, RA1Q);
assign rd1 = RD1Sets[RA1Q[$clog2(SRAMWIDTH)-1:0]];
ram2p1r1wbe_128x64 memory2(.CLKA(clk), .CLKB(clk),
.CEBA(~ce1), .CEBB(~ce2),
.WEBA('0), .WEBB(~we2),
.AA(ra1[$clog2(DEPTH)-1:$clog2(SRAMNUMSETS)]),
.AB(wa2[$clog2(DEPTH)-1:$clog2(SRAMNUMSETS)]),
.DA('0),
.DB(SRAMWriteData),
.BWEBA('0), .BWEBB(SRAMBitMask),
.QA(SRAMReadData),
.QB());
end else if (`USE_SRAM == 1 && WIDTH == 2 && DEPTH == 16384) begin
localparam SRAMWIDTH = 64;
localparam SRAMNUMSETS = SRAMWIDTH/WIDTH;
logic [SRAMWIDTH-1:0] SRAMReadData;
logic [SRAMWIDTH-1:0] SRAMWriteData;
logic [SRAMWIDTH-1:0] RD1Sets[SRAMNUMSETS-1:0];
logic [SRAMNUMSETS-1:0] SRAMBitMaskPre;
logic [SRAMWIDTH-1:0] SRAMBitMask;
logic [$clog2(DEPTH)-1:0] RA1Q;
onehotdecoder #($clog2(SRAMNUMSETS)) oh1(wa2[$clog2(SRAMNUMSETS)-1:0], SRAMBitMaskPre);
genvar index;
for (index = 0; index < SRAMNUMSETS; index++) begin:readdatalinesetsmux
assign RD1Sets[index] = SRAMReadData[(index*WIDTH)+WIDTH-1 : (index*WIDTH)];
assign SRAMWriteData[index*2+1:index*2] = wd2;
assign SRAMBitMask[index*2+1:index*2] = {2{SRAMBitMaskPre[index]}};
end
flopen #($clog2(DEPTH)) mem_reg1 (clk, ce1, ra1, RA1Q);
assign rd1 = RD1Sets[RA1Q[$clog2(SRAMWIDTH)-1:0]];
ram2p1r1wbe_512x64 memory2(.CLKA(clk), .CLKB(clk),
.CEBA(~ce1), .CEBB(~ce2),
.WEBA('0), .WEBB(~we2),
.AA(ra1[$clog2(DEPTH)-1:$clog2(SRAMNUMSETS)]),
.AB(wa2[$clog2(DEPTH)-1:$clog2(SRAMNUMSETS)]),
.DA('0),
.DB(SRAMWriteData),
.BWEBA('0), .BWEBB(SRAMBitMask),
.QA(SRAMReadData),
.QB());
end else if (`USE_SRAM == 1 && WIDTH == 2 && DEPTH == 65536) begin
localparam SRAMWIDTH = 64;
localparam SRAMNUMSETS = SRAMWIDTH/WIDTH;
logic [SRAMWIDTH-1:0] SRAMReadData;
logic [SRAMWIDTH-1:0] SRAMWriteData;
logic [SRAMWIDTH-1:0] RD1Sets[SRAMNUMSETS-1:0];
logic [SRAMNUMSETS-1:0] SRAMBitMaskPre;
logic [SRAMWIDTH-1:0] SRAMBitMask;
logic [$clog2(DEPTH)-1:0] RA1Q;
onehotdecoder #($clog2(SRAMNUMSETS)) oh1(wa2[$clog2(SRAMNUMSETS)-1:0], SRAMBitMaskPre);
genvar index;
for (index = 0; index < SRAMNUMSETS; index++) begin:readdatalinesetsmux
assign RD1Sets[index] = SRAMReadData[(index*WIDTH)+WIDTH-1 : (index*WIDTH)];
assign SRAMWriteData[index*2+1:index*2] = wd2;
assign SRAMBitMask[index*2+1:index*2] = {2{SRAMBitMaskPre[index]}};
end
flopen #($clog2(DEPTH)) mem_reg1 (clk, ce1, ra1, RA1Q);
assign rd1 = RD1Sets[RA1Q[$clog2(SRAMWIDTH)-1:0]];
ram2p1r1wbe_2048x64 memory2(.CLKA(clk), .CLKB(clk),
.CEBA(~ce1), .CEBB(~ce2),
.WEBA('0), .WEBB(~we2),
.AA(ra1[$clog2(DEPTH)-1:$clog2(SRAMNUMSETS)]),
.AB(wa2[$clog2(DEPTH)-1:$clog2(SRAMNUMSETS)]),
.DA('0),
.DB(SRAMWriteData),
.BWEBA('0), .BWEBB(SRAMBitMask),
.QA(SRAMReadData),
.QB());
end else begin
// ***************************************************************************
@ -212,9 +113,14 @@ module ram2p1r1wbe #(parameter DEPTH=128, WIDTH=256) (
// ***************************************************************************
integer i;
// Read
// Read
logic [$clog2(DEPTH)-1:0] ra1d;
flopen #($clog2(DEPTH)) adrreg(clk, ce1, ra1, ra1d);
assign rd1 = mem[ra1d];
/* // Read
always_ff @(posedge clk)
if(ce1) rd1 <= #1 mem[ra1];
if(ce1) rd1 <= #1 mem[ra1]; */
// Write divided into part for bytes and part for extra msbs
if(WIDTH >= 8)

View File

@ -42,7 +42,14 @@ module ram2p1r1wbe_1024x36(
);
// replace "generic1024x36RAM" with "TSDN..1024X36.." module from your memory vendor
generic1024x36RAM sramIP (.CLKA, .CLKB, .CEBA, .CEBB, .WEBA, .WEBB,
.AA, .AB, .DA, .DB, .BWEBA, .BWEBB, .QA, .QB);
//generic1024x36RAM sramIP (.CLKA, .CLKB, .CEBA, .CEBB, .WEBA, .WEBB,
// .AA, .AB, .DA, .DB, .BWEBA, .BWEBB, .QA, .QB);
// use part of a larger RAM to avoid generating more flavors of RAM
logic [67:0] QAfull, QBfull;
TSDN28HPCPA1024X68M4MW sramIP(.CLKA, .CLKB, .CEBA, .CEBB, .WEBA, .WEBB,
.AA, .AB, .DA({32'b0, DA[35:0]}), .DB({32'b0, DB[35:0]}),
.BWEBA({32'b0, BWEBA[35:0]}), .BWEBB({32'b0, BWEBB[35:0]}), .QA(QAfull), .QB(QBfull));
assign QA = QAfull[35:0];
assign QB = QBfull[35:0];
endmodule

View File

@ -42,9 +42,9 @@ module ram2p1r1wbe_1024x68(
);
// replace "generic1024x68RAM" with "TSDN..1024X68.." module from your memory vendor
TSDN28HPCPA1024X68M4MW sramIP (.CLKA, .CLKB, .CEBA, .CEBB, .WEBA, .WEBB,
.AA, .AB, .DA, .DB, .BWEBA, .BWEBB, .QA, .QB);
// generic1024x68RAM sramIP (.CLKA, .CLKB, .CEBA, .CEBB, .WEBA, .WEBB,
// .AA, .AB, .DA, .DB, .BWEBA, .BWEBB, .QA, .QB);
//generic1024x68RAM sramIP (.CLKA, .CLKB, .CEBA, .CEBB, .WEBA, .WEBB,
// .AA, .AB, .DA, .DB, .BWEBA, .BWEBB, .QA, .QB);
TSDN28HPCPA1024X68M4MW sramIP(.CLKA, .CLKB, .CEBA, .CEBB, .WEBA, .WEBB,
.AA, .AB, .DA, .DB, .BWEBA, .BWEBB, .QA, .QB);
endmodule

View File

@ -42,9 +42,8 @@ module ram2p1r1wbe_64x32(
);
// replace "generic64x32RAM" with "TSDN..64X32.." module from your memory vendor
TSDN28HPCPA64X32M4MW sramIP (.CLKA, .CLKB, .CEBA, .CEBB, .WEBA, .WEBB,
//generic64x32RAM sramIP (.CLKA, .CLKB, .CEBA, .CEBB, .WEBA, .WEBB,
// .AA, .AB, .DA, .DB, .BWEBA, .BWEBB, .QA, .QB);
TSDN28HPCPA64X32M4MW sramIP(.CLKA, .CLKB, .CEBA, .CEBB, .WEBA, .WEBB,
.AA, .AB, .DA, .DB, .BWEBA, .BWEBB, .QA, .QB);
// generic64x32RAM sramIP (.CLKA, .CLKB, .CEBA, .CEBB, .WEBA, .WEBB,
// .AA, .AB, .DA, .DB, .BWEBA, .BWEBB, .QA, .QB);
endmodule

View File

@ -38,10 +38,10 @@ module rom1p1r #(parameter ADDR_WIDTH = 8,
// Core Memory
logic [DATA_WIDTH-1:0] ROM [(2**ADDR_WIDTH)-1:0];
if (`USE_SRAM == 1 && DATA_WIDTH == 64) begin
if ((`USE_SRAM == 1) & (DATA_WIDTH == 64)) begin
rom1p1r_128x64 rom1 (.CLK(clk), .CEB(~ce), .A(addr[6:0]), .Q(dout));
end if (`USE_SRAM == 1 && DATA_WIDTH == 32) begin
end if ((`USE_SRAM == 1) & (DATA_WIDTH == 32)) begin
rom1p1r_128x32 rom1 (.CLK(clk), .CEB(~ce), .A(addr[6:0]), .Q(dout));
end else begin

View File

@ -72,7 +72,7 @@ module bpred (
logic PredValidF;
logic [1:0] DirPredictionF;
logic [3:0] BTBPredInstrClassF, PredInstrClassF, PredInstrClassD, PredInstrClassE;
logic [3:0] BTBPredInstrClassF, PredInstrClassF, PredInstrClassD;
logic [`XLEN-1:0] PredPCF, RASPCF;
logic PredictionPCWrongE;
logic AnyWrongPredInstrClassD, AnyWrongPredInstrClassE;
@ -143,7 +143,8 @@ module bpred (
// Part 2 Branch target address prediction
// BTB contains target address for all CFI
btb TargetPredictor(.clk, .reset, .StallF, .StallD, .StallM, .FlushD, .FlushM,
btb #(`BTB_SIZE)
TargetPredictor(.clk, .reset, .StallF, .StallD, .StallM, .FlushD, .FlushM,
.PCNextF, .PCF, .PCD, .PCE,
.PredPCF,
.BTBPredInstrClassF,
@ -213,7 +214,6 @@ module bpred (
// pipeline the class
flopenrc #(4) PredInstrClassRegD(clk, reset, FlushD, ~StallD, PredInstrClassF, PredInstrClassD);
flopenrc #(1) WrongInstrClassRegE(clk, reset, FlushE, ~StallE, AnyWrongPredInstrClassD, AnyWrongPredInstrClassE);
flopenrc #(4) PredInstrClassRegE(clk, reset, FlushE, ~StallE, PredInstrClassD, PredInstrClassE);
// Check the prediction
// if it is a CFI then check if the next instruction address (PCD) matches the branch's target or fallthrough address.

View File

@ -42,12 +42,16 @@ module dtim(
logic we;
localparam ADDR_WDITH = $clog2(`DTIM_RANGE/8);
localparam OFFSET = $clog2(`LLEN/8);
localparam LLENBYTES = `LLEN/8;
// verilator lint_off WIDTH
localparam DEPTH = `DTIM_RANGE/LLENBYTES;
// verilator lint_on WIDTH
localparam ADDR_WDITH = $clog2(DEPTH);
localparam OFFSET = $clog2(LLENBYTES);
assign we = MemRWM[0] & ~FlushW; // have to ignore write if Trap.
ram1p1rwbe #(.DEPTH(`DTIM_RANGE/8), .WIDTH(`LLEN))
ram1p1rwbe #(.DEPTH(DEPTH), .WIDTH(`LLEN))
ram(.clk, .ce, .we, .bwe(ByteMaskM), .addr(DTIMAdr[ADDR_WDITH+OFFSET-1:OFFSET]), .dout(ReadDataWordM), .din(WriteDataM));
endmodule

View File

@ -107,15 +107,21 @@ module mmu #(parameter TLB_ENTRIES = 8, IMMU = 0) (
.Cacheable, .Idempotent, .SelTIM,
.PMAInstrAccessFaultF, .PMALoadAccessFaultM, .PMAStoreAmoAccessFaultM);
pmpchecker pmpchecker(.PhysicalAddress, .PrivilegeModeW,
.PMPCFG_ARRAY_REGW, .PMPADDR_ARRAY_REGW,
.ExecuteAccessF, .WriteAccessM, .ReadAccessM,
.PMPInstrAccessFaultF, .PMPLoadAccessFaultM, .PMPStoreAmoAccessFaultM);
if (`PMP_ENTRIES > 0)
pmpchecker pmpchecker(.PhysicalAddress, .PrivilegeModeW,
.PMPCFG_ARRAY_REGW, .PMPADDR_ARRAY_REGW,
.ExecuteAccessF, .WriteAccessM, .ReadAccessM,
.PMPInstrAccessFaultF, .PMPLoadAccessFaultM, .PMPStoreAmoAccessFaultM);
else begin
assign PMPInstrAccessFaultF = 0;
assign PMPStoreAmoAccessFaultM = 0;
assign PMPLoadAccessFaultM = 0;
end
// Access faults
// If TLB miss and translating we want to not have faults from the PMA and PMP checkers.
assign InstrAccessFaultF = (PMAInstrAccessFaultF | PMPInstrAccessFaultF) & ~(Translate & ~TLBHit);
assign LoadAccessFaultM = (PMALoadAccessFaultM | PMPLoadAccessFaultM) & ~(Translate & ~TLBHit);
assign InstrAccessFaultF = (PMAInstrAccessFaultF | PMPInstrAccessFaultF) & ~(Translate & ~TLBHit);
assign LoadAccessFaultM = (PMALoadAccessFaultM | PMPLoadAccessFaultM) & ~(Translate & ~TLBHit);
assign StoreAmoAccessFaultM = (PMAStoreAmoAccessFaultM | PMPStoreAmoAccessFaultM) & ~(Translate & ~TLBHit);
// Misaligned faults

View File

@ -49,15 +49,15 @@ module pmpchecker (
output logic PMPStoreAmoAccessFaultM
);
if (`PMP_ENTRIES > 0) begin
// Bit i is high when the address falls in PMP region i
logic EnforcePMP;
logic [`PMP_ENTRIES-1:0] Match; // physical address matches one of the pmp ranges
logic [`PMP_ENTRIES-1:0] FirstMatch; // onehot encoding for the first pmpaddr to match the current address.
logic [`PMP_ENTRIES-1:0] Active; // PMP register i is non-null
logic [`PMP_ENTRIES-1:0] L, X, W, R; // PMP matches and has flag set
logic [`PMP_ENTRIES-1:0] PAgePMPAdr; // for TOR PMP matching, PhysicalAddress > PMPAdr[i]
// Bit i is high when the address falls in PMP region i
logic EnforcePMP;
logic [`PMP_ENTRIES-1:0] Match; // physical address matches one of the pmp ranges
logic [`PMP_ENTRIES-1:0] FirstMatch; // onehot encoding for the first pmpaddr to match the current address.
logic [`PMP_ENTRIES-1:0] Active; // PMP register i is non-null
logic [`PMP_ENTRIES-1:0] L, X, W, R; // PMP matches and has flag set
logic [`PMP_ENTRIES-1:0] PAgePMPAdr; // for TOR PMP matching, PhysicalAddress > PMPAdr[i]
if (`PMP_ENTRIES > 0)
pmpadrdec pmpadrdecs[`PMP_ENTRIES-1:0](
.PhysicalAddress,
.PMPCfg(PMPCFG_ARRAY_REGW),
@ -66,17 +66,12 @@ module pmpchecker (
.PAgePMPAdrOut(PAgePMPAdr),
.Match, .Active, .L, .X, .W, .R);
priorityonehot #(`PMP_ENTRIES) pmppriority(.a(Match), .y(FirstMatch)); // combine the match signal from all the adress decoders to find the first one that matches.
priorityonehot #(`PMP_ENTRIES) pmppriority(.a(Match), .y(FirstMatch)); // combine the match signal from all the adress decoders to find the first one that matches.
// Only enforce PMP checking for S and U modes when at least one PMP is active or in Machine mode when L bit is set in selected region
assign EnforcePMP = (PrivilegeModeW == `M_MODE) ? |(L & FirstMatch) : |Active;
// Only enforce PMP checking for S and U modes when at least one PMP is active or in Machine mode when L bit is set in selected region
assign EnforcePMP = (PrivilegeModeW == `M_MODE) ? |(L & FirstMatch) : |Active;
assign PMPInstrAccessFaultF = EnforcePMP & ExecuteAccessF & ~|(X & FirstMatch) ;
assign PMPStoreAmoAccessFaultM = EnforcePMP & WriteAccessM & ~|(W & FirstMatch) ;
assign PMPLoadAccessFaultM = EnforcePMP & ReadAccessM & ~|(R & FirstMatch) ;
end else begin
assign PMPInstrAccessFaultF = 0;
assign PMPStoreAmoAccessFaultM = 0;
assign PMPLoadAccessFaultM = 0;
end
assign PMPInstrAccessFaultF = EnforcePMP & ExecuteAccessF & ~|(X & FirstMatch) ;
assign PMPStoreAmoAccessFaultM = EnforcePMP & WriteAccessM & ~|(W & FirstMatch) ;
assign PMPLoadAccessFaultM = EnforcePMP & ReadAccessM & ~|(R & FirstMatch) ;
endmodule

View File

@ -113,6 +113,7 @@ module csr #(parameter
logic SelMtvecM;
logic [`XLEN-1:0] TVecAlignedM;
logic InstrValidNotFlushedM;
logic STimerInt;
// only valid unflushed instructions can access CSRs
assign InstrValidNotFlushedM = InstrValidM & ~StallW & ~FlushW;
@ -201,7 +202,7 @@ module csr #(parameter
csri csri(.clk, .reset, .InstrValidNotFlushedM,
.CSRMWriteM, .CSRSWriteM, .CSRWriteValM, .CSRAdrM,
.MExtInt, .SExtInt, .MTimerInt, .MSwInt,
.MExtInt, .SExtInt, .MTimerInt, .STimerInt, .MSwInt,
.MIP_REGW, .MIE_REGW, .MIP_REGW_writeable);
csrsr csrsr(.clk, .reset, .StallW,
@ -227,11 +228,12 @@ module csr #(parameter
csrs csrs(.clk, .reset, .InstrValidNotFlushedM,
.CSRSWriteM, .STrapM, .CSRAdrM,
.NextEPCM, .NextCauseM, .NextMtvalM, .SSTATUS_REGW,
.STATUS_TVM, .CSRWriteValM, .PrivilegeModeW,
.STATUS_TVM, .MCOUNTEREN_TM(MCOUNTEREN_REGW[1]),
.CSRWriteValM, .PrivilegeModeW,
.CSRSReadValM, .STVEC_REGW, .SEPC_REGW,
.SCOUNTEREN_REGW,
.SATP_REGW, .MIP_REGW, .MIE_REGW, .MIDELEG_REGW,
.WriteSSTATUSM, .IllegalCSRSAccessM);
.SATP_REGW, .MIP_REGW, .MIE_REGW, .MIDELEG_REGW, .MTIME_CLINT,
.WriteSSTATUSM, .IllegalCSRSAccessM, .STimerInt);
end else begin
assign WriteSSTATUSM = 0;
assign CSRSReadValM = 0;

View File

@ -39,13 +39,14 @@ module csri #(parameter
input logic CSRMWriteM, CSRSWriteM,
input logic [`XLEN-1:0] CSRWriteValM,
input logic [11:0] CSRAdrM,
input logic MExtInt, SExtInt, MTimerInt, MSwInt,
input logic MExtInt, SExtInt, MTimerInt, STimerInt, MSwInt,
output logic [11:0] MIP_REGW, MIE_REGW,
output logic [11:0] MIP_REGW_writeable // only SEIP, STIP, SSIP are actually writeable; the rest are hardwired to 0
output logic [11:0] MIP_REGW_writeable // only SEIP, STIP, SSIP are actually writeable; the rest are hardwired to 0
);
logic [11:0] MIP_WRITE_MASK, SIP_WRITE_MASK, MIE_WRITE_MASK;
logic WriteMIPM, WriteMIEM, WriteSIPM, WriteSIEM;
logic STIP;
// Interrupt Write Enables
assign WriteMIPM = CSRMWriteM & (CSRAdrM == MIP) & InstrValidNotFlushedM;
@ -58,7 +59,13 @@ module csri #(parameter
// SEIP, STIP, SSIP is writable in MIP if S mode exists
// SSIP is writable in SIP if S mode exists
if (`S_SUPPORTED) begin:mask
assign MIP_WRITE_MASK = 12'h222; // SEIP, STIP, SSIP are writeable in MIP (20210108-draft 3.1.9)
if (`SSTC_SUPPORTED) begin
assign MIP_WRITE_MASK = 12'h202; // SEIP and SSIP are writable, but STIP is not writable when STIMECMP is implemented (see SSTC spec)
assign STIP = STimerInt;
end else begin
assign MIP_WRITE_MASK = 12'h222; // SEIP, STIP, SSIP are writeable in MIP (20210108-draft 3.1.9)
assign STIP = MIP_REGW_writeable[5];
end
assign SIP_WRITE_MASK = 12'h002; // SSIP is writeable in SIP (privileged 20210108-draft 4.1.3)
assign MIE_WRITE_MASK = 12'hAAA;
end else begin:mask
@ -75,5 +82,8 @@ module csri #(parameter
else if (WriteMIEM) MIE_REGW <= (CSRWriteValM[11:0] & MIE_WRITE_MASK); // MIE controls M and S fields
else if (WriteSIEM) MIE_REGW <= (CSRWriteValM[11:0] & 12'h222) | (MIE_REGW & 12'h888); // only S fields
assign MIP_REGW = {MExtInt,1'b0,SExtInt|MIP_REGW_writeable[9],1'b0,MTimerInt,1'b0,MIP_REGW_writeable[5],1'b0,MSwInt,1'b0,MIP_REGW_writeable[1],1'b0};
assign MIP_REGW = {MExtInt, 1'b0, SExtInt|MIP_REGW_writeable[9], 1'b0,
MTimerInt, 1'b0, STIP, 1'b0,
MSwInt, 1'b0, MIP_REGW_writeable[1], 1'b0};
endmodule

View File

@ -41,22 +41,27 @@ module csrs #(parameter
SCAUSE = 12'h142,
STVAL = 12'h143,
SIP= 12'h144,
STIMECMP = 12'h14D,
STIMECMPH = 12'h15D,
SATP = 12'h180) (
input logic clk, reset,
input logic InstrValidNotFlushedM,
input logic CSRSWriteM, STrapM,
input logic [11:0] CSRAdrM,
input logic [`XLEN-1:0] NextEPCM, NextCauseM, NextMtvalM, SSTATUS_REGW,
input logic STATUS_TVM,
input logic [`XLEN-1:0] CSRWriteValM,
input logic [1:0] PrivilegeModeW,
input logic clk, reset,
input logic InstrValidNotFlushedM,
input logic CSRSWriteM, STrapM,
input logic [11:0] CSRAdrM,
input logic [`XLEN-1:0] NextEPCM, NextCauseM, NextMtvalM, SSTATUS_REGW,
input logic STATUS_TVM,
input logic MCOUNTEREN_TM, // TM bit (1) of MCOUNTEREN; cause illegal instruction when trying to access STIMECMP if clear
input logic [`XLEN-1:0] CSRWriteValM,
input logic [1:0] PrivilegeModeW,
output logic [`XLEN-1:0] CSRSReadValM, STVEC_REGW,
output logic [`XLEN-1:0] SEPC_REGW,
output logic [31:0] SCOUNTEREN_REGW,
output logic [`XLEN-1:0] SATP_REGW,
input logic [11:0] MIP_REGW, MIE_REGW, MIDELEG_REGW,
output logic WriteSSTATUSM,
output logic IllegalCSRSAccessM
input logic [11:0] MIP_REGW, MIE_REGW, MIDELEG_REGW,
input logic [63:0] MTIME_CLINT,
output logic WriteSSTATUSM,
output logic IllegalCSRSAccessM,
output logic STimerInt
);
// Constants
@ -66,10 +71,13 @@ module csrs #(parameter
logic WriteSTVECM;
logic WriteSSCRATCHM, WriteSEPCM;
logic WriteSCAUSEM, WriteSTVALM, WriteSATPM, WriteSCOUNTERENM;
logic WriteSTIMECMPM, WriteSTIMECMPHM;
logic [`XLEN-1:0] SSCRATCH_REGW, STVAL_REGW;
logic [`XLEN-1:0] SCAUSE_REGW;
logic [63:0] STIMECMP_REGW;
// write enables
// *** can InstrValidNotFlushed be factored out of all these writes into CSRWriteM?
assign WriteSSTATUSM = CSRSWriteM & (CSRAdrM == SSTATUS) & InstrValidNotFlushedM;
assign WriteSTVECM = CSRSWriteM & (CSRAdrM == STVEC) & InstrValidNotFlushedM;
assign WriteSSCRATCHM = CSRSWriteM & (CSRAdrM == SSCRATCH) & InstrValidNotFlushedM;
@ -78,6 +86,8 @@ module csrs #(parameter
assign WriteSTVALM = STrapM | (CSRSWriteM & (CSRAdrM == STVAL)) & InstrValidNotFlushedM;
assign WriteSATPM = CSRSWriteM & (CSRAdrM == SATP) & (PrivilegeModeW == `M_MODE | ~STATUS_TVM) & InstrValidNotFlushedM;
assign WriteSCOUNTERENM = CSRSWriteM & (CSRAdrM == SCOUNTEREN) & InstrValidNotFlushedM;
assign WriteSTIMECMPM = CSRSWriteM & (CSRAdrM == STIMECMP) & MCOUNTEREN_TM & InstrValidNotFlushedM;
assign WriteSTIMECMPHM = CSRSWriteM & (CSRAdrM == STIMECMPH) & MCOUNTEREN_TM & (`XLEN == 32) & InstrValidNotFlushedM;
// CSRs
flopenr #(`XLEN) STVECreg(clk, reset, WriteSTVECM, {CSRWriteValM[`XLEN-1:2], 1'b0, CSRWriteValM[0]}, STVEC_REGW);
@ -90,6 +100,19 @@ module csrs #(parameter
else
assign SATP_REGW = 0; // hardwire to zero if virtual memory not supported
flopens #(32) SCOUNTERENreg(clk, reset, WriteSCOUNTERENM, CSRWriteValM[31:0], SCOUNTEREN_REGW);
if (`XLEN == 64)
flopenr #(`XLEN) STIMECMPreg(clk, reset, WriteSTIMECMPM, CSRWriteValM, STIMECMP_REGW);
else begin
flopenr #(`XLEN) STIMECMPreg(clk, reset, WriteSTIMECMPM, CSRWriteValM, STIMECMP_REGW[31:0]);
flopenr #(`XLEN) STIMECMPHreg(clk, reset, WriteSTIMECMPHM, CSRWriteValM, STIMECMP_REGW[63:32]);
end
// Supervisor timer interrupt logic
// Spec is a bit peculiar - Machine timer interrupts are produced in CLINT, while Supervisor timer interrupts are in CSRs
if (`SSTC_SUPPORTED)
assign STimerInt = ({1'b0, MTIME_CLINT} >= {1'b0, STIMECMP_REGW}); // unsigned comparison
else
assign STimerInt = 0;
// CSR Reads
always_comb begin:csrr
@ -109,10 +132,20 @@ module csrs #(parameter
if (PrivilegeModeW == `S_MODE & STATUS_TVM) IllegalCSRSAccessM = 1;
end
SCOUNTEREN:CSRSReadValM = {{(`XLEN-32){1'b0}}, SCOUNTEREN_REGW};
STIMECMP: if (MCOUNTEREN_TM) CSRSReadValM = STIMECMP_REGW[`XLEN-1:0];
else begin
CSRSReadValM = 0;
IllegalCSRSAccessM = 1;
end
STIMECMPH: if (MCOUNTEREN_TM & (`XLEN == 32)) CSRSReadValM[31:0] = STIMECMP_REGW[63:32];
else begin // not supported for RV64
CSRSReadValM = 0;
IllegalCSRSAccessM = 1;
end
default: begin
CSRSReadValM = 0;
IllegalCSRSAccessM = 1;
end
end
endcase
end
endmodule

View File

@ -68,7 +68,7 @@ module csrsr (
STATUS_XS, STATUS_FS, /*STATUS_MPP, 2'b0*/ 4'b0,
STATUS_SPP, /*STATUS_MPIE*/ 1'b0, STATUS_UBE, STATUS_SPIE,
/*1'b0, STATUS_MIE, 1'b0*/ 3'b0, STATUS_SIE, 1'b0};
assign MSTATUSH_REGW = '0; // *** does not exist when XLEN=64, but don't want it to have an undefined value. Spec is not clear what it should be.
assign MSTATUSH_REGW = '0; // *** does not exist when XLEN=64, but don't want it to have an undefined value. Spec is not clear what it should be.
end else begin: csrsr32 // RV32
assign MSTATUS_REGW = {STATUS_SD, 8'b0,
STATUS_TSR, STATUS_TW, STATUS_TVM, STATUS_MXR, STATUS_SUM, STATUS_MPRV,

View File

@ -3,33 +3,60 @@
set CURRENT_DIR [exec pwd]
set search_path [list "./" ]
set memory ../memory
set pdk /import/yukari1/pdk/TSMC/28/CMOS/HPC+/stclib/7-track/tcbn28hpcplusbwp7t30p140-set/
set tsmc28nlib $pdk/tcbn28hpcplusbwp7t30p140_190a_FE/TSMCHOME/digital/Front_End/timing_power_noise/NLDM/tcbn28hpcplusbwp7t30p140_180a
set iolib1p8 /import/yukari1/pdk/TSMC/28/CMOS/HPC+/IO1.8V/iolib/STAGGERED/tphn28hpcpgv18_170d_FE/TSMCHOME/digital/Front_End/timing_power_noise/NLDM/tphn28hpcpgv18_170a/
lappend search_path $tsmc28nlib
lappend search_path $iolib1p8
lappend search_path $memory
set tech $::env(TECH)
if { [info exists ::env(RISCV)] } {
set timing_lib $::env(RISCV)/cad/lib
} else {
set timing_lib ../addins
}
if {$tech == "sky130"} {
set s8lib $timing_lib/sky130_osu_sc_t12/12T_ms/lib
lappend search_path $s8lib
} elseif {$tech == "sky90"} {
set s9lib $timing_lib/sky90/sky90_sc/V1.7.4/lib
lappend search_path $s9lib
} elseif {$tech == "tsmc28"} {
set pdk /proj/models/tsmc28/libraries/28nmtsmc/tcbn28hpcplusbwp30p140_190a/
set osupdk /import/yukari1/pdk/TSMC/28/CMOS/HPC+/stclib/9-track/tcbn28hpcplusbwp30p140-set/tcbn28hpcplusbwp30p140_190a_FE/
set s10lib $pdk/TSMCHOME/digital/Front_End/timing_power_noise/NLDM/tcbn28hpcplusbwp30p140_180a
lappend search_path $s10lib
} elseif {$tech == "tsmc28psyn"} {
set TLU /home/jstine/TLU+
set pdk /proj/models/tsmc28/libraries/28nmtsmc/tcbn28hpcplusbwp30p140_190a/
set osupdk /import/yukari1/pdk/TSMC/28/CMOS/HPC+/stclib/9-track/tcbn28hpcplusbwp30p140-set/tcbn28hpcplusbwp30p140_190a_FE/
set s10lib $pdk/TSMCHOME/digital/Front_End/timing_power_noise/NLDM/tcbn28hpcplusbwp30p140_180a
lappend search_path $s10lib
set TLUPLUS true
set mw_logic1_net VDD
set mw_logic0_net VSS
set CAPTABLE $TLU/1p8m/
set MW_REFERENCE_LIBRARY /home/jstine/MW
set MW_TECH_FILE tcbn28hpcplusbwp30p140
set MIN_TLU_FILE $CAPTABLE/crn28hpc+_1p08m+ut-alrdl_5x1z1u_rcbest.tluplus
set MAX_TLU_FILE $CAPTABLE/crn28hpc+_1p08m+ut-alrdl_5x1z1u_rcworst.tluplus
set PRS_MAP_FILE $MW_REFERENCE_LIBRARY/astro_layername.map
}
# Synthetic libraries
set synthetic_library [list dw_foundation.sldb]
# Set OKSTATE standard cell libraries
# Set standard cell libraries
set target_library [list]
lappend target_library $iolib1p8/tphn28hpcpgv18tt0p9v1p8v25c.db
lappend target_library $tsmc28nlib/tcbn28hpcplusbwp7t30p140tt0p9v25c.db
lappend target_library $memory/ts3n28hpcpa128x64m8m_130a/NLDM/ts3n28hpcpa128x64m8m_tt0p9v25c.db
lappend target_library $memory/ts1n28hpcpsvtb64x128m4sw_180a/NLDM/ts1n28hpcpsvtb64x128m4sw_tt0p9v25c.db
lappend target_library $memory/ts1n28hpcpsvtb64x44m4sw_180a/NLDM/ts1n28hpcpsvtb64x44m4sw_tt0p9v25c.db
lappend target_library $memory/tsdn28hpcpa1024x68m4mw_130a/NLDM/tsdn28hpcpa1024x68m4mw_tt0p9v25c.db
lappend target_library $memory/tsdn28hpcpa64x32m4mw_130a/NLDM/tsdn28hpcpa64x32m4mw_tt0p9v25c.db
lappend target_library $memory/dbs/tsdn28hpcpa128x64m4fw_tt0p9v25c.db
lappend target_library $memory/dbs/tsdn28hpcpa512x64m4fw_tt0p9v25c.db
lappend target_library $memory/dbs/tsdn28hpcpa2048x64m4mw_tt0p9v25c.db
# Set Link Library
set link_library "$target_library $synthetic_library"
#lappend target_library scc9gena_tt_1.2v_25C.db
if {$tech == "sky130"} {
lappend target_library $s8lib/sky130_osu_sc_12T_ms_TT_1P8_25C.ccs.db
} elseif {$tech == "sky90"} {
lappend target_library $s9lib/scc9gena_tt_1.2v_25C.db
} elseif {$tech == "tsmc28"} {
lappend target_library $s10lib/tcbn28hpcplusbwp30p140tt0p9v25c.db
} elseif {$tech == "tsmc28psyn"} {
set mw_reference_library [list ]
lappend target_library $s10lib/tcbn28hpcplusbwp30p140tt0p9v25c.db
lappend mw_reference_library $MW_REFERENCE_LIBRARY/tcbn28hpcplusbwp30p140
}
# Set up DesignWare cache read and write directories to speed up compile.
set cache_write ~
@ -39,6 +66,21 @@ set cache_read $cache_write
lappend search_path ./scripts
lappend search_path ./hdl
lappend search_path ./mapped
if {($tech == "tsmc28psyn")} {
set memory /home/jstine/WallyMem/rv64gc/
set osumemory /import/yukari1/pdk/TSMC/WallyMem/rv64gc/
lappend target_library $memory/ts1n28hpcpsvtb64x128m4sw_180a/NLDM/ts1n28hpcpsvtb64x128m4sw_tt0p9v25c.db
lappend target_library $memory/ts1n28hpcpsvtb64x44m4sw_180a/NLDM/ts1n28hpcpsvtb64x44m4sw_tt0p9v25c.db
lappend target_library $memory/tsdn28hpcpa1024x68m4mw_130a/NLDM/tsdn28hpcpa1024x68m4mw_tt0p9v25c.db
lappend target_library $memory/tsdn28hpcpa64x32m4mw_130a/NLDM/tsdn28hpcpa64x32m4mw_tt0p9v25c.db
lappend mw_reference_library $MW_REFERENCE_LIBRARY/ts1n28hpcpsvtb64x44m4sw
lappend mw_reference_library $MW_REFERENCE_LIBRARY/ts1n28hpcpsvtb64x128m4sw
lappend mw_reference_library $MW_REFERENCE_LIBRARY/tsdn28hpcpa1024x68m4mw
lappend mw_reference_library $MW_REFERENCE_LIBRARY/tsdn28hpcpa64x32m4mw
}
# Set Link Library
set link_library "$target_library $synthetic_library"
# Set up User Information
set company "Oklahoma State University"

View File

@ -20,7 +20,7 @@ export MAXCORES ?= 1
# The output netlist is hard to interpret, but significantly better PPA
export MAXOPT ?= 0
export DRIVE ?= FLOP
export USESRAM ?= 1
export USESRAM ?= 0
time := $(shell date +%F-%H-%M)
hash := $(shell git rev-parse --short HEAD)
@ -30,8 +30,6 @@ export SAIFPOWER ?= 0
OLDCONFIGDIR ?= ${WALLY}/config
export CONFIGDIR ?= $(OUTPUTDIR)/config
default:
@echo " Basic synthesis procedure for Wally:"
@echo " Invoke with make synth"
@ -84,6 +82,15 @@ endif
endif
# adjust config if synthesizing with any modifications
# This code is subtle with ifneq. It successively turns off a larger
# set of features in order of cycle time limiting.
# When mod = orig, all features are ON
# When mod = PMP0, the number of PMP entries is set to 0
# when mod = noPriv, the privileged unit and PMP are disabled
# when mod = noFPU, the FPU, privileged unit, and PMP are disabled
# when mod = noMulDiv, the MDU, FPU, privileged unit, and PMP are disabled.
# when mod = noAtomic, the Atomic, MDU, FPU, privileged unit, and PMP are disabled
ifneq ($(MOD), orig)
# PMP 0
sed -i 's/PMP_ENTRIES \(64\|16\|0\)/PMP_ENTRIES 0/' $(CONFIGDIR)/wally-config.vh
@ -97,6 +104,10 @@ ifneq ($(MOD), noPriv)
ifneq ($(MOD), noFPU)
# no muldiv
sed -i 's/1 *<< *12/0 << 12/' $(CONFIGDIR)/wally-config.vh
ifneq ($(MOD), noMulDiv)
# no atomic
sed -i 's/1 *<< *0/0 << 0/' $(CONFIGDIR)/wally-config.vh
endif
endif
endif
endif
@ -116,11 +127,14 @@ mkdirecs:
@mkdir -p $(OUTPUTDIR)/mapped
@mkdir -p $(OUTPUTDIR)/unmapped
synth: mkdirecs configs rundc clean
rundc:
ifeq ($(TECH), tsmc28psyn)
dc_shell-xg-t -64bit -topographical_mode -f scripts/$(NAME).tcl | tee $(OUTPUTDIR)/$(NAME).out
else
dc_shell-xg-t -64bit -f scripts/$(NAME).tcl | tee $(OUTPUTDIR)/$(NAME).out
endif
clean:

118
synthDC/extractArea.pl Executable file
View File

@ -0,0 +1,118 @@
#!/bin/perl -W
###########################################
## extractArea.pl
##
## Written: David_Harris@hmc.edu
## Created: 19 Feb 2023
## Modified:
##
## Purpose: Pull area statistics from run directory
##
## A component of the CORE-V-WALLY configurable RISC-V project.
##
## Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
##
## SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
##
## Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
## except in compliance with the License, or, at your option, the Apache License version 2.0. You
## may obtain a copy of the License at
##
## https:##solderpad.org/licenses/SHL-2.1/
##
## Unless required by applicable law or agreed to in writing, any work distributed under the
## License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
## either express or implied. See the License for the specific language governing permissions
## and limitations under the License.
################################################################################################
use strict;
use warnings;
import os;
my %configResults;
my $dir = "runs";
my $macro = "Macro/Black Box area:";
my $seq = "Noncombinational area:";
my $buf = "Buf/Inv area:";
my $comb = "Combinational area:";
my $macroC = "Number of macros/black boxes:";
my $seqC = "Number of sequential cells:";
my $bufC = "Number of buf/inv:";
my $combC = "Number of combinational cells:";
my @keywords = ("ifu", "ieu", "lsu", "hzu", "ebu.ebu", "priv.priv", "mdu.mdu", "fpu.fpu", "wallypipelinedcore", $macro, $seq, $buf, $comb, $macroC, $seqC, $bufC, $combC);
my @keywordsp = ("ifu", "ieu", "lsu", "hzu", "ebu.ebu", "priv.priv", "mdu.mdu", "fpu.fpu", "wallypipelinedcore",
"RAMs", "Flip-flops", "Inv/Buf", "Logic", "RAMs Cnt", "Flip-flops Cnt", "Inv/Buf Cnt", "Logic Cnt", "Total Cnt");
my @configs = ("rv32e", "rv32i", "rv32imc", "rv32gc", "rv64i", "rv64gc");
opendir(DIR, $dir) or die "Could not open $dir";
while (my $filename = readdir(DIR)) {
if ($filename =~ /orig_tsmc28psyn/) {
# print "$filename\n";
&processRun("$dir/$filename");
}
}
closedir(DIR);
# print table of results
printf("%20s\t", "");
foreach my $config (@configs) {
printf("%s\t", $config);
}
print ("\n");
foreach my $kw (@keywordsp) {
my $kws = substr($kw, 0, 3);
printf("%20s\t", $kw);
foreach my $config (@configs) {
my $r = $configResults{$config};
if (exists ${$r}{$kw}) {
my $area = ${$r}{$kw};
while ($area =~ s/(\d+)(\d\d\d)/$1\,$2/){};
#print "${$r}{$kw}\t";
print "$area\t";
} else {
print("\t");
}
}
print("\n");
}
sub processRun {
my $fname = shift;
my $ffname = "$fname/reports/wallypipelinedcore_area.rep";
open(FILE, "$ffname") or die ("Could not read $ffname");
# Extract configuration from fname;
$fname =~ /_([^_]*)_orig/;
my $config = $1;
#print("Reading $config from $ffname\n");
# Search for results
my %results;
while (my $line = <FILE>) {
foreach my $kw (@keywords) {
# print "$kw $line\n";
if ($line =~ /^${kw}\s+(\S*)/) {
#print "$line $kw $1\n";
$results{$kw} = int($1);
}
}
}
foreach my $kw (@keywords) {
#print "$kw\t$results{$kw}\n";
}
$results{"Logic"} = $results{$comb} - $results{$buf};
$results{"Inv/Buf"} = $results{$buf};
$results{"Flip-flops"} = $results{$seq};
$results{"RAMs"} = $results{$macro};
$results{"Logic Cnt"} = $results{$combC} - $results{$bufC};
$results{"Inv/Buf Cnt"} = $results{$bufC};
$results{"Flip-flops Cnt"} = $results{$seqC};
$results{"RAMs Cnt"} = $results{$macroC};
$results{"Total Cnt"} = $results{$macroC} + $results{$seqC} + $results{$combC};
close(FILE);
$configResults{$config} = \%results;
}

View File

@ -85,7 +85,7 @@ def freqPlot(tech, width, config):
freqsL, delaysL, areasL = ([[], []] for i in range(3))
for oneSynth in allSynths:
if (width == oneSynth.width) & (config == oneSynth.config) & (tech == oneSynth.tech) & ('orig' == oneSynth.mod):
ind = (1000/oneSynth.delay < oneSynth.freq) # when delay is within target clock period
ind = (1000/oneSynth.delay < (0.95*oneSynth.freq)) # when delay is within target clock period
freqsL[ind] += [oneSynth.freq]
delaysL[ind] += [oneSynth.delay]
areasL[ind] += [oneSynth.area]
@ -103,7 +103,7 @@ def freqPlot(tech, width, config):
freqs = freqsL[ind]
freqs, delays, areas = noOutliers(median, freqs, delays, areas)
c = 'blue' if ind else 'green'
c = 'blue' if ind else 'gray'
targs = [1000/f for f in freqs]
ax1.scatter(targs, delays, color=c)
@ -113,7 +113,7 @@ def freqPlot(tech, width, config):
delays = list(flatten(delaysL))
areas = list(flatten(areasL))
legend_elements = [lines.Line2D([0], [0], color='green', ls='', marker='o', label='timing achieved'),
legend_elements = [lines.Line2D([0], [0], color='gray', ls='', marker='o', label='timing achieved'),
lines.Line2D([0], [0], color='blue', ls='', marker='o', label='slack violated')]
ax1.legend(handles=legend_elements)
@ -246,8 +246,8 @@ if __name__ == '__main__':
TechSpec = namedtuple("TechSpec", "color shape targfreq fo4 add32area add32lpower add32denergy")
techdict = {}
techdict['sky90'] = TechSpec('green', 'o', args.skyfreq, 43.2e-3, 1440.600027, 714.057, 0.658023)
techdict['tsmc28'] = TechSpec('blue', 's', args.tsmcfreq, 12.2e-3, 209.286002, 1060.0, .081533)
techdict['sky90'] = TechSpec('gray', 'o', args.skyfreq, 43.2e-3, 1440.600027, 714.057, 0.658023)
techdict['tsmc28psyn'] = TechSpec('blue', 's', args.tsmcfreq, 12.2e-3, 209.286002, 1060.0, .081533)
current_directory = os.getcwd()
final_directory = os.path.join(current_directory, 'wallyplots')
@ -256,10 +256,11 @@ if __name__ == '__main__':
synthsintocsv()
synthsfromcsv('Summary.csv')
freqPlot('tsmc28', 'rv32', 'e')
freqPlot('tsmc28psyn', 'rv32', 'e')
freqPlot('sky90', 'rv32', 'e')
plotFeatures('sky90', 'rv64', 'gc')
plotFeatures('tsmc28', 'rv64', 'gc')
plotFeatures('tsmc28psyn', 'rv64', 'gc')
plotConfigs('sky90', mod='orig')
plotConfigs('tsmc28', mod='orig')
plotConfigs('tsmc28psyn', mod='orig')
normAreaDelay(mod='orig')
os.system("./extractArea.pl");

View File

@ -49,6 +49,24 @@ set report_default_significant_digits 6
set verilogout_show_unconnected_pins "true"
set vhdlout_show_unconnected_pins "true"
# Set up MW List
set MY_LIB_NAME $my_toplevel
# Create MW
if { [shell_is_in_topographical_mode] } {
echo "In Topographical Mode...processing\n"
create_mw_lib -technology $MW_REFERENCE_LIBRARY/$MW_TECH_FILE.tf \
-mw_reference_library $mw_reference_library $outputDir/$MY_LIB_NAME
# Open MW
open_mw_lib $outputDir/$MY_LIB_NAME
# TLU+
set_tlu_plus_files -max_tluplus $MAX_TLU_FILE -min_tluplus $MIN_TLU_FILE \
-tech2itf_map $PRS_MAP_FILE
} else {
echo "In normal DC mode...processing\n"
}
# Due to parameterized Verilog must use analyze/elaborate and not
# read_verilog/vhdl (change to pull in Verilog and/or VHDL)
#
@ -122,7 +140,7 @@ if {$tech == "sky130"} {
} elseif {$drive == "FLOP"} {
set_driving_cell -lib_cell scc9gena_dfxbp_1 -pin Q $all_in_ex_clk
}
} elseif {$tech == "tsmc28"} {
} elseif {$tech == "tsmc28" || $tech=="tsmc28psyn"} {
if {$drive == "INV"} {
set_driving_cell -lib_cell INVD1BWP30P140 -pin ZN $all_in_ex_clk
} elseif {$drive == "FLOP"} {
@ -148,7 +166,7 @@ if {$tech == "sky130"} {
} elseif {$drive == "FLOP"} {
set_load [expr [load_of scc9gena_tt_1.2v_25C/scc9gena_dfxbp_1/D] * 1] [all_outputs]
}
} elseif {$tech == "tsmc28"} {
} elseif {$tech == "tsmc28" || $tech == "tsmc28psyn"} {
if {$drive == "INV"} {
set_load [expr [load_of tcbn28hpcplusbwp30p140tt0p9v25c/INVD4BWP30P140/I] * 1] [all_outputs]
} elseif {$drive == "FLOP"} {
@ -156,8 +174,10 @@ if {$tech == "sky130"} {
}
}
# Set the wire load model
set_wire_load_mode "top"
if {$tech != "tsmc28psyn"} {
# Set the wire load model
set_wire_load_mode "top"
}
# Set switching activities
# default activity factors are 1 for clocks, 0.1 for others

View File

@ -16,9 +16,10 @@ def mask(command):
if __name__ == '__main__':
techs = ['sky90', 'tsmc28']
techs = ['sky90', 'tsmc28', 'tsmc28psyn']
allConfigs = ['rv32gc', 'rv32imc', 'rv64gc', 'rv64imc', 'rv32e', 'rv32i', 'rv64i']
freqVaryPct = [-20, -12, -8, -6, -4, -2, 0, 2, 4, 6, 8, 12, 20]
# freqVaryPct = [-20, -10, 0, 10, 20]
pool = Pool()
@ -46,16 +47,16 @@ if __name__ == '__main__':
config = args.version if args.version else 'rv32e'
for freq in [round(sc+sc*x/100) for x in freqVaryPct]: # rv32e freq sweep
runSynth(config, mod, tech, freq, maxopt, usesram)
if args.configsweep:
elif args.configsweep:
defaultfreq = 1500 if tech == 'sky90' else 5000
freq = args.targetfreq if args.targetfreq else defaultfreq
for config in ['rv32i', 'rv64gc', 'rv64i', 'rv32gc', 'rv32imc', 'rv32e']: #configs
runSynth(config, mod, tech, freq, maxopt, usesram)
if args.featuresweep:
elif args.featuresweep:
defaultfreq = 500 if tech == 'sky90' else 1500
freq = args.targetfreq if args.targetfreq else defaultfreq
config = args.version if args.version else 'rv64gc'
for mod in ['noFPU', 'noMulDiv', 'noPriv', 'PMP0', 'orig']:
for mod in ['noAtomic', 'noFPU', 'noMulDiv', 'noPriv', 'PMP0']:
runSynth(config, mod, tech, freq, maxopt, usesram)
else:
defaultfreq = 500 if tech == 'sky90' else 1500

View File

@ -1,33 +1,24 @@
///////////////////////////////////////////
// datapath.sv
// functionName.sv
//
// Written: Ross Thompson
// email: ross1728@gmail.com
// Created: November 9, 2019
// Modified: March 04, 2021
//
// Purpose: Finds the current function or global assembly label based on PCE.
// Purpose: decode name of function
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
// Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
// may obtain a copy of the License at
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
// https://solderpad.org/licenses/SHL-2.1/
//
// Unless required by applicable law or agreed to in writing, any work distributed under the
// License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"

View File

@ -1,3 +1,26 @@
///////////////////////////////////////////
// instrNameDecTB.sv
//
// Purpose: decode name of function
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
//
// Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
// may obtain a copy of the License at
//
// https://solderpad.org/licenses/SHL-2.1/
//
// Unless required by applicable law or agreed to in writing, any work distributed under the
// License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
// decode the instruction name, to help the test bench
module instrNameDecTB(
input logic [31:0] instr,

View File

@ -1,3 +1,24 @@
///////////////////////////////////////////
// instrTrackerTB.sv
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
//
// Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
// may obtain a copy of the License at
//
// https://solderpad.org/licenses/SHL-2.1/
//
// Unless required by applicable law or agreed to in writing, any work distributed under the
// License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
module instrTrackerTB(
input logic clk, reset, FlushE,
input logic [31:0] InstrF, InstrD,

View File

@ -0,0 +1,64 @@
///////////////////////////////////////////
// riscvassertions.sv
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
//
// Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
// may obtain a copy of the License at
//
// https://solderpad.org/licenses/SHL-2.1/
//
// Unless required by applicable law or agreed to in writing, any work distributed under the
// License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module riscvassertions;
initial begin
assert (`PMP_ENTRIES == 0 | `PMP_ENTRIES==16 | `PMP_ENTRIES==64) else $error("Illegal number of PMP entries: PMP_ENTRIES must be 0, 16, or 64");
assert (`S_SUPPORTED | `VIRTMEM_SUPPORTED == 0) else $error("Virtual memory requires S mode support");
assert (`IDIV_BITSPERCYCLE == 1 | `IDIV_BITSPERCYCLE==2 | `IDIV_BITSPERCYCLE==4) else $error("Illegal number of divider bits/cycle: IDIV_BITSPERCYCLE must be 1, 2, or 4");
assert (`F_SUPPORTED | ~`D_SUPPORTED) else $error("Can't support double fp (D) without supporting float (F)");
assert (`D_SUPPORTED | ~`Q_SUPPORTED) else $error("Can't support quad fp (Q) without supporting double (D)");
assert (`F_SUPPORTED | ~`ZFH_SUPPORTED) else $error("Can't support half-precision fp (ZFH) without supporting float (F)");
assert (`DCACHE_SUPPORTED | ~`F_SUPPORTED | `FLEN <= `XLEN) else $error("Data cache required to support FLEN > XLEN because AHB bus width is XLEN");
assert (`I_SUPPORTED ^ `E_SUPPORTED) else $error("Exactly one of I and E must be supported");
assert (`FLEN<=`XLEN | `DCACHE_SUPPORTED | `DTIM_SUPPORTED) else $error("Wally does not support FLEN > XLEN unleses data cache or DTIM is supported");
assert (`DCACHE_WAYSIZEINBYTES <= 4096 | (!`DCACHE_SUPPORTED) | `VIRTMEM_SUPPORTED == 0) else $error("DCACHE_WAYSIZEINBYTES cannot exceed 4 KiB when caches and vitual memory is enabled (to prevent aliasing)");
assert (`DCACHE_LINELENINBITS >= 128 | (!`DCACHE_SUPPORTED)) else $error("DCACHE_LINELENINBITS must be at least 128 when caches are enabled");
assert (`DCACHE_LINELENINBITS < `DCACHE_WAYSIZEINBYTES*8) else $error("DCACHE_LINELENINBITS must be smaller than way size");
assert (`ICACHE_WAYSIZEINBYTES <= 4096 | (!`ICACHE_SUPPORTED) | `VIRTMEM_SUPPORTED == 0) else $error("ICACHE_WAYSIZEINBYTES cannot exceed 4 KiB when caches and vitual memory is enabled (to prevent aliasing)");
assert (`ICACHE_LINELENINBITS >= 32 | (!`ICACHE_SUPPORTED)) else $error("ICACHE_LINELENINBITS must be at least 32 when caches are enabled");
assert (`ICACHE_LINELENINBITS < `ICACHE_WAYSIZEINBYTES*8) else $error("ICACHE_LINELENINBITS must be smaller than way size");
assert (2**$clog2(`DCACHE_LINELENINBITS) == `DCACHE_LINELENINBITS | (!`DCACHE_SUPPORTED)) else $error("DCACHE_LINELENINBITS must be a power of 2");
assert (2**$clog2(`DCACHE_WAYSIZEINBYTES) == `DCACHE_WAYSIZEINBYTES | (!`DCACHE_SUPPORTED)) else $error("DCACHE_WAYSIZEINBYTES must be a power of 2");
assert (2**$clog2(`ICACHE_LINELENINBITS) == `ICACHE_LINELENINBITS | (!`ICACHE_SUPPORTED)) else $error("ICACHE_LINELENINBITS must be a power of 2");
assert (2**$clog2(`ICACHE_WAYSIZEINBYTES) == `ICACHE_WAYSIZEINBYTES | (!`ICACHE_SUPPORTED)) else $error("ICACHE_WAYSIZEINBYTES must be a power of 2");
assert (2**$clog2(`ITLB_ENTRIES) == `ITLB_ENTRIES | `VIRTMEM_SUPPORTED==0) else $error("ITLB_ENTRIES must be a power of 2");
assert (2**$clog2(`DTLB_ENTRIES) == `DTLB_ENTRIES | `VIRTMEM_SUPPORTED==0) else $error("DTLB_ENTRIES must be a power of 2");
assert (`UNCORE_RAM_RANGE >= 56'h07FFFFFF) else $warning("Some regression tests will fail if UNCORE_RAM_RANGE is less than 56'h07FFFFFF");
assert (`ZICSR_SUPPORTED == 1 | (`PMP_ENTRIES == 0 & `VIRTMEM_SUPPORTED == 0)) else $error("PMP_ENTRIES and VIRTMEM_SUPPORTED must be zero if ZICSR not supported.");
assert (`ZICSR_SUPPORTED == 1 | (`S_SUPPORTED == 0 & `U_SUPPORTED == 0)) else $error("S and U modes not supported if ZICSR not supported");
assert (`U_SUPPORTED | (`S_SUPPORTED == 0)) else $error ("S mode only supported if U also is supported");
assert (`VIRTMEM_SUPPORTED == 0 | (`DTIM_SUPPORTED == 0 & `IROM_SUPPORTED == 0)) else $error("Can't simultaneously have virtual memory and DTIM_SUPPORTED/IROM_SUPPORTED because local memories don't translate addresses");
assert (`DCACHE_SUPPORTED | `VIRTMEM_SUPPORTED ==0) else $error("Virtual memory needs dcache");
assert (`ICACHE_SUPPORTED | `VIRTMEM_SUPPORTED ==0) else $error("Virtual memory needs icache");
assert ((`DCACHE_SUPPORTED == 0 & `ICACHE_SUPPORTED == 0) | `BUS_SUPPORTED) else $error("Dcache and Icache requires DBUS_SUPPORTED.");
assert (`DCACHE_LINELENINBITS <= `XLEN*16 | (!`DCACHE_SUPPORTED)) else $error("DCACHE_LINELENINBITS must not exceed 16 words because max AHB burst size is 1");
assert (`DCACHE_LINELENINBITS % 4 == 0) else $error("DCACHE_LINELENINBITS must hold 4, 8, or 16 words");
assert (`DCACHE_SUPPORTED | `A_SUPPORTED == 0) else $error("Atomic extension (A) requires cache on Wally.");
assert (`IDIV_ON_FPU == 0 | `F_SUPPORTED) else $error("IDIV on FPU needs F_SUPPORTED");
assert (`SSTC_SUPPORTED == 0 | (`S_SUPPORTED)) else $error("SSTC requires S_SUPPORTED");
end
endmodule

View File

@ -1,3 +1,24 @@
///////////////////////////////////////////
// wallyTracer.sv
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
//
// Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
// may obtain a copy of the License at
//
// https://solderpad.org/licenses/SHL-2.1/
//
// Unless required by applicable law or agreed to in writing, any work distributed under the
// License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
`define NUM_REGS 32
@ -14,7 +35,10 @@ module wallyTracer(rvviTrace rvvi);
// wally specific signals
logic reset;
logic clk;
logic InstrValidD, InstrValidE;
logic StallF, StallD;
logic STATUS_SXL, STATUS_UXL;
logic [`XLEN-1:0] PCNextF, PCF, PCD, PCE, PCM, PCW;
logic [`XLEN-1:0] InstrRawD, InstrRawE, InstrRawM, InstrRawW;
logic InstrValidM, InstrValidW;

View File

@ -519,47 +519,6 @@ logic [3:0] dummy;
endmodule
module riscvassertions;
initial begin
assert (`PMP_ENTRIES == 0 | `PMP_ENTRIES==16 | `PMP_ENTRIES==64) else $error("Illegal number of PMP entries: PMP_ENTRIES must be 0, 16, or 64");
assert (`S_SUPPORTED | `VIRTMEM_SUPPORTED == 0) else $error("Virtual memory requires S mode support");
assert (`IDIV_BITSPERCYCLE == 1 | `IDIV_BITSPERCYCLE==2 | `IDIV_BITSPERCYCLE==4) else $error("Illegal number of divider bits/cycle: IDIV_BITSPERCYCLE must be 1, 2, or 4");
assert (`F_SUPPORTED | ~`D_SUPPORTED) else $error("Can't support double fp (D) without supporting float (F)");
assert (`D_SUPPORTED | ~`Q_SUPPORTED) else $error("Can't support quad fp (Q) without supporting double (D)");
assert (`F_SUPPORTED | ~`ZFH_SUPPORTED) else $error("Can't support half-precision fp (ZFH) without supporting float (F)");
assert (`DCACHE_SUPPORTED | ~`F_SUPPORTED | `FLEN <= `XLEN) else $error("Data cache required to support FLEN > XLEN because AHB bus width is XLEN");
assert (`I_SUPPORTED ^ `E_SUPPORTED) else $error("Exactly one of I and E must be supported");
assert (`FLEN<=`XLEN | `DCACHE_SUPPORTED | `DTIM_SUPPORTED) else $error("Wally does not support FLEN > XLEN unleses data cache or DTIM is supported");
assert (`DCACHE_WAYSIZEINBYTES <= 4096 | (!`DCACHE_SUPPORTED) | `VIRTMEM_SUPPORTED == 0) else $error("DCACHE_WAYSIZEINBYTES cannot exceed 4 KiB when caches and vitual memory is enabled (to prevent aliasing)");
assert (`DCACHE_LINELENINBITS >= 128 | (!`DCACHE_SUPPORTED)) else $error("DCACHE_LINELENINBITS must be at least 128 when caches are enabled");
assert (`DCACHE_LINELENINBITS < `DCACHE_WAYSIZEINBYTES*8) else $error("DCACHE_LINELENINBITS must be smaller than way size");
assert (`ICACHE_WAYSIZEINBYTES <= 4096 | (!`ICACHE_SUPPORTED) | `VIRTMEM_SUPPORTED == 0) else $error("ICACHE_WAYSIZEINBYTES cannot exceed 4 KiB when caches and vitual memory is enabled (to prevent aliasing)");
assert (`ICACHE_LINELENINBITS >= 32 | (!`ICACHE_SUPPORTED)) else $error("ICACHE_LINELENINBITS must be at least 32 when caches are enabled");
assert (`ICACHE_LINELENINBITS < `ICACHE_WAYSIZEINBYTES*8) else $error("ICACHE_LINELENINBITS must be smaller than way size");
assert (2**$clog2(`DCACHE_LINELENINBITS) == `DCACHE_LINELENINBITS | (!`DCACHE_SUPPORTED)) else $error("DCACHE_LINELENINBITS must be a power of 2");
assert (2**$clog2(`DCACHE_WAYSIZEINBYTES) == `DCACHE_WAYSIZEINBYTES | (!`DCACHE_SUPPORTED)) else $error("DCACHE_WAYSIZEINBYTES must be a power of 2");
assert (2**$clog2(`ICACHE_LINELENINBITS) == `ICACHE_LINELENINBITS | (!`ICACHE_SUPPORTED)) else $error("ICACHE_LINELENINBITS must be a power of 2");
assert (2**$clog2(`ICACHE_WAYSIZEINBYTES) == `ICACHE_WAYSIZEINBYTES | (!`ICACHE_SUPPORTED)) else $error("ICACHE_WAYSIZEINBYTES must be a power of 2");
assert (2**$clog2(`ITLB_ENTRIES) == `ITLB_ENTRIES | `VIRTMEM_SUPPORTED==0) else $error("ITLB_ENTRIES must be a power of 2");
assert (2**$clog2(`DTLB_ENTRIES) == `DTLB_ENTRIES | `VIRTMEM_SUPPORTED==0) else $error("DTLB_ENTRIES must be a power of 2");
assert (`UNCORE_RAM_RANGE >= 56'h07FFFFFF) else $warning("Some regression tests will fail if UNCORE_RAM_RANGE is less than 56'h07FFFFFF");
assert (`ZICSR_SUPPORTED == 1 | (`PMP_ENTRIES == 0 & `VIRTMEM_SUPPORTED == 0)) else $error("PMP_ENTRIES and VIRTMEM_SUPPORTED must be zero if ZICSR not supported.");
assert (`ZICSR_SUPPORTED == 1 | (`S_SUPPORTED == 0 & `U_SUPPORTED == 0)) else $error("S and U modes not supported if ZICSR not supported");
assert (`U_SUPPORTED | (`S_SUPPORTED == 0)) else $error ("S mode only supported if U also is supported");
assert (`VIRTMEM_SUPPORTED == 0 | (`DTIM_SUPPORTED == 0 & `IROM_SUPPORTED == 0)) else $error("Can't simultaneously have virtual memory and DTIM_SUPPORTED/IROM_SUPPORTED because local memories don't translate addresses");
assert (`DCACHE_SUPPORTED | `VIRTMEM_SUPPORTED ==0) else $error("Virtual memory needs dcache");
assert (`ICACHE_SUPPORTED | `VIRTMEM_SUPPORTED ==0) else $error("Virtual memory needs icache");
assert ((`DCACHE_SUPPORTED == 0 & `ICACHE_SUPPORTED == 0) | `BUS_SUPPORTED) else $error("Dcache and Icache requires DBUS_SUPPORTED.");
assert (`DCACHE_LINELENINBITS <= `XLEN*16 | (!`DCACHE_SUPPORTED)) else $error("DCACHE_LINELENINBITS must not exceed 16 words because max AHB burst size is 1");
assert (`DCACHE_LINELENINBITS % 4 == 0) else $error("DCACHE_LINELENINBITS must hold 4, 8, or 16 words");
assert (`DCACHE_SUPPORTED | `A_SUPPORTED == 0) else $error("Atomic extension (A) requires cache on Wally.");
assert (`IDIV_ON_FPU == 0 | `F_SUPPORTED) else $error("IDIV on FPU needs F_SUPPORTED");
end
// *** DH 8/23/
endmodule
/* verilator lint_on STMTDLY */
/* verilator lint_on WIDTH */

View File

@ -322,46 +322,6 @@ module testbench;
endmodule
module riscvassertions;
initial begin
assert (`PMP_ENTRIES == 0 | `PMP_ENTRIES==16 | `PMP_ENTRIES==64) else $error("Illegal number of PMP entries: PMP_ENTRIES must be 0, 16, or 64");
assert (`S_SUPPORTED | `VIRTMEM_SUPPORTED == 0) else $error("Virtual memory requires S mode support");
assert (`IDIV_BITSPERCYCLE == 1 | `IDIV_BITSPERCYCLE==2 | `IDIV_BITSPERCYCLE==4) else $error("Illegal number of divider bits/cycle: IDIV_BITSPERCYCLE must be 1, 2, or 4");
assert (`F_SUPPORTED | ~`D_SUPPORTED) else $error("Can't support double fp (D) without supporting float (F)");
assert (`D_SUPPORTED | ~`Q_SUPPORTED) else $error("Can't support quad fp (Q) without supporting double (D)");
assert (`F_SUPPORTED | ~`ZFH_SUPPORTED) else $error("Can't support half-precision fp (ZFH) without supporting float (F)");
assert (`DCACHE_SUPPORTED | ~`F_SUPPORTED | `FLEN <= `XLEN) else $error("Data cache required to support FLEN > XLEN because AHB bus width is XLEN");
assert (`I_SUPPORTED ^ `E_SUPPORTED) else $error("Exactly one of I and E must be supported");
assert (`FLEN<=`XLEN | `DCACHE_SUPPORTED | `DTIM_SUPPORTED) else $error("Wally does not support FLEN > XLEN unleses data cache or DTIM is supported");
assert (`DCACHE_WAYSIZEINBYTES <= 4096 | (!`DCACHE_SUPPORTED) | `VIRTMEM_SUPPORTED == 0) else $error("DCACHE_WAYSIZEINBYTES cannot exceed 4 KiB when caches and vitual memory is enabled (to prevent aliasing)");
assert (`DCACHE_LINELENINBITS >= 128 | (!`DCACHE_SUPPORTED)) else $error("DCACHE_LINELENINBITS must be at least 128 when caches are enabled");
assert (`DCACHE_LINELENINBITS < `DCACHE_WAYSIZEINBYTES*8) else $error("DCACHE_LINELENINBITS must be smaller than way size");
assert (`ICACHE_WAYSIZEINBYTES <= 4096 | (!`ICACHE_SUPPORTED) | `VIRTMEM_SUPPORTED == 0) else $error("ICACHE_WAYSIZEINBYTES cannot exceed 4 KiB when caches and vitual memory is enabled (to prevent aliasing)");
assert (`ICACHE_LINELENINBITS >= 32 | (!`ICACHE_SUPPORTED)) else $error("ICACHE_LINELENINBITS must be at least 32 when caches are enabled");
assert (`ICACHE_LINELENINBITS < `ICACHE_WAYSIZEINBYTES*8) else $error("ICACHE_LINELENINBITS must be smaller than way size");
assert (2**$clog2(`DCACHE_LINELENINBITS) == `DCACHE_LINELENINBITS | (!`DCACHE_SUPPORTED)) else $error("DCACHE_LINELENINBITS must be a power of 2");
assert (2**$clog2(`DCACHE_WAYSIZEINBYTES) == `DCACHE_WAYSIZEINBYTES | (!`DCACHE_SUPPORTED)) else $error("DCACHE_WAYSIZEINBYTES must be a power of 2");
assert (2**$clog2(`ICACHE_LINELENINBITS) == `ICACHE_LINELENINBITS | (!`ICACHE_SUPPORTED)) else $error("ICACHE_LINELENINBITS must be a power of 2");
assert (2**$clog2(`ICACHE_WAYSIZEINBYTES) == `ICACHE_WAYSIZEINBYTES | (!`ICACHE_SUPPORTED)) else $error("ICACHE_WAYSIZEINBYTES must be a power of 2");
assert (2**$clog2(`ITLB_ENTRIES) == `ITLB_ENTRIES | `VIRTMEM_SUPPORTED==0) else $error("ITLB_ENTRIES must be a power of 2");
assert (2**$clog2(`DTLB_ENTRIES) == `DTLB_ENTRIES | `VIRTMEM_SUPPORTED==0) else $error("DTLB_ENTRIES must be a power of 2");
assert (`UNCORE_RAM_RANGE >= 56'h07FFFFFF) else $warning("Some regression tests will fail if UNCORE_RAM_RANGE is less than 56'h07FFFFFF");
assert (`ZICSR_SUPPORTED == 1 | (`PMP_ENTRIES == 0 & `VIRTMEM_SUPPORTED == 0)) else $error("PMP_ENTRIES and VIRTMEM_SUPPORTED must be zero if ZICSR not supported.");
assert (`ZICSR_SUPPORTED == 1 | (`S_SUPPORTED == 0 & `U_SUPPORTED == 0)) else $error("S and U modes not supported if ZISR not supported");
assert (`U_SUPPORTED | (`S_SUPPORTED == 0)) else $error ("S mode only supported if U also is supported");
assert (`VIRTMEM_SUPPORTED == 0 | (`DTIM_SUPPORTED == 0 & `IROM_SUPPORTED == 0)) else $error("Can't simultaneously have virtual memory and DTIM_SUPPORTED/IROM_SUPPORTED because local memories don't translate addresses");
assert (`DCACHE_SUPPORTED | `VIRTMEM_SUPPORTED ==0) else $error("Virtual memory needs dcache");
assert (`ICACHE_SUPPORTED | `VIRTMEM_SUPPORTED ==0) else $error("Virtual memory needs icache");
assert ((`DCACHE_SUPPORTED == 0 & `ICACHE_SUPPORTED == 0) | `BUS_SUPPORTED) else $error("Dcache and Icache requires DBUS.");
assert (`DCACHE_LINELENINBITS <= `XLEN*16 | (!`DCACHE_SUPPORTED)) else $error("DCACHE_LINELENINBITS must not exceed 16 words because max AHB burst size is 1");
assert (`DCACHE_LINELENINBITS % 4 == 0) else $error("DCACHE_LINELENINBITS must hold 4, 8, or 16 words");
assert (`DCACHE_SUPPORTED | `A_SUPPORTED == 0) else $error("Atomic extension (A) requires cache on Wally.");
assert (`IDIV_ON_FPU == 0 | `F_SUPPORTED) else $error("IDIV on FPU needs F_SUPPORTED");
end
// *** DH 8/23/
endmodule
/* verilator lint_on STMTDLY */
/* verilator lint_on WIDTH */

View File

@ -5,23 +5,38 @@
.global rvtest_entry_point
rvtest_entry_point:
lui t0, 0x1e # turn on Floating point and XS
lui t0, 0x02 # turn on Floating point and XS
csrs mstatus, t0
# openhwgroup/cvw Issue #55
la a6, begin_signature
la a7, rvtest_data
fadd.d ft0, ft1, ft2
# openhwgroup/cvw Issue #55
fld f4, 0(a7)
fld f9, 8(a7)
# li x1, 0x7ff0000000000001
# sd x1, 0(a6)
# fmv.w.x f4, x1
# li x1, 0x7ff8000000000000
# fmv.w.x f9, x1
fsgnjx.s f12,f9,f4 # expected f 0xffffffff7fc00000
fsgnjx.s f12,f9,f4 # expected f 0xffffffff7fc00000, hdl has been giving fff8000000000000
fsd f12, 0(a6)
# openhwgroup/cvw Issue #56
fld f4, 16(a7)
fld f14, 24(a7)
fsgnjx.s f10,f4,f14 # expected f 0xffffffff7fc00000, hdl has been giving 0xcfa695b1047553b1
fsd f19, 8(a6)
# openhwgroup/cvw Issue #57
fld f0, 32(a7)
fld f15, 40(a7)
fsgnjx.s f30,f0,f15 # expected f 0xfffffffffb3754ef, hdl has been giving 0xffffffff7b3754ef
fsd f30, 16(a6)
# openhwgroup/cvw Issue #58
fld f14, 48(a7)
fclass.s x2, f14 # expected 0x0000000000000200, hdl had been giving 0x0000000000000220
sd x2, 24(a6)
# fsgnjx.s, fclass.s, fsgnjn.s, fsgnj.s, fneg.s, fabs.s, fmv.s all treat inputs as dp rather than sp
#########################
# HTIF and signature
#########################
@ -47,10 +62,14 @@ fromhost:
rvtest_data:
.dword 0x7ff0000000000001
.dword 0x7ff8000000000000
.dword 0xcfa695b1047553b1
.dword 0xffffffff7fc00000
.dword 0xfffffffffb3754ef
.dword 0x7fefffffffffffff
.EQU XLEN,64
begin_signature:
.fill 2*(XLEN/32),4,0xdeadbeef #
.fill 8*(XLEN/32),4,0xdeadbeef #
end_signature:
# Initialize stack with room for 512 bytes

View File

@ -52,9 +52,9 @@ test_cases:
#
# ---------------------------------------------------------------------------------------------
# =========== test 12.3.1.1 Page Table Translation ===========
# =========== test 8.3.1.1 Page Table Translation ===========
# test 12.3.1.1.1 write page tables / entries to phyiscal memory
# test 8.3.1.1.1 write page tables / entries to phyiscal memory
# sv32 Page table (See Figure 12.12***):
# Level 1 page table, situated at 0x8000D000
.4byte 0x8000D000, 0x20004C01, write32_test # points to level 0 page table A
@ -78,19 +78,19 @@ test_cases:
.4byte 0x8000F000, 0x200000CF, write32_test # Vaddr 0x0 Paddr 0x80000000: aligned megapage
.4byte 0x8000F800, 0x200000CF, write32_test # Vaddr 0x80000000 Paddr 0x80000000: aligned megapage (program and data memory)
# test 12.3.1.1.2 write values to Paddrs in each page
# each of these values is used for 12.3.1.1.3 and some other tests, specified in the comments.
# test 8.3.1.1.2 write values to Paddrs in each page
# each of these values is used for 8.3.1.1.3 and some other tests, specified in the comments.
# when a test is supposed to fault, nothing is written into where it'll be reading/executing since it should fault before getting there.
.4byte 0x800AAAA8, 0xBEEF0055, write32_test # 12.3.1.1.4 megapage
.4byte 0x800FFAC0, 0xBEEF0033, write32_test # 12.3.1.3.2
.4byte 0x800E3130, 0xBEEF0077, write32_test # 12.3.1.3.2
.4byte 0x808017E0, 0xBEEF0099, write32_test # 12.3.1.1.4 kilopage
.4byte 0x80805EA0, 0xBEEF0440, write32_test # 12.3.1.3.3
.4byte 0x80803AA0, 0xBEEF0BB0, write32_test # 12.3.1.3.7
.4byte 0x800AAAA8, 0xBEEF0055, write32_test # 8.3.1.1.4 megapage
.4byte 0x800FFAC0, 0xBEEF0033, write32_test # 8.3.1.3.2
.4byte 0x800E3130, 0xBEEF0077, write32_test # 8.3.1.3.2
.4byte 0x808017E0, 0xBEEF0099, write32_test # 8.3.1.1.4 kilopage
.4byte 0x80805EA0, 0xBEEF0440, write32_test # 8.3.1.3.3
.4byte 0x80803AA0, 0xBEEF0BB0, write32_test # 8.3.1.3.7
.4byte 0x8000FFA0, 0x11100393, write32_test # write executable code for "li x7, 0x111; ret" to executable region.
.4byte 0x8000FFA4, 0x00008067, write32_test # Used for 12.3.1.3.1, 12.3.1.3.2
.4byte 0x8000FFA4, 0x00008067, write32_test # Used for 8.3.1.3.1, 8.3.1.3.2
# test 12.3.1.1.3 read values back from Paddrs without translation (this also verifies the previous test)
# test 8.3.1.1.3 read values back from Paddrs without translation (this also verifies the previous test)
.4byte 0x0, 0x0, goto_baremetal # satp.MODE = baremetal / no translation.
.4byte 0x0, 0x0, goto_s_mode # change to S mode, 0xb written to output
.4byte 0x800AAAA8, 0xBEEF0055, read32_test
@ -102,38 +102,38 @@ test_cases:
.4byte 0x8000FFA0, 0x11100393, read32_test
.4byte 0x8000FFA4, 0x00008067, read32_test
# test 12.3.1.1.4 check translation works in sv48, read the same values from previous tests, this time with Vaddrs
# test 8.3.1.1.4 check translation works in sv48, read the same values from previous tests, this time with Vaddrs
.4byte 0x8000D, 0x0, goto_sv32 # satp.MODE = sv32, Nothing written to output
.4byte 0x4AAAA8, 0xBEEF0055, read32_test # megapage at Vaddr 0x400000, Paddr 0x80000000
.4byte 0xBFF7E0, 0xBEEF0099, read32_test # kilopage at Vaddr 0xBFF000, Paddr 0x80201000
# =========== test 12.3.1.2 page fault tests ===========
# =========== test 8.3.1.2 page fault tests ===========
# test 12.3.1.2.1 load page fault if upper bits of Vaddr are not the same
# test 8.3.1.2.1 load page fault if upper bits of Vaddr are not the same
# Not tested in rv32/sv32
# test 12.3.1.2.2 load page fault when reading an address where the valid flag is zero
# test 8.3.1.2.2 load page fault when reading an address where the valid flag is zero
.4byte 0x6000, 0x0, read32_test
# test 12.3.1.2.3 store page fault if PTE has W and ~R flags set
# test 8.3.1.2.3 store page fault if PTE has W and ~R flags set
.4byte 0x2000, 0x0, write32_test
# test 12.3.1.2.4 Fault if last level PTE is a pointer
# test 8.3.1.2.4 Fault if last level PTE is a pointer
.4byte 0x0200, 0x0, read32_test
# test 12.3.1.2.5 load page fault on misaligned pages
# test 8.3.1.2.5 load page fault on misaligned pages
.4byte 0xC00000, 0x0, read32_test # misaligned megapage
# =========== test 12.3.1.3 PTE Protection flags ===========
# =========== test 8.3.1.3 PTE Protection flags ===========
# test 12.3.1.3.1 User flag == 0
# *** reads on pages with U=0 already tested in 12.3.1.1.4
# test 8.3.1.3.1 User flag == 0
# *** reads on pages with U=0 already tested in 8.3.1.1.4
.4byte 0x40FFA0, 0x111, executable_test # fetch success when U=0, priv=S
.4byte 0x80400000, 0x1, goto_u_mode # go to U mode, return to VPN 0x80400000 where PTE.U = 1. 0x9 written to output
.4byte 0xBFFC80, 0xBEEF0550, read32_test # load page fault when U=0, priv=U
.4byte 0x40FFA0, 0xbad, executable_test # instr page fault when U=0, priv=U
# test 12.3.1.3.2 User flag == 1
# test 8.3.1.3.2 User flag == 1
.4byte 0x804FFAC0, 0xBEEF0033, read32_test # read success when U=1, priv=U
.4byte 0x80000000, 0x1, goto_s_mode # go back to S mode, return to VPN 0x80000000 where PTE.U = 0. 0x8 written to output
.4byte 0x0, 0x3, write_mxr_sum # set sstatus.[MXR, SUM] = 11
@ -142,58 +142,58 @@ test_cases:
.4byte 0x0, 0x2, write_mxr_sum # set sstatus.[MXR, SUM] = 10.
.4byte 0x804FFAC0, 0xBEEF0033, read32_test # load page fault when U-1, priv=S, sstatus.SUM=0
# test 12.3.1.3.3 Read flag
# *** reads on pages with R=1 already tested in 12.3.1.1.4
# test 8.3.1.3.3 Read flag
# *** reads on pages with R=1 already tested in 8.3.1.1.4
.4byte 0x0, 0x1, write_mxr_sum # set sstatus.[MXR, SUM] = 01.
.4byte 0x5EA0, 0xBEEF0440, read32_test # load page fault when R=0, sstatus.MXR=0
.4byte 0x0, 0x3, write_mxr_sum # set sstatus.[MXR, SUM] = 11.
.4byte 0x5EA0, 0xBEEF0440, read32_test # read success when R=0, MXR=1, X=1
# test 12.3.1.3.4 Write flag
# test 8.3.1.3.4 Write flag
.4byte 0xBFF290, 0xBEEF0110, write32_test # write success when W=1
.4byte 0xBFF290, 0xBEEF0110, read32_test # check write success by reading
.4byte 0x5B78, 0xBEEF0CC0, write32_test # store page fault when W=0
# test 12.3.1.3.5 eXecute flag
# *** fetches on pages with X = 1 already tested in 12.3.1.3.1
# test 8.3.1.3.5 eXecute flag
# *** fetches on pages with X = 1 already tested in 8.3.1.3.1
.4byte 0xBFFDE0, 0xbad, executable_test # instr page fault when X=0
# test 12.3.1.3.6 Accessed flag == 0
# test 8.3.1.3.6 Accessed flag == 0
.4byte 0x3020, 0xBEEF0770, write32_test # store page fault when A=0
.4byte 0x3808, 0xBEEF0990, read32_test # load page fault when A=0
# test 12.3.1.3.7 Dirty flag == 0
# test 8.3.1.3.7 Dirty flag == 0
.4byte 0x4658, 0xBEEF0AA0, write32_test # store page fault when D=0
.4byte 0x4AA0, 0xBEEF0BB0, read32_test # read success when D=0
# =========== test 12.3.1.4 SATP Register ===========
# =========== test 8.3.1.4 SATP Register ===========
# test 12.3.1.4.1 SATP ASID and PPN fields (test having two page tables with different ASID)
# test 8.3.1.4.1 SATP ASID and PPN fields (test having two page tables with different ASID)
// *** .4byte 0xFFFFFFFFFFFFF888, 0x0220DEADBEEF0099, write32_test # write identical value to global PTE to make sure it's still in the TLB
.4byte 0x8000F, 0x11, goto_sv32 # go to SV39 on a second, very minimal page table
.4byte 0xE3130, 0xBEEF0077, read32_test # Read success of old written value from a new page table mapping
# test 12.3.1.4.2 Test Global mapping
# test 8.3.1.4.2 Test Global mapping
// ***.4byte 0x7FFFFFF888, 0x0220DEADBEEF0099, read32_test # read success of global PTE undefined in current mapping.
# =========== test 12.3.1.5 STATUS Registers ===========
# =========== test 8.3.1.5 STATUS Registers ===========
# test 12.3.1.5.1 mstatus.mprv translation
# test 8.3.1.5.1 mstatus.mprv translation
# *** mstatus.mprv = 0 tested on every one of the translated reads and writes before this.
.4byte 0x8000D, 0x0, goto_sv32 // go back to old, extensive page table
.4byte 0x80000000, 0x1, goto_m_mode // go to m mode to be able to write mstatus
.4byte 0x1, 0x1, read_write_mprv // write 1 to mstatus.mprv and set mstatus.mpp to be 01=S
.4byte 0xBFF7E0, 0xBEEF0099, read32_test // read test succeeds with translation even though we're in M mode since MPP=S and MPRV=1
# test 12.3.1.5.2 mstatus.mprv clearing
# test 8.3.1.5.2 mstatus.mprv clearing
# mstatus.mprv is already 1 from the last test so going to S mode should clear it with the mret
.4byte 0x80000000, 0x1, goto_s_mode // This should zero out the mprv bit but now to read and write mstatus, we have to
.4byte 0x80000000, 0x1, goto_m_mode // go back to m mode to allow us to reread mstatus.
.4byte 0x0, 0x0, read_write_mprv // read what should be a zeroed out mprv value and then force it back to zero.
# test 12.3.1.5.3 sstatus.mxr read
# this bitfield already tested in 12.3.1.3.3
# test 8.3.1.5.3 sstatus.mxr read
# this bitfield already tested in 8.3.1.3.3
# terminate tests
.4byte 0x0, 0x0, terminate_test # brings us back into machine mode with a final ecall, writing 0x9 to the output.

View File

@ -52,9 +52,9 @@ test_cases:
#
# ---------------------------------------------------------------------------------------------
# =========== test 12.3.1.1 Page Table Translation ===========
# =========== test 8.3.1.1 Page Table Translation ===========
# test 12.3.1.1.1 write page tables / entries to phyiscal memory
# test 8.3.1.1.1 write page tables / entries to phyiscal memory
# sv39 page table (See Figure 12.12***):
# Level 2 page table, situated at 0x8000D000
.8byte 0x000000008000D000, 0x0000000020004C01, write64_test# points to level 1 page table A
@ -89,20 +89,20 @@ test_cases:
.8byte 0x8FFFF000, 0x200000CF, write64_test# Vaddr 0x0, Paddr 0x80000000 aligned gigapage
.8byte 0x8FFFF010, 0x200000CF, write64_test# Vaddr 0x8000_0000, Paddr 0x80000000: aligned gigapage (program and data memory so we can execute without jumping around)
# test 12.3.1.1.2 write values to Paddrs in each page
# each of these values is used for 12.3.1.1.3 and some other tests, specified in the comments.
# test 8.3.1.1.2 write values to Paddrs in each page
# each of these values is used for 8.3.1.1.3 and some other tests, specified in the comments.
# when a test is supposed to fault, nothing is written into where it'll be reading/executing since it shuold fault before getting there.
.8byte 0x80200AB0, 0x0000DEADBEEF0000, write64_test# 12.3.1.1.4 and 12.3.1.4.1
.8byte 0x800FFAB8, 0x0880DEADBEEF0055, write64_test# 12.3.1.1.4
.8byte 0x80200AC0, 0x0990DEADBEEF0033, write64_test# 12.3.1.3.2
.8byte 0x80203130, 0x0110DEADBEEF0077, write64_test# 12.3.1.3.2
.8byte 0x80099000, 0x0000806711100393, write64_test# 12.3.1.3.1 and 12.3.1.3.2 write executable code for "li x7, 0x111; ret"
.8byte 0x80205AA0, 0x0000806711100393, write64_test# 12.3.1.3.5 write same executable code
.8byte 0x80201888, 0x0220DEADBEEF0099, write64_test# 12.3.1.1.4
.8byte 0x84212348, 0x0330DEADBEEF0440, write64_test# 12.3.1.3.3
.8byte 0x80203AA0, 0x0440DEADBEEF0BB0, write64_test# 12.3.1.3.7
.8byte 0x80200AB0, 0x0000DEADBEEF0000, write64_test# 8.3.1.1.4 and 8.3.1.4.1
.8byte 0x800FFAB8, 0x0880DEADBEEF0055, write64_test# 8.3.1.1.4
.8byte 0x80200AC0, 0x0990DEADBEEF0033, write64_test# 8.3.1.3.2
.8byte 0x80203130, 0x0110DEADBEEF0077, write64_test# 8.3.1.3.2
.8byte 0x80099000, 0x0000806711100393, write64_test# 8.3.1.3.1 and 8.3.1.3.2 write executable code for "li x7, 0x111; ret"
.8byte 0x80205AA0, 0x0000806711100393, write64_test# 8.3.1.3.5 write same executable code
.8byte 0x80201888, 0x0220DEADBEEF0099, write64_test# 8.3.1.1.4
.8byte 0x84212348, 0x0330DEADBEEF0440, write64_test# 8.3.1.3.3
.8byte 0x80203AA0, 0x0440DEADBEEF0BB0, write64_test# 8.3.1.3.7
# test 12.3.1.1.3 read values back from Paddrs without translation (this also verifies the previous test)
# test 8.3.1.1.3 read values back from Paddrs without translation (this also verifies the previous test)
.8byte 0x0, 0x0, goto_baremetal# satp.MODE = baremetal / no translation.
.8byte 0x0, 0x0, goto_s_mode # change to S mode, 0xb written to output
.8byte 0x80200AB0, 0x0000DEADBEEF0000, read64_test
@ -113,42 +113,42 @@ test_cases:
.8byte 0x84212348, 0x0330DEADBEEF0440, read64_test
.8byte 0x80203AA0, 0x0440DEADBEEF0BB0, read64_test
# test 12.3.1.1.4 check translation works in sv39, read the same values from previous tests, this time with Vaddrs
# test 8.3.1.1.4 check translation works in sv39, read the same values from previous tests, this time with Vaddrs
.8byte 0x8000D, 0x0, goto_sv39 # satp.MODE = sv39, with base page table PPN = 0x8000D and ASID = 0. current VPN: gigapage at 0x80000000.
.8byte 0x80200AB0, 0x0000DEADBEEF0000, read64_test # gigapage at Vaddr 0x80000000, Paddr 0x80000000
.8byte 0x400FFAB8, 0x0880DEADBEEF0055, read64_test # megapage at Vaddr 0x40400000, Paddr 0x80000000
.8byte 0xFFFFFFFFFFFFF888, 0x0220DEADBEEF0099, read64_test # kilopage at Vaddr 0xFFFFFFFFFFFFF000, Paddr 0x80201000
# =========== test 12.3.1.2 page fault tests ===========
# =========== test 8.3.1.2 page fault tests ===========
# test 12.3.1.2.1 load page fault if upper bits of Vaddr are not the same
# test 8.3.1.2.1 load page fault if upper bits of Vaddr are not the same
.8byte 0x0010000080000AB0, 0x0, read64_test# gigapage at Vaddr 0x80000000, Paddr 0x80000000, bad 1 in upper bits
.8byte 0xFF0FFFFFFFFFF888, 0x0, read64_test# kilopage at Vaddr 0xFFFFFFFFFFFFF000, Paddr 0x80201000, bad 0000 in upper bits
# test 12.3.1.2.2 load page fault when reading an address where the valid flag is zero
# test 8.3.1.2.2 load page fault when reading an address where the valid flag is zero
.8byte 0x6000, 0x0, read64_test
# test 12.3.1.2.3 store page fault if PTE has W and ~R flags set
# test 8.3.1.2.3 store page fault if PTE has W and ~R flags set
.8byte 0x2000, 0x0, write64_test
# test 12.3.1.2.4 Fault if last level PTE is a pointer
# test 8.3.1.2.4 Fault if last level PTE is a pointer
.8byte 0x0020, 0x0, read64_test
# test 12.3.1.2.5 load page fault on misaligned pages
# test 8.3.1.2.5 load page fault on misaligned pages
.8byte 0xC0000000, 0x0, read64_test# misaligned gigapage
.8byte 0x40200000, 0x0, read64_test# misaligned megapage
# =========== test 12.3.1.3 PTE Protection flags ===========
# =========== test 8.3.1.3 PTE Protection flags ===========
# test 12.3.1.3.1 User flag == 0
# *** reads on pages with U=0 already tested in 12.3.1.1.4
# test 8.3.1.3.1 User flag == 0
# *** reads on pages with U=0 already tested in 8.3.1.1.4
.8byte 0x40099000, 0x111, executable_test # execute success when U=0, priv=S
.8byte 0x40400000, 0x2, goto_u_mode # go to U mode, return to megapage at 0x40400000 where U = 1. 0x9 written to output
.8byte 0xFFFFFFFFFFFFFC80, 0x0880DEADBEEF0550, read64_test # load page fault when U=0, priv=U
.8byte 0x40099000, 0xbad, executable_test # execute fault when U=0, priv=U
# test 12.3.1.3.2 User flag == 1
# test 8.3.1.3.2 User flag == 1
.8byte 0x1AC0, 0x0990DEADBEEF0033, read64_test # read success when U=1, priv=U
.8byte 0x80000000, 0x1, goto_s_mode # go back to S mode, return to gigapage at 0x80000000 where U = 0. 0x8 written to output
.8byte 0x0, 0x3, write_mxr_sum # set sstatus.[MXR, SUM] = 11
@ -157,58 +157,58 @@ test_cases:
.8byte 0x0, 0x2, write_mxr_sum # set sstatus.[MXR, SUM] = 10.
.8byte 0x1AC0, 0x0990DEADBEEF0033, read64_test # load page fault when U-1, priv=S, sstatus.SUM=0
# test 12.3.1.3.3 Read flag
# *** reads on pages with R=1 already tested in 12.3.1.1.4
# test 8.3.1.3.3 Read flag
# *** reads on pages with R=1 already tested in 8.3.1.1.4
.8byte 0x0, 0x1, write_mxr_sum # set sstatus.[MXR, SUM] = 01.
.8byte 0x40612348, 0x0330DEADBEEF0440, read64_test # load page fault when R=0, sstatus.MXR=0
.8byte 0x0, 0x3, write_mxr_sum # set sstatus.[MXR, SUM] = 11.
.8byte 0x40612348, 0x0330DEADBEEF0440, read64_test # read success when MXR=1, X=1
# test 12.3.1.3.4 Write flag
# test 8.3.1.3.4 Write flag
.8byte 0x80AAAAA0, 0x0440DEADBEEF0110, write64_test# write success when W=1
.8byte 0x80AAAAA0, 0x0440DEADBEEF0110, read64_test# check write success by reading the same address
.8byte 0x40000000, 0x0220DEADBEEF0BB0, write64_test# store page fault when W=0
# test 12.3.1.3.5 eXecute flag
# *** fetches on pages with X = 1 already tested in 12.3.1.3.1
# test 8.3.1.3.5 eXecute flag
# *** fetches on pages with X = 1 already tested in 8.3.1.3.1
.8byte 0x5AA0, 0x1, executable_test # instr page fault when X=0
# test 12.3.1.3.6 Accessed flag == 0
# test 8.3.1.3.6 Accessed flag == 0
.8byte 0x36D0, 0x0990DEADBEEF0770, write64_test# store page fault when A=0
.8byte 0x3AB8, 0x0990DEADBEEF0990, read64_test# load page fault when A=0
# test 12.3.1.3.7 Dirty flag == 0
# test 8.3.1.3.7 Dirty flag == 0
.8byte 0x4658, 0x0440DEADBEEF0AA0, write64_test# store page fault when D=0
.8byte 0x4AA0, 0x0440DEADBEEF0BB0, read64_test# read success when D=0
# =========== test 12.3.1.4 SATP Register ===========
# =========== test 8.3.1.4 SATP Register ===========
# test 12.3.1.4.1 SATP ASID and PPN fields (test having two page tables with different ASID)
# test 8.3.1.4.1 SATP ASID and PPN fields (test having two page tables with different ASID)
// *** .8byte 0xFFFFFFFFFFFFF888, 0x0220DEADBEEF0099, write64_test # write identical value to global PTE to make sure it's still in the TLB
.8byte 0x8FFFF, 0x11, goto_sv39 # go to SV39 on a second, very minimal page table
.8byte 0x200AB0, 0x0000DEADBEEF0000, read64_test # Read success of old written value from a new page table mapping
# test 12.3.1.4.2 Test Global mapping
# test 8.3.1.4.2 Test Global mapping
// ***.8byte 0x7FFFFFF888, 0x0220DEADBEEF0099, read64_test # read success of global PTE undefined in current mapping.
# =========== test 12.3.1.5 STATUS Registers ===========
# =========== test 8.3.1.5 STATUS Registers ===========
# test 12.3.1.5.1 mstatus.mprv translation
# test 8.3.1.5.1 mstatus.mprv translation
# *** mstatus.mprv = 0 tested on every one of the translated reads and writes before this.
.8byte 0x8000D, 0x0, goto_sv39 // go back to old, extensive page table
.8byte 0x80000000, 0x1, goto_m_mode // go to m mode to be able to write mstatus
.8byte 0x1, 0x1, read_write_mprv // write 1 to mstatus.mprv and set mstatus.mpp to be 01=S
.8byte 0xFFFFFFFFFFFFF888, 0x0220DEADBEEF0099, read64_test // read test succeeds with translation even though we're in M mode since MPP=S and MPRV=1
# test 12.3.1.5.2 mstatus.mprv clearing
# test 8.3.1.5.2 mstatus.mprv clearing
# mstatus.mprv is already 1 from the last test so going to S mode should clear it with the mret
.8byte 0x80000000, 0x1, goto_s_mode // This should zero out the mprv bit but now to read and write mstatus, we have to
.8byte 0x80000000, 0x1, goto_m_mode // go back to m mode to allow us to reread mstatus.
.8byte 0x0, 0x0, read_write_mprv // read what should be a zeroed out mprv value and then force it back to zero.
# test 12.3.1.5.3 sstatus.mxr read
# this bitfield already tested in 12.3.1.3.3
# test 8.3.1.5.3 sstatus.mxr read
# this bitfield already tested in 8.3.1.3.3
# terminate tests
.8byte 0x0, 0x0, terminate_test # brings us back into machine mode with a final ecall, writing 0x9 to the output.

View File

@ -54,9 +54,9 @@ test_cases:
# ---------------------------------------------------------------------------------------------
# =========== test 12.3.1.1 Page Table Translation ===========
# =========== test 8.3.1.1 Page Table Translation ===========
# test 12.3.1.1.1 write page tables / entries to phyiscal memory
# test 8.3.1.1.1 write page tables / entries to phyiscal memory
# sv48 page table (See Figure 12.12***):
# Level 3 page table, situated at 0x8000D000
.8byte 0x000000008000D000, 0x0000000020004C01, write64_test # points to level 2 page table A
@ -101,22 +101,22 @@ test_cases:
.8byte 0x8002F010, 0x200000CF, write64_test # Vaddr 0x80000000, Paddr 0x80000000: aligned gigapage (data and instr memory)
# test 12.3.1.1.2 write values to Paddrs in each page
# each of these values is used for 12.3.1.1.3 and some other tests, specified in the comments.
# test 8.3.1.1.2 write values to Paddrs in each page
# each of these values is used for 8.3.1.1.3 and some other tests, specified in the comments.
# when a test is supposed to fault, nothing is written into where it'll be reading/executing since it should fault before getting there.
.8byte 0x82777778, 0x0EE0DEADBEEF0CC0, write64_test # 12.3.1.1.4 terapage
.8byte 0x85BC0AB0, 0x0000DEADBEEF0000, write64_test # 12.3.1.1.4 gigapage
.8byte 0x800F0AB8, 0x0880DEADBEEF0055, write64_test # 12.3.1.1.4 megapage
.8byte 0x80201888, 0x0220DEADBEEF0099, write64_test # 12.3.1.1.4 kilopage
.8byte 0x80099000, 0x0000806711100393, write64_test # 12.3.1.3.1 write executable code for "li x7, 0x111; ret"
.8byte 0x80200400, 0x0000806711100393, write64_test # 12.3.1.3.2 write same executable code
.8byte 0x80200AC0, 0x0990DEADBEEF0033, write64_test # 12.3.1.3.2
.8byte 0x80200130, 0x0110DEADBEEF0077, write64_test # 12.3.1.3.2
.8byte 0x85212348, 0x0330DEADBEEF0440, write64_test # 12.3.1.3.3
.8byte 0x88888000, 0x0000806711100393, write64_test # 12.3.1.3.5 write same executable code
.8byte 0x80203AA0, 0x0440DEADBEEF0BB0, write64_test # 12.3.1.3.7
.8byte 0x82777778, 0x0EE0DEADBEEF0CC0, write64_test # 8.3.1.1.4 terapage
.8byte 0x85BC0AB0, 0x0000DEADBEEF0000, write64_test # 8.3.1.1.4 gigapage
.8byte 0x800F0AB8, 0x0880DEADBEEF0055, write64_test # 8.3.1.1.4 megapage
.8byte 0x80201888, 0x0220DEADBEEF0099, write64_test # 8.3.1.1.4 kilopage
.8byte 0x80099000, 0x0000806711100393, write64_test # 8.3.1.3.1 write executable code for "li x7, 0x111; ret"
.8byte 0x80200400, 0x0000806711100393, write64_test # 8.3.1.3.2 write same executable code
.8byte 0x80200AC0, 0x0990DEADBEEF0033, write64_test # 8.3.1.3.2
.8byte 0x80200130, 0x0110DEADBEEF0077, write64_test # 8.3.1.3.2
.8byte 0x85212348, 0x0330DEADBEEF0440, write64_test # 8.3.1.3.3
.8byte 0x88888000, 0x0000806711100393, write64_test # 8.3.1.3.5 write same executable code
.8byte 0x80203AA0, 0x0440DEADBEEF0BB0, write64_test # 8.3.1.3.7
# test 12.3.1.1.3 read values back from Paddrs without translation (this also verifies the previous test)
# test 8.3.1.1.3 read values back from Paddrs without translation (this also verifies the previous test)
.8byte 0x0, 0x0, goto_baremetal # satp.MODE = baremetal / no translation.
.8byte 0x0, 0x0, goto_s_mode # change to S mode, 0xb written to output
.8byte 0x82777778, 0x0EE0DEADBEEF0CC0, read64_test
@ -128,43 +128,43 @@ test_cases:
.8byte 0x85212348, 0x0330DEADBEEF0440, read64_test
.8byte 0x80203AA0, 0x0440DEADBEEF0BB0, read64_test
# test 12.3.1.1.4 check translation works in sv48, read the same values from previous tests, this time with Vaddrs
# test 8.3.1.1.4 check translation works in sv48, read the same values from previous tests, this time with Vaddrs
.8byte 0x8000D, 0x0, goto_sv48 # satp.MODE = sv48, with base page table PPN = 0x8000D and ASID = 0. current VPN: megapage at 0x80000000. Nothing written to output
.8byte 0x10082777778, 0x0EE0DEADBEEF0CC0, read64_test # terapage at Vaddr 0x010000000000, Paddr 0x0
.8byte 0x8005BC0AB0, 0x0000DEADBEEF0000, read64_test # gigapage at Vaddr 0x008000000000, Paddr 0x80000000
.8byte 0x800F0AB8, 0x0880DEADBEEF0055, read64_test # megapage at Vaddr 0x80000000, Paddr 0x80000000
.8byte 0xFFFFFFFFFFFFF888, 0x0220DEADBEEF0099, read64_test # kilopage at Vaddr 0xFFFFFFFFFFFFF000, Paddr 0x80201000
# =========== test 12.3.1.2 page fault tests ===========
# =========== test 8.3.1.2 page fault tests ===========
# test 12.3.1.2.1 page fault if upper bits of Vaddr are not the same
# test 8.3.1.2.1 page fault if upper bits of Vaddr are not the same
.8byte 0x001000800ABC0AB0, 0x0, read64_test# gigapage at Vaddr 0x008000000000, Paddr 0x80000000, bad 1 in upper bits
.8byte 0xFF0FFFFFFFFFF888, 0x0, read64_test# kilopage at Vaddr 0xFFFFFFFFFFFFF000, Paddr 0x80201000, bad 0000 in upper bits
# test 12.3.1.2.2 read fault when reading an address where the valid flag is zero
# test 8.3.1.2.2 read fault when reading an address where the valid flag is zero
.8byte 0x80205000, 0x0, read64_test
# test 12.3.1.2.3 write fault if PTE has W and ~R flags set
# test 8.3.1.2.3 write fault if PTE has W and ~R flags set
.8byte 0x80202000, 0x0, write64_test
# test 12.3.1.2.4 Fault if last level PTE is a pointer
# test 8.3.1.2.4 Fault if last level PTE is a pointer
.8byte 0x80200000, 0x0, read64_test
# test 12.3.1.2.5 read fault on misaligned pages
# test 8.3.1.2.5 read fault on misaligned pages
.8byte 0x18000000000, 0x0, read64_test # misaligned terapage
.8byte 0x8080000000, 0x0, read64_test # misaligned gigapage
.8byte 0x80400000, 0x0, read64_test # misaligned megapage
# =========== test 12.3.1.3 PTE Protection flags ===========
# =========== test 8.3.1.3 PTE Protection flags ===========
# test 12.3.1.3.1 User flag == 0
# reads on pages with U=0 already tested in 12.3.1.1.4
# test 8.3.1.3.1 User flag == 0
# reads on pages with U=0 already tested in 8.3.1.1.4
.8byte 0x008000099000, 0x111, executable_test # execute success when U=0, priv=S
.8byte 0x008040000000, 0x1, goto_u_mode # go to U mode, return to gigapage at 0x008040000000 where PTE.U = 1. 0x9 written to output
.8byte 0xFFFFFFFFFFFFFC80, 0x0880DEADBEEF0550, read64_test # read fault when U=0, priv=U
.8byte 0x008000099000, 0xbad, executable_test # execute fault when U=0, priv=U
# test 12.3.1.3.2 User flag == 1
# test 8.3.1.3.2 User flag == 1
.8byte 0x80201AC0, 0x0990DEADBEEF0033, read64_test # read success when U=1, priv=U
.8byte 0x80000000, 0x2, goto_s_mode
.8byte 0x0, 0x3, write_mxr_sum # set sstatus.[MXR, SUM] = 11
@ -173,58 +173,58 @@ test_cases:
.8byte 0x0, 0x2, write_mxr_sum # set sstatus.[MXR, SUM] = 10.
.8byte 0x80201AC0, 0x0990DEADBEEF0033, read64_test # read fault when U=1, priv=S, sstatus.SUM=0
# test 12.3.1.3.3 Read flag
# reads on pages with R=1 already tested in 12.3.1.1.4
# test 8.3.1.3.3 Read flag
# reads on pages with R=1 already tested in 8.3.1.1.4
.8byte 0x0, 0x1, write_mxr_sum # set sstatus.[MXR, SUM] = 01.
.8byte 0x80612348, 0x0330DEADBEEF0440, read64_test # read fault when R=0, sstatus.MXR=0
.8byte 0x0, 0x3, write_mxr_sum # set sstatus.[MXR, SUM] = 11.
.8byte 0x80612348, 0x0330DEADBEEF0440, read64_test # read success when MXR=1, X=1
# test 12.3.1.3.4 Write flag
# test 8.3.1.3.4 Write flag
.8byte 0x10080BCDED8, 0x0440DEADBEEF0110, write64_test # write success when W=1 (corresponding Paddr = 0x80BCDED8)
.8byte 0x10080BCDED8, 0x0440DEADBEEF0110, read64_test # check write success by reading value back
.8byte 0x8000009E88, 0x0220DEADBEEF0BB0, write64_test # write fault when W=0
# test 12.3.1.3.5 eXecute flag
# executes on pages with X = 1 already tested in 12.3.1.3.1
# test 8.3.1.3.5 eXecute flag
# executes on pages with X = 1 already tested in 8.3.1.3.1
.8byte 0x010088888000, 0x2, executable_test # execute fault when X=0
# test 12.3.1.3.6 Accessed flag == 0
# test 8.3.1.3.6 Accessed flag == 0
.8byte 0x802036D0, 0x0990DEADBEEF0770, write64_test # write fault when A=0
.8byte 0x80203AB8, 0x0990DEADBEEF0990, read64_test# read fault when A=0
# test 12.3.1.3.7 Dirty flag == 0
# test 8.3.1.3.7 Dirty flag == 0
.8byte 0x80204658, 0x0440DEADBEEF0AA0, write64_test # write fault when D=0
.8byte 0x80204AA0, 0x0440DEADBEEF0BB0, read64_test# read success when D=0
# =========== test 12.3.1.4 SATP Register ===========
# =========== test 8.3.1.4 SATP Register ===========
# test 12.3.1.4.1 SATP ASID and PPN fields (test having two page tables with different ASID)
# test 8.3.1.4.1 SATP ASID and PPN fields (test having two page tables with different ASID)
// *** .8byte 0xFFFFFFFFFFFFF888, 0x0220DEADBEEF0099, write64_test # write identical value to global PTE to make sure it's still in the TLB
.8byte 0x8000F, 0x11, goto_sv48 # go to SV39 on a second, very minimal page table
.8byte 0x5BC0AB0, 0x0000DEADBEEF0000, read64_test # Read success of old written value from a new page table mapping
# test 12.3.1.4.2 Test Global mapping
# test 8.3.1.4.2 Test Global mapping
// ***.8byte 0x7FFFFFF888, 0x0220DEADBEEF0099, read64_test # read success of global PTE undefined in current mapping.
# =========== test 12.3.1.5 STATUS Registers ===========
# =========== test 8.3.1.5 STATUS Registers ===========
# test 12.3.1.5.1 mstatus.mprv translation
# test 8.3.1.5.1 mstatus.mprv translation
# *** mstatus.mprv = 0 tested on every one of the translated reads and writes before this.
.8byte 0x8000D, 0x0, goto_sv48 // go back to old, extensive page table
.8byte 0x80000000, 0x1, goto_m_mode // go to m mode to be able to write mstatus
.8byte 0x1, 0x1, read_write_mprv // write 1 to mstatus.mprv and set mstatus.mpp to be 01=S
.8byte 0xFFFFFFFFFFFFF888, 0x0220DEADBEEF0099, read64_test // read test succeeds with translation even though we're in M mode since MPP=S and MPRV=1
# test 12.3.1.5.2 mstatus.mprv clearing
# test 8.3.1.5.2 mstatus.mprv clearing
# mstatus.mprv is already 1 from the last test so going to S mode should clear it with the mret
.8byte 0x80000000, 0x1, goto_s_mode // This should zero out the mprv bit but now to read and write mstatus, we have to
.8byte 0x80000000, 0x1, goto_m_mode // go back to m mode to allow us to reread mstatus.
.8byte 0x0, 0x0, read_write_mprv // read what should be a zeroed out mprv value and then force it back to zero.
# test 12.3.1.5.3 sstatus.mxr read
# this bitfield already tested in 12.3.1.3.3
# test 8.3.1.5.3 sstatus.mxr read
# this bitfield already tested in 8.3.1.3.3
# terminate tests
.8byte 0x0, 0x0, terminate_test # brings us back into machine mode with a final ecall, writing 0x9 to the output.