cvw/pipelined/src/fpu/postprocess.sv

204 lines
11 KiB
Systemverilog
Raw Normal View History

///////////////////////////////////////////
//
// Written: Katherine Parry, David Harris
// Modified: 6/23/2021
//
// Purpose: Floating point multiply-accumulate of configurable size
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module postprocess(
input logic XSgnM, // input signs
input logic [`NE-1:0] ZExpM, // input exponents
input logic [`NF:0] XManM, YManM, ZManM, // input mantissas
input logic [2:0] FrmM, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
input logic [`FMTBITS-1:0] FmtM, // precision 1 = double 0 = single
input logic [`NE+1:0] ProdExpM, // X exponent + Y exponent - bias
input logic AddendStickyM, // sticky bit that is calculated during alignment
input logic KillProdM, // set the product to zero before addition if the product is too small to matter
input logic XZeroM, YZeroM, ZZeroM, // inputs are zero
input logic XInfM, YInfM, ZInfM, // inputs are infinity
input logic XNaNM, YNaNM, ZNaNM, // inputs are NaN
input logic XSNaNM, YSNaNM, ZSNaNM, // inputs are signaling NaNs
input logic [3*`NF+5:0] SumM, // the positive sum
input logic NegSumM, // was the sum negitive
input logic InvZM, // do you invert Z
input logic ZDenormM, // is the original precision denormalized
input logic ZSgnEffM, // the modified Z sign - depends on instruction
input logic PSgnM, // the product's sign
input logic [2:0] FOpCtrlM, // choose which opperation (look below for values)
input logic [$clog2(3*`NF+7)-1:0] FmaNormCntM, // the normalization shift count
input logic [`NE:0] CvtCalcExpM, // the calculated expoent
input logic CvtResDenormUfM,
input logic [`LOGLGLEN-1:0] CvtShiftAmtM, // how much to shift by
input logic CvtResSgnM, // the result's sign
input logic FWriteIntM, // is fp->int (since it's writting to the integer register)
input logic [`LGLEN-1:0] CvtLzcInM, // input to the Leading Zero Counter (priority encoder)
input logic IntZeroM, // is the input zero
input logic [1:0] PostProcSelM, // select result to be written to fp register
output logic [`FLEN-1:0] PostProcResM, // FMA final result
output logic [4:0] PostProcFlgM,
output logic [`XLEN-1:0] FCvtIntResM // the int conversion result
);
logic [`NF-1:0] ResFrac; // Result fraction
logic [`NE-1:0] ResExp; // Result exponent
logic [`CORRSHIFTSZ-1:0] CorrShifted; // the shifted sum before LZA correction
logic [`NE+1:0] SumExp; // exponent of the normalized sum
logic [`NE+1:0] FullResExp; // ResExp with bits to determine sign and overflow
logic SumZero; // is the sum zero
logic Sticky; // Sticky bit
logic [3*`NF+8:0] FmaShiftIn; // is the sum zero
logic UfPlus1; // do you add one (for determining underflow flag)
logic Round; // bits needed to determine rounding
logic [`LGLEN+`NF:0] CvtShiftIn; // number to be shifted
logic Mult; // multiply opperation
logic [`FLEN:0] RoundAdd; // how much to add to the result
logic [`NE+1:0] ConvNormSumExp; // exponent of the normalized sum not taking into account denormal or zero results
logic PreResultDenorm; // is the result denormalized - calculated before LZA corection
logic [$clog2(3*`NF+7)-1:0] FmaShiftAmt; // normalization shift count
logic [$clog2(`NORMSHIFTSZ)-1:0] ShiftAmt; // normalization shift count
logic [3*`NF+8:0] ShiftIn; // is the sum zero
logic [`NORMSHIFTSZ-1:0] Shifted; // the shifted result
logic Plus1; // add one to the final result?
2022-06-14 16:50:46 +00:00
logic IntInvalid, Overflow, Underflow, Invalid; // flags
logic Signed; // is the opperation with a signed integer?
logic Int64; // is the integer 64 bits?
logic IntToFp; // is the opperation an int->fp conversion?
logic ToInt; // is the opperation an fp->int conversion?
logic [`NE+1:0] RoundExp;
logic [1:0] NegResMSBS;
logic CvtOp;
logic FmaOp;
logic CvtResUf;
logic DivOp;
logic InfIn;
logic ResSgn;
logic NaNIn;
logic UfLSBRes;
logic Sqrt;
logic [`FMTBITS-1:0] OutFmt;
// signals to help readability
assign Signed = FOpCtrlM[0];
assign Int64 = FOpCtrlM[1];
assign IntToFp = FOpCtrlM[2];
assign ToInt = FWriteIntM;
assign Mult = FOpCtrlM[2]&~FOpCtrlM[1]&~FOpCtrlM[0];
assign CvtOp = (PostProcSelM == 2'b00);
assign FmaOp = (PostProcSelM == 2'b10);
assign DivOp = (PostProcSelM == 2'b01);
assign Sqrt = FOpCtrlM[0];
// is there an input of infinity or NaN being used
assign InfIn = (XInfM&~(IntToFp&CvtOp))|(YInfM&~CvtOp)|(ZInfM&FmaOp);
assign NaNIn = (XNaNM&~(IntToFp&CvtOp))|(YNaNM&~CvtOp)|(ZNaNM&FmaOp);
// choose the ouptut format depending on the opperation
// - fp -> fp: OpCtrl contains the percision of the output
// - otherwise: FmtM contains the percision of the output
if (`FPSIZES == 2)
assign OutFmt = IntToFp|~CvtOp ? FmtM : (FOpCtrlM[1:0] == `FMT);
else if (`FPSIZES == 3 | `FPSIZES == 4)
assign OutFmt = IntToFp|~CvtOp ? FmtM : FOpCtrlM[1:0];
///////////////////////////////////////////////////////////////////////////////
// Normalization
///////////////////////////////////////////////////////////////////////////////
cvtshiftcalc cvtshiftcalc(.ToInt, .CvtCalcExpM, .CvtResDenormUfM, .XManM, .CvtLzcInM,
.XZeroM, .IntToFp, .OutFmt, .CvtResUf, .CvtShiftIn);
fmashiftcalc fmashiftcalc(.SumM, .ZExpM, .ProdExpM, .FmaNormCntM, .FmtM, .KillProdM, .ConvNormSumExp,
.ZDenormM, .SumZero, .PreResultDenorm, .FmaShiftAmt, .FmaShiftIn);
always_comb
case(PostProcSelM)
2'b10: begin // fma
ShiftAmt = {{$clog2(`NORMSHIFTSZ)-$clog2(3*`NF+7){1'b0}}, FmaShiftAmt};
ShiftIn = {FmaShiftIn, {`NORMSHIFTSZ-(3*`NF+9){1'b0}}};
end
2'b00: begin // cvt
ShiftAmt = {{$clog2(`NORMSHIFTSZ)-$clog2(`LGLEN+1){1'b0}}, CvtShiftAmtM};
ShiftIn = {CvtShiftIn, {`NORMSHIFTSZ-`LGLEN-`NF-1{1'b0}}};
end
2'b01: begin //div
ShiftAmt = 0;//{DivShiftAmt};
ShiftIn = 0;//{{`NORMSHIFTSZ-(3*`NF+8){1'b0}}, DivShiftIn};
end
default: begin
ShiftAmt = 0;
ShiftIn = 0;
end
endcase
normshift normshift (.ShiftIn, .ShiftAmt, .Shifted);
lzacorrection lzacorrection(.FmaOp, .KillProdM, .PreResultDenorm, .ConvNormSumExp,
.SumZero, .Shifted, .SumExp, .CorrShifted);
///////////////////////////////////////////////////////////////////////////////
// Rounding
///////////////////////////////////////////////////////////////////////////////
// round to nearest even
// round to zero
// round to -infinity
// round to infinity
// round to nearest max magnitude
round round(.OutFmt, .FrmM, .Sticky, .AddendStickyM, .ZZeroM, .Plus1, .PostProcSelM, .CvtCalcExpM,
.InvZM, .ResSgn, .SumExp, .FmaOp, .CvtOp, .CvtResDenormUfM, .CorrShifted, .ToInt, .CvtResUf,
.UfPlus1, .FullResExp, .ResFrac, .ResExp, .Round, .RoundAdd, .UfLSBRes, .RoundExp);
///////////////////////////////////////////////////////////////////////////////
// Sign calculation
///////////////////////////////////////////////////////////////////////////////
resultsign resultsign(.FrmM, .PSgnM, .PostProcSelM, .ZSgnEffM, .InvZM, .SumExp, .Round, .Sticky,
.ZInfM, .InfIn, .NegSumM, .SumZero, .Mult, .CvtResSgnM, .ResSgn);
///////////////////////////////////////////////////////////////////////////////
// Flags
///////////////////////////////////////////////////////////////////////////////
flags flags(.XSNaNM, .YSNaNM, .ZSNaNM, .XInfM, .YInfM, .ZInfM, .InfIn, .XZeroM, .YZeroM,
.XSgnM, .Sqrt, .ToInt, .IntToFp, .Int64, .Signed, .OutFmt, .CvtCalcExpM,
2022-06-14 16:50:46 +00:00
.XNaNM, .YNaNM, .NaNIn, .ZSgnEffM, .PSgnM, .Round, .IntInvalid,
.UfLSBRes, .Sticky, .UfPlus1, .CvtOp, .DivOp, .FmaOp, .FullResExp, .Plus1,
.RoundExp, .NegResMSBS, .Invalid, .Overflow, .Underflow, .PostProcFlgM);
///////////////////////////////////////////////////////////////////////////////
// Select the result
///////////////////////////////////////////////////////////////////////////////
2022-06-14 16:50:46 +00:00
resultselect resultselect(.XSgnM, .ZExpM, .XManM, .YManM, .ZManM, .ZDenormM, .ZZeroM, .XZeroM, .IntInvalid,
.IntZeroM, .FrmM, .OutFmt, .AddendStickyM, .KillProdM, .XNaNM, .YNaNM, .ZNaNM, .RoundAdd, .CvtResUf,
.NaNIn, .IntToFp, .Int64, .Signed, .CvtOp, .FmaOp, .Plus1, .Invalid, .Overflow, .InfIn, .NegResMSBS,
.FullResExp, .Shifted, .CvtCalcExpM, .ResSgn, .ResExp, .ResFrac, .PostProcResM, .FCvtIntResM);
endmodule