cvw/wally-pipelined/src/fpu/fpdiv_pipe.sv

163 lines
6.2 KiB
Systemverilog
Raw Normal View History

///////////////////////////////////////////
//
// Written: James Stine
// Modified: 8/1/2018
//
// Purpose: Floating point divider/square root top unit pipelined version (Goldschmidt)
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
module fpdiv_pipe (
input logic clk,
input logic reset,
input logic start,
input logic [63:0] op1,
input logic [63:0] op2,
input logic [1:0] rm,
input logic op_type,
input logic P,
input logic OvEn,
input logic UnEn,
input logic XNaNQ,
input logic YNaNQ,
input logic XZeroQ,
input logic YZeroQ,
input logic XInfQ,
input logic YInfQ,
output logic done,
output logic FDivBusyE,
output logic [63:0] AS_Result,
output logic [4:0] Flags);
supply1 vdd;
supply0 vss;
logic [63:0] Float1;
logic [63:0] Float2;
logic [63:0] IntValue;
logic [12:0] exp1, exp2, expF;
logic [12:0] exp_diff, bias;
logic [13:0] exp_sqrt;
logic [63:0] Result;
logic [52:0] mantissaA;
logic [52:0] mantissaB;
logic [2:0] sel_inv;
logic Invalid;
logic [4:0] FlagsIn;
logic exp_gt63;
logic Sticky_out;
logic signResult, sign_corr;
logic corr_sign;
logic zeroB;
logic convert;
logic swap;
logic sub;
logic [59:0] q1, qm1, qp1, q0, qm0, qp0;
logic [59:0] rega_out, regb_out, regc_out, regd_out;
logic [119:0] regr_out;
logic [2:0] sel_muxa, sel_muxb;
logic sel_muxr;
logic load_rega, load_regb, load_regc, load_regd, load_regr;
logic load_regp, load_regs;
logic exp_odd, exp_odd1;
logic start1;
logic P1;
logic op_type1;
logic [12:0] expF1;
logic [52:0] mantissaA1;
logic [52:0] mantissaB1;
logic [2:0] sel_inv1;
logic signResult1;
logic Invalid1;
// op_type : fdiv=0, fsqrt=1
assign Float1 = op1;
assign Float2 = op_type ? op1 : op2;
// Exception detection
exception_div exc1 (.A(Float1), .B(Float2), .op_type, .Ztype(sel_inv), .Invalid);
// Determine Sign/Mantissa
assign signResult = ((Float1[63]^Float2[63])&~op_type);
assign mantissaA = {vdd, Float1[51:0]};
assign mantissaB = {vdd, Float2[51:0]};
// Perform Exponent Subtraction - expA - expB + Bias
assign exp1 = {2'b0, Float1[62:52]};
assign exp2 = {2'b0, Float2[62:52]};
// bias : DP = 2^{11-1}-1 = 1023
assign bias = {3'h0, 10'h3FF};
// Divide exponent
assign exp_diff = {2'b0, exp1} - {2'b0, exp2} + {2'b0, bias};
// Sqrt exponent (check if exponent is odd)
assign exp_odd = Float1[52] ? 1'b0 : 1'b1;
assign exp_sqrt = {1'b0, exp1} + {4'h0, 10'h3ff} + {13'b0, exp_odd};
// Choose correct exponent
assign expF = op_type ? exp_sqrt[13:1] : exp_diff;
flopenr #(1) rega (clk, reset, 1'b1, exp_odd, exp_odd1);
flopenr #(1) regb (clk, reset, 1'b1, P, P1);
flopenr #(1) regc (clk, reset, 1'b1, op_type, op_type1);
flopenr #(13) regd (clk, reset, 1'b1, expF, expF1);
flopenr #(53) rege (clk, reset, 1'b1, mantissaA, mantissaA1);
flopenr #(53) regf (clk, reset, 1'b1, mantissaB, mantissaB1);
flopenr #(1) regg (clk, reset, 1'b1, start, start1);
flopenr #(3) regh (clk, reset, 1'b1, sel_inv, sel_inv1);
flopenr #(1) regj (clk, reset, 1'b1, signResult, signResult1);
flopenr #(1) regk (clk, reset, 1'b1, Invalid, Invalid1);
// Main Goldschmidt/Division Routine
divconv_pipe goldy (.q1, .qm1, .qp1, .q0, .qm0, .qp0,
.rega_out, .regb_out, .regc_out, .regd_out,
.regr_out, .d(mantissaB1), .n(mantissaA1),
.sel_muxa, .sel_muxb, .sel_muxr, .reset, .clk,
.load_rega, .load_regb, .load_regc, .load_regd,
.load_regr, .load_regs, .load_regp,
.P(P1), .op_type(op_type1), .exp_odd(exp_odd1));
// FSM : control divider
fsm_fpdiv_pipe control (.clk, .reset, .start(start), .op_type(op_type1), .P(P1),
.done, .load_rega, .load_regb, .load_regc, .load_regd,
.load_regr, .load_regs, .load_regp,
.sel_muxa, .sel_muxb, .sel_muxr, .divBusy(FDivBusyE));
// Round the mantissa to a 52-bit value, with the leading one
// removed. The rounding units also handles special cases and
// set the exception flags.
rounder_div round1 (.rm, .P(P1), .OvEn(1'b0), .UnEn(1'b0), .exp_diff(expF1),
.sel_inv(sel_inv1), .Invalid(Invalid1), .SignR(signResult1),
.Float1(op1), .Float2(op2),
.XNaNQ, .YNaNQ, .XZeroQ, .YZeroQ,
.XInfQ, .YInfQ, .op_type(op_type1),
.q1, .qm1, .qp1, .q0, .qm0, .qp0, .regr_out,
.Result, .Flags(FlagsIn));
// Store the final result and the exception flags in registers.
flopenr #(64) regl (clk, reset, done, Result, AS_Result);
flopenr #(5) regn (clk, reset, done, FlagsIn, Flags);
endmodule // fpdiv_pipe