cvw/pipelined/src/fpu/unpack.sv

555 lines
28 KiB
Systemverilog
Raw Normal View History

`include "wally-config.vh"
module unpack (
2022-03-23 01:53:37 +00:00
input logic [`FLEN-1:0] X, Y, Z, // inputs from register file
2022-05-19 16:32:30 +00:00
input logic [`FPSIZES/3:0] FmtE, // format signal 00 - single 01 - double 11 - quad 10 - half
2022-03-23 01:53:37 +00:00
output logic XSgnE, YSgnE, ZSgnE, // sign bits of XYZ
output logic [`NE-1:0] XExpE, YExpE, ZExpE, // exponents of XYZ (converted to largest supported precision)
output logic [`NF:0] XManE, YManE, ZManE, // mantissas of XYZ (converted to largest supported precision)
output logic XNormE, // is X a normalized number
output logic XNaNE, YNaNE, ZNaNE, // is XYZ a NaN
output logic XSNaNE, YSNaNE, ZSNaNE, // is XYZ a signaling NaN
output logic XDenormE, YDenormE, ZDenormE, // is XYZ denormalized
output logic XZeroE, YZeroE, ZZeroE, // is XYZ zero
output logic XInfE, YInfE, ZInfE, // is XYZ infinity
output logic ZOrigDenormE, // is the original precision denormalized
2022-03-23 01:53:37 +00:00
output logic XExpMaxE // does X have the maximum exponent (NaN or Inf)
);
2022-03-23 01:53:37 +00:00
logic [`NF-1:0] XFracE, YFracE, ZFracE; //Fraction of XYZ
logic XExpNonzero, YExpNonzero, ZExpNonzero; // is the exponent of XYZ non-zero
logic XFracZero, YFracZero, ZFracZero; // is the fraction zero
logic XExpZero, YExpZero, ZExpZero; // is the exponent zero
logic YExpMaxE, ZExpMaxE; // is the exponent all 1s
2022-03-23 01:53:37 +00:00
if (`FPSIZES == 1) begin // if there is only one floating point format supported
// sign bit
assign XSgnE = X[`FLEN-1];
assign YSgnE = Y[`FLEN-1];
assign ZSgnE = Z[`FLEN-1];
2022-03-23 01:53:37 +00:00
// exponent
assign XExpE = X[`FLEN-2:`NF];
assign YExpE = Y[`FLEN-2:`NF];
assign ZExpE = Z[`FLEN-2:`NF];
2022-03-23 01:53:37 +00:00
// fraction (no assumed 1)
assign XFracE = X[`NF-1:0];
assign YFracE = Y[`NF-1:0];
assign ZFracE = Z[`NF-1:0];
2022-03-23 01:53:37 +00:00
// is the exponent non-zero
assign XExpNonzero = |XExpE;
assign YExpNonzero = |YExpE;
assign ZExpNonzero = |ZExpE;
2022-03-23 01:53:37 +00:00
// is the exponent all 1's
assign XExpMaxE = &XExpE;
assign YExpMaxE = &YExpE;
assign ZExpMaxE = &ZExpE;
assign OrigDenormE = 1'b0;
2022-03-23 01:53:37 +00:00
end else if (`FPSIZES == 2) begin // if there are 2 floating point formats supported
//***need better names for these constants
// largest format | smaller format
//----------------------------------
// `FLEN | `LEN1 length of floating point number
// `NE | `NE1 length of exponent
// `NF | `NF1 length of fraction
// `BIAS | `BIAS1 exponent's bias value
// `FMT | `FMT1 precision's format value - Q=11 D=01 S=00 H=10
// Possible combinantions specified by spec:
// double and single
// single and half
// Not needed but can also handle:
// quad and double
// quad and single
// quad and half
// double and half
logic [`LEN1-1:0] XLen1, YLen1, ZLen1; // Remove NaN boxing or NaN, if not properly NaN boxed
logic XOrigDenormE, YOrigDenormE; // the original value of XYZ is denormalized
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN
assign XLen1 = &X[`FLEN-1:`LEN1] ? X[`LEN1-1:0] : {1'b0, {`NE1+1{1'b1}}, (`NF1-1)'(0)};
assign YLen1 = &Y[`FLEN-1:`LEN1] ? Y[`LEN1-1:0] : {1'b0, {`NE1+1{1'b1}}, (`NF1-1)'(0)};
assign ZLen1 = &Z[`FLEN-1:`LEN1] ? Z[`LEN1-1:0] : {1'b0, {`NE1+1{1'b1}}, (`NF1-1)'(0)};
2022-03-23 01:53:37 +00:00
// choose sign bit depending on format - 1=larger precsion 0=smaller precision
assign XSgnE = FmtE ? X[`FLEN-1] : XLen1[`LEN1-1];
assign YSgnE = FmtE ? Y[`FLEN-1] : YLen1[`LEN1-1];
assign ZSgnE = FmtE ? Z[`FLEN-1] : ZLen1[`LEN1-1];
// example double to single conversion:
// 1023 = 0011 1111 1111
// 127 = 0000 0111 1111 (subtract this)
// 896 = 0011 1000 0000
// sexp = 0000 bbbb bbbb (add this) b = bit d = ~b
// dexp = 0bdd dbbb bbbb
// also need to take into account possible zero/denorm/inf/NaN values
2022-03-23 01:53:37 +00:00
// extract the exponent, converting the smaller exponent into the larger precision if nessisary
// - if the original precision had a denormal number convert the exponent value 1
assign XExpE = FmtE ? X[`FLEN-2:`NF] : XOrigDenormE ? {1'b0, {`NE-`NE1{1'b1}}, (`NE1-1)'(1)} : {XLen1[`LEN1-2], {`NE-`NE1{~XLen1[`LEN1-2]&~XExpZero|XExpMaxE}}, XLen1[`LEN1-3:`NF1]};
assign YExpE = FmtE ? Y[`FLEN-2:`NF] : YOrigDenormE ? {1'b0, {`NE-`NE1{1'b1}}, (`NE1-1)'(1)} : {YLen1[`LEN1-2], {`NE-`NE1{~YLen1[`LEN1-2]&~YExpZero|YExpMaxE}}, YLen1[`LEN1-3:`NF1]};
assign ZExpE = FmtE ? Z[`FLEN-2:`NF] : ZOrigDenormE ? {1'b0, {`NE-`NE1{1'b1}}, (`NE1-1)'(1)} : {ZLen1[`LEN1-2], {`NE-`NE1{~ZLen1[`LEN1-2]&~ZExpZero|ZExpMaxE}}, ZLen1[`LEN1-3:`NF1]};
// is the input (in it's original format) denormalized
assign XOrigDenormE = (FmtE ? 0 : |XLen1[`LEN1-2:`NF1]) & ~XFracZero;
assign YOrigDenormE = (FmtE ? 0 : |YLen1[`LEN1-2:`NF1]) & ~YFracZero;
assign ZOrigDenormE = (FmtE ? 0 : |ZLen1[`LEN1-2:`NF1]) & ~ZFracZero;
2022-03-23 01:53:37 +00:00
// extract the fraction, add trailing zeroes to the mantissa if nessisary
assign XFracE = FmtE ? X[`NF-1:0] : {XLen1[`NF1-1:0], (`NF-`NF1)'(0)};
assign YFracE = FmtE ? Y[`NF-1:0] : {YLen1[`NF1-1:0], (`NF-`NF1)'(0)};
assign ZFracE = FmtE ? Z[`NF-1:0] : {ZLen1[`NF1-1:0], (`NF-`NF1)'(0)};
2022-03-23 01:53:37 +00:00
// is the exponent non-zero
assign XExpNonzero = FmtE ? |X[`FLEN-2:`NF] : |XLen1[`LEN1-2:`NF1];
assign YExpNonzero = FmtE ? |Y[`FLEN-2:`NF] : |YLen1[`LEN1-2:`NF1];
assign ZExpNonzero = FmtE ? |Z[`FLEN-2:`NF] : |ZLen1[`LEN1-2:`NF1];
2022-03-23 01:53:37 +00:00
// is the exponent all 1's
assign XExpMaxE = FmtE ? &X[`FLEN-2:`NF] : &XLen1[`LEN1-2:`NF1];
assign YExpMaxE = FmtE ? &Y[`FLEN-2:`NF] : &YLen1[`LEN1-2:`NF1];
assign ZExpMaxE = FmtE ? &Z[`FLEN-2:`NF] : &ZLen1[`LEN1-2:`NF1];
2022-03-23 01:53:37 +00:00
end else if (`FPSIZES == 3) begin // three floating point precsions supported
//***need better names for these constants
// largest format | larger format | smallest format
//---------------------------------------------------
// `FLEN | `LEN1 | `LEN2 length of floating point number
// `NE | `NE1 | `NE2 length of exponent
// `NF | `NF1 | `NF2 length of fraction
// `BIAS | `BIAS1 | `BIAS2 exponent's bias value
// `FMT | `FMT1 | `FMT2 precision's format value - Q=11 D=01 S=00 H=10
// Possible combinantions specified by spec:
// quad and double and single
// double and single and half
// Not needed but can also handle:
// quad and double and half
// quad and single and half
logic [`LEN1-1:0] XLen1, YLen1, ZLen1; // Remove NaN boxing or NaN, if not properly NaN boxed for larger percision
logic [`LEN2-1:0] XLen2, YLen2, ZLen2; // Remove NaN boxing or NaN, if not properly NaN boxed for smallest precision
logic XOrigDenormE, YOrigDenormE; // the original value of XYZ is denormalized
2022-03-23 01:53:37 +00:00
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for larger precision
assign XLen1 = &X[`FLEN-1:`LEN1] ? X[`LEN1-1:0] : {1'b0, {`NE1+1{1'b1}}, (`NF1-1)'(0)};
assign YLen1 = &Y[`FLEN-1:`LEN1] ? Y[`LEN1-1:0] : {1'b0, {`NE1+1{1'b1}}, (`NF1-1)'(0)};
assign ZLen1 = &Z[`FLEN-1:`LEN1] ? Z[`LEN1-1:0] : {1'b0, {`NE1+1{1'b1}}, (`NF1-1)'(0)};
2022-03-23 01:53:37 +00:00
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for smaller precision
assign XLen2 = &X[`FLEN-1:`LEN2] ? X[`LEN2-1:0] : {1'b0, {`NE2+1{1'b1}}, (`NF2-1)'(0)};
assign YLen2 = &Y[`FLEN-1:`LEN2] ? Y[`LEN2-1:0] : {1'b0, {`NE2+1{1'b1}}, (`NF2-1)'(0)};
assign ZLen2 = &Z[`FLEN-1:`LEN2] ? Z[`LEN2-1:0] : {1'b0, {`NE2+1{1'b1}}, (`NF2-1)'(0)};
// There are 2 case statements
// - one for other singals and one for sgn/exp/frac
// - need two for the dependencies in the expoenent calculation
always_comb begin
case (FmtE)
`FMT: begin // if input is largest precision (`FLEN - ie quad or double)
// This is the original format so set OrigDenorm to 0
XOrigDenormE = 1'b0;
YOrigDenormE = 1'b0;
ZOrigDenormE = 1'b0;
// is the exponent non-zero
XExpNonzero = |X[`FLEN-2:`NF];
YExpNonzero = |Y[`FLEN-2:`NF];
ZExpNonzero = |Z[`FLEN-2:`NF];
// is the exponent all 1's
XExpMaxE = &X[`FLEN-2:`NF];
YExpMaxE = &Y[`FLEN-2:`NF];
ZExpMaxE = &Z[`FLEN-2:`NF];
end
`FMT1: begin // if input is larger precsion (`LEN1 - double or single)
// is the input (in it's original format) denormalized
XOrigDenormE = ~|XLen1[`LEN1-2:`NF1] & ~XFracZero;
YOrigDenormE = ~|YLen1[`LEN1-2:`NF1] & ~YFracZero;
ZOrigDenormE = ~|ZLen1[`LEN1-2:`NF1] & ~ZFracZero;
// is the exponent non-zero
XExpNonzero = |XLen1[`LEN1-2:`NF1];
YExpNonzero = |YLen1[`LEN1-2:`NF1];
ZExpNonzero = |ZLen1[`LEN1-2:`NF1];
// is the exponent all 1's
XExpMaxE = &XLen1[`LEN1-2:`NF1];
YExpMaxE = &YLen1[`LEN1-2:`NF1];
ZExpMaxE = &ZLen1[`LEN1-2:`NF1];
end
`FMT2: begin // if input is smallest precsion (`LEN2 - single or half)
// is the input (in it's original format) denormalized
XOrigDenormE = ~|XLen2[`LEN2-2:`NF2] & ~XFracZero;
YOrigDenormE = ~|YLen2[`LEN2-2:`NF2] & ~YFracZero;
ZOrigDenormE = ~|ZLen2[`LEN2-2:`NF2] & ~ZFracZero;
// is the exponent non-zero
XExpNonzero = |XLen2[`LEN2-2:`NF2];
YExpNonzero = |YLen2[`LEN2-2:`NF2];
ZExpNonzero = |ZLen2[`LEN2-2:`NF2];
// is the exponent all 1's
XExpMaxE = &XLen2[`LEN2-2:`NF2];
YExpMaxE = &YLen2[`LEN2-2:`NF2];
ZExpMaxE = &ZLen2[`LEN2-2:`NF2];
end
default: begin
XOrigDenormE = 0;
YOrigDenormE = 0;
ZOrigDenormE = 0;
XExpNonzero = 0;
YExpNonzero = 0;
ZExpNonzero = 0;
XExpMaxE = 0;
YExpMaxE = 0;
ZExpMaxE = 0;
end
endcase
end
always_comb begin
case (FmtE)
2022-03-23 01:53:37 +00:00
`FMT: begin // if input is largest precision (`FLEN - ie quad or double)
// extract the sign bit
XSgnE = X[`FLEN-1];
YSgnE = Y[`FLEN-1];
ZSgnE = Z[`FLEN-1];
// extract the exponent
XExpE = X[`FLEN-2:`NF];
YExpE = Y[`FLEN-2:`NF];
ZExpE = Z[`FLEN-2:`NF];
// extract the fraction
XFracE = X[`NF-1:0];
YFracE = Y[`NF-1:0];
ZFracE = Z[`NF-1:0];
end
2022-03-23 01:53:37 +00:00
`FMT1: begin // if input is larger precsion (`LEN1 - double or single)
// extract the sign bit
XSgnE = XLen1[`LEN1-1];
YSgnE = YLen1[`LEN1-1];
ZSgnE = ZLen1[`LEN1-1];
// example double to single conversion:
// 1023 = 0011 1111 1111
// 127 = 0000 0111 1111 (subtract this)
// 896 = 0011 1000 0000
// sexp = 0000 bbbb bbbb (add this) b = bit d = ~b
// dexp = 0bdd dbbb bbbb
// also need to take into account possible zero/denorm/inf/NaN values
2022-03-23 01:53:37 +00:00
// convert the larger precision's exponent to use the largest precision's bias
XExpE = XOrigDenormE ? {1'b0, {`NE-`NE1{1'b1}}, (`NE1-1)'(1)} : {XLen1[`LEN1-2], {`NE-`NE1{~XLen1[`LEN1-2]&~XExpZero|XExpMaxE}}, XLen1[`LEN1-3:`NF1]};
YExpE = YOrigDenormE ? {1'b0, {`NE-`NE1{1'b1}}, (`NE1-1)'(1)} : {YLen1[`LEN1-2], {`NE-`NE1{~YLen1[`LEN1-2]&~YExpZero|YExpMaxE}}, YLen1[`LEN1-3:`NF1]};
ZExpE = ZOrigDenormE ? {1'b0, {`NE-`NE1{1'b1}}, (`NE1-1)'(1)} : {ZLen1[`LEN1-2], {`NE-`NE1{~ZLen1[`LEN1-2]&~ZExpZero|ZExpMaxE}}, ZLen1[`LEN1-3:`NF1]};
2022-03-23 01:53:37 +00:00
// extract the fraction and add the nessesary trailing zeros
XFracE = {XLen1[`NF1-1:0], (`NF-`NF1)'(0)};
YFracE = {YLen1[`NF1-1:0], (`NF-`NF1)'(0)};
ZFracE = {ZLen1[`NF1-1:0], (`NF-`NF1)'(0)};
end
2022-03-23 01:53:37 +00:00
`FMT2: begin // if input is smallest precsion (`LEN2 - single or half)
// exctract the sign bit
XSgnE = XLen2[`LEN2-1];
YSgnE = YLen2[`LEN2-1];
ZSgnE = ZLen2[`LEN2-1];
// example double to single conversion:
// 1023 = 0011 1111 1111
// 127 = 0000 0111 1111 (subtract this)
// 896 = 0011 1000 0000
// sexp = 0000 bbbb bbbb (add this) b = bit d = ~b
// dexp = 0bdd dbbb bbbb
// also need to take into account possible zero/denorm/inf/NaN values
2022-03-23 01:53:37 +00:00
// convert the smallest precision's exponent to use the largest precision's bias
XExpE = XOrigDenormE ? {1'b0, {`NE-`NE2{1'b1}}, (`NE2-1)'(1)} : {XLen2[`LEN2-2], {`NE-`NE2{~XLen2[`LEN2-2]&~XExpZero|XExpMaxE}}, XLen2[`LEN2-3:`NF2]};
YExpE = YOrigDenormE ? {1'b0, {`NE-`NE2{1'b1}}, (`NE2-1)'(1)} : {YLen2[`LEN2-2], {`NE-`NE2{~YLen2[`LEN2-2]&~YExpZero|YExpMaxE}}, YLen2[`LEN2-3:`NF2]};
ZExpE = ZOrigDenormE ? {1'b0, {`NE-`NE2{1'b1}}, (`NE2-1)'(1)} : {ZLen2[`LEN2-2], {`NE-`NE2{~ZLen2[`LEN2-2]&~ZExpZero|ZExpMaxE}}, ZLen2[`LEN2-3:`NF2]};
2022-03-23 01:53:37 +00:00
// extract the fraction and add the nessesary trailing zeros
XFracE = {XLen2[`NF2-1:0], (`NF-`NF2)'(0)};
YFracE = {YLen2[`NF2-1:0], (`NF-`NF2)'(0)};
ZFracE = {ZLen2[`NF2-1:0], (`NF-`NF2)'(0)};
end
default: begin
2022-03-23 01:53:37 +00:00
XSgnE = 0;
YSgnE = 0;
ZSgnE = 0;
XExpE = 0;
YExpE = 0;
ZExpE = 0;
XFracE = 0;
YFracE = 0;
ZFracE = 0;
end
endcase
end
2022-04-07 17:21:20 +00:00
end else if (`FPSIZES == 4) begin // if all precsisons are supported - quad, double, single, and half
2022-03-23 01:53:37 +00:00
// quad | double | single | half
//-------------------------------------------------------------------
// `Q_LEN | `D_LEN | `S_LEN | `H_LEN length of floating point number
// `Q_NE | `D_NE | `S_NE | `H_NE length of exponent
// `Q_NF | `D_NF | `S_NF | `H_NF length of fraction
// `Q_BIAS | `D_BIAS | `S_BIAS | `H_BIAS exponent's bias value
// `Q_FMT | `D_FMT | `S_FMT | `H_FMT precision's format value - Q=11 D=01 S=00 H=10
logic [`D_LEN-1:0] XLen1, YLen1, ZLen1; // Remove NaN boxing or NaN, if not properly NaN boxed for double percision
logic [`S_LEN-1:0] XLen2, YLen2, ZLen2; // Remove NaN boxing or NaN, if not properly NaN boxed for single percision
logic [`H_LEN-1:0] XLen3, YLen3, ZLen3; // Remove NaN boxing or NaN, if not properly NaN boxed for half percision
logic XOrigDenormE, YOrigDenormE; // the original value of XYZ is denormalized
2022-03-23 01:53:37 +00:00
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for double precision
assign XLen1 = &X[`Q_LEN-1:`D_LEN] ? X[`D_LEN-1:0] : {1'b0, {`D_NE+1{1'b1}}, (`D_NF-1)'(0)};
assign YLen1 = &Y[`Q_LEN-1:`D_LEN] ? Y[`D_LEN-1:0] : {1'b0, {`D_NE+1{1'b1}}, (`D_NF-1)'(0)};
assign ZLen1 = &Z[`Q_LEN-1:`D_LEN] ? Z[`D_LEN-1:0] : {1'b0, {`D_NE+1{1'b1}}, (`D_NF-1)'(0)};
2022-03-23 01:53:37 +00:00
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for single precision
assign XLen2 = &X[`Q_LEN-1:`S_LEN] ? X[`S_LEN-1:0] : {1'b0, {`S_NE+1{1'b1}}, (`S_NF-1)'(0)};
assign YLen2 = &Y[`Q_LEN-1:`S_LEN] ? Y[`S_LEN-1:0] : {1'b0, {`S_NE+1{1'b1}}, (`S_NF-1)'(0)};
assign ZLen2 = &Z[`Q_LEN-1:`S_LEN] ? Z[`S_LEN-1:0] : {1'b0, {`S_NE+1{1'b1}}, (`S_NF-1)'(0)};
2022-03-23 01:53:37 +00:00
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for half precision
assign XLen3 = &X[`Q_LEN-1:`H_LEN] ? X[`H_LEN-1:0] : {1'b0, {`H_NE+1{1'b1}}, (`H_NF-1)'(0)};
assign YLen3 = &Y[`Q_LEN-1:`H_LEN] ? Y[`H_LEN-1:0] : {1'b0, {`H_NE+1{1'b1}}, (`H_NF-1)'(0)};
assign ZLen3 = &Z[`Q_LEN-1:`H_LEN] ? Z[`H_LEN-1:0] : {1'b0, {`H_NE+1{1'b1}}, (`H_NF-1)'(0)};
// There are 2 case statements
// - one for other singals and one for sgn/exp/frac
// - need two for the dependencies in the expoenent calculation
always_comb begin
case (FmtE)
2'b11: begin // if input is quad percision
// This is the original format so set OrigDenorm to 0
XOrigDenormE = 1'b0;
YOrigDenormE = 1'b0;
ZOrigDenormE = 1'b0;
// is the exponent non-zero
XExpNonzero = |X[`Q_LEN-2:`Q_NF];
YExpNonzero = |Y[`Q_LEN-2:`Q_NF];
ZExpNonzero = |Z[`Q_LEN-2:`Q_NF];
// is the exponent all 1's
XExpMaxE = &X[`Q_LEN-2:`Q_NF];
YExpMaxE = &Y[`Q_LEN-2:`Q_NF];
ZExpMaxE = &Z[`Q_LEN-2:`Q_NF];
end
2'b01: begin // if input is double percision
// is the exponent all 1's
XExpMaxE = &XLen1[`D_LEN-2:`D_NF];
YExpMaxE = &YLen1[`D_LEN-2:`D_NF];
ZExpMaxE = &ZLen1[`D_LEN-2:`D_NF];
// is the input (in it's original format) denormalized
XOrigDenormE = ~|XLen1[`D_LEN-2:`D_NF] & ~XFracZero;
YOrigDenormE = ~|YLen1[`D_LEN-2:`D_NF] & ~YFracZero;
ZOrigDenormE = ~|ZLen1[`D_LEN-2:`D_NF] & ~ZFracZero;
// is the exponent non-zero
XExpNonzero = |XLen1[`D_LEN-2:`D_NF];
YExpNonzero = |YLen1[`D_LEN-2:`D_NF];
ZExpNonzero = |ZLen1[`D_LEN-2:`D_NF];
end
2'b00: begin // if input is single percision
// is the exponent all 1's
XExpMaxE = &XLen2[`S_LEN-2:`S_NF];
YExpMaxE = &YLen2[`S_LEN-2:`S_NF];
ZExpMaxE = &ZLen2[`S_LEN-2:`S_NF];
// is the input (in it's original format) denormalized
XOrigDenormE = ~|XLen2[`S_LEN-2:`S_NF] & ~XFracZero;
YOrigDenormE = ~|YLen2[`S_LEN-2:`S_NF] & ~YFracZero;
ZOrigDenormE = ~|ZLen2[`S_LEN-2:`S_NF] & ~ZFracZero;
// is the exponent non-zero
XExpNonzero = |XLen2[`S_LEN-2:`S_NF];
YExpNonzero = |YLen2[`S_LEN-2:`S_NF];
ZExpNonzero = |ZLen2[`S_LEN-2:`S_NF];
end
2'b10: begin // if input is half percision
// is the exponent all 1's
XExpMaxE = &XLen3[`H_LEN-2:`H_NF];
YExpMaxE = &YLen3[`H_LEN-2:`H_NF];
ZExpMaxE = &ZLen3[`H_LEN-2:`H_NF];
// is the input (in it's original format) denormalized
XOrigDenormE = ~|XLen3[`H_LEN-2:`H_NF] & ~XFracZero;
YOrigDenormE = ~|YLen3[`H_LEN-2:`H_NF] & ~YFracZero;
ZOrigDenormE = ~|ZLen3[`H_LEN-2:`H_NF] & ~ZFracZero;
// is the exponent non-zero
XExpNonzero = |XLen3[`H_LEN-2:`H_NF];
YExpNonzero = |YLen3[`H_LEN-2:`H_NF];
ZExpNonzero = |ZLen3[`H_LEN-2:`H_NF];
end
endcase
end
always_comb begin
case (FmtE)
2022-03-23 18:26:59 +00:00
2'b11: begin // if input is quad percision
2022-03-23 01:53:37 +00:00
// extract sign bit
XSgnE = X[`Q_LEN-1];
YSgnE = Y[`Q_LEN-1];
ZSgnE = Z[`Q_LEN-1];
// extract the exponent
XExpE = X[`Q_LEN-2:`Q_NF];
YExpE = Y[`Q_LEN-2:`Q_NF];
ZExpE = Z[`Q_LEN-2:`Q_NF];
// extract the fraction
XFracE = X[`Q_NF-1:0];
YFracE = Y[`Q_NF-1:0];
ZFracE = Z[`Q_NF-1:0];
end
2022-03-23 18:26:59 +00:00
2'b01: begin // if input is double percision
2022-03-23 01:53:37 +00:00
// extract sign bit
XSgnE = XLen1[`D_LEN-1];
YSgnE = YLen1[`D_LEN-1];
ZSgnE = ZLen1[`D_LEN-1];
// example double to single conversion:
// 1023 = 0011 1111 1111
// 127 = 0000 0111 1111 (subtract this)
// 896 = 0011 1000 0000
// sexp = 0000 bbbb bbbb (add this) b = bit d = ~b
// dexp = 0bdd dbbb bbbb
// also need to take into account possible zero/denorm/inf/NaN values
2022-03-23 01:53:37 +00:00
// convert the double precsion exponent into quad precsion
XExpE = XOrigDenormE ? {1'b0, {`Q_NE-`D_NE{1'b1}}, (`D_NE-1)'(1)} : {XLen1[`D_LEN-2], {`Q_NE-`D_NE{~XLen1[`D_LEN-2]&~XExpZero|XExpMaxE}}, XLen1[`D_LEN-3:`D_NF]};
YExpE = YOrigDenormE ? {1'b0, {`Q_NE-`D_NE{1'b1}}, (`D_NE-1)'(1)} : {YLen1[`D_LEN-2], {`Q_NE-`D_NE{~YLen1[`D_LEN-2]&~YExpZero|YExpMaxE}}, YLen1[`D_LEN-3:`D_NF]};
ZExpE = ZOrigDenormE ? {1'b0, {`Q_NE-`D_NE{1'b1}}, (`D_NE-1)'(1)} : {ZLen1[`D_LEN-2], {`Q_NE-`D_NE{~ZLen1[`D_LEN-2]&~ZExpZero|ZExpMaxE}}, ZLen1[`D_LEN-3:`D_NF]};
2022-03-23 01:53:37 +00:00
// extract the fraction and add the nessesary trailing zeros
2022-05-19 16:32:30 +00:00
XFracE = {XLen1[`D_NF-1:0], (`Q_NF-`D_NF)'(0)};
YFracE = {YLen1[`D_NF-1:0], (`Q_NF-`D_NF)'(0)};
ZFracE = {ZLen1[`D_NF-1:0], (`Q_NF-`D_NF)'(0)};
end
2022-03-23 18:26:59 +00:00
2'b00: begin // if input is single percision
2022-03-23 01:53:37 +00:00
// extract sign bit
XSgnE = XLen2[`S_LEN-1];
YSgnE = YLen2[`S_LEN-1];
ZSgnE = ZLen2[`S_LEN-1];
// example double to single conversion:
// 1023 = 0011 1111 1111
// 127 = 0000 0111 1111 (subtract this)
// 896 = 0011 1000 0000
// sexp = 0000 bbbb bbbb (add this) b = bit d = ~b
// dexp = 0bdd dbbb bbbb
// also need to take into account possible zero/denorm/inf/NaN values
2022-03-23 01:53:37 +00:00
// convert the single precsion exponent into quad precsion
XExpE = XOrigDenormE ? {1'b0, {`Q_NE-`S_NE{1'b1}}, (`S_NE-1)'(1)} : {XLen2[`S_LEN-2], {`Q_NE-`S_NE{~XLen2[`S_LEN-2]&~XExpZero|XExpMaxE}}, XLen2[`S_LEN-3:`S_NF]};
YExpE = YOrigDenormE ? {1'b0, {`Q_NE-`S_NE{1'b1}}, (`S_NE-1)'(1)} : {YLen2[`S_LEN-2], {`Q_NE-`S_NE{~YLen2[`S_LEN-2]&~YExpZero|YExpMaxE}}, YLen2[`S_LEN-3:`S_NF]};
ZExpE = ZOrigDenormE ? {1'b0, {`Q_NE-`S_NE{1'b1}}, (`S_NE-1)'(1)} : {ZLen2[`S_LEN-2], {`Q_NE-`S_NE{~ZLen2[`S_LEN-2]&~ZExpZero|ZExpMaxE}}, ZLen2[`S_LEN-3:`S_NF]};
2022-03-23 01:53:37 +00:00
// extract the fraction and add the nessesary trailing zeros
XFracE = {XLen2[`S_NF-1:0], (`Q_NF-`S_NF)'(0)};
YFracE = {YLen2[`S_NF-1:0], (`Q_NF-`S_NF)'(0)};
ZFracE = {ZLen2[`S_NF-1:0], (`Q_NF-`S_NF)'(0)};
end
2022-03-23 18:26:59 +00:00
2'b10: begin // if input is half percision
2022-03-23 01:53:37 +00:00
// extract sign bit
XSgnE = XLen3[`H_LEN-1];
YSgnE = YLen3[`H_LEN-1];
ZSgnE = ZLen3[`H_LEN-1];
// example double to single conversion:
// 1023 = 0011 1111 1111
// 127 = 0000 0111 1111 (subtract this)
// 896 = 0011 1000 0000
// sexp = 0000 bbbb bbbb (add this) b = bit d = ~b
// dexp = 0bdd dbbb bbbb
// also need to take into account possible zero/denorm/inf/NaN values
2022-03-23 01:53:37 +00:00
// convert the half precsion exponent into quad precsion
XExpE = XOrigDenormE ? {1'b0, {`Q_NE-`H_NE{1'b1}}, (`H_NE-1)'(1)} : {XLen3[`H_LEN-2], {`Q_NE-`H_NE{~XLen3[`H_LEN-2]&~XExpZero|XExpMaxE}}, XLen3[`H_LEN-3:`H_NF]};
YExpE = YOrigDenormE ? {1'b0, {`Q_NE-`H_NE{1'b1}}, (`H_NE-1)'(1)} : {YLen3[`H_LEN-2], {`Q_NE-`H_NE{~YLen3[`H_LEN-2]&~YExpZero|YExpMaxE}}, YLen3[`H_LEN-3:`H_NF]};
ZExpE = ZOrigDenormE ? {1'b0, {`Q_NE-`H_NE{1'b1}}, (`H_NE-1)'(1)} : {ZLen3[`H_LEN-2], {`Q_NE-`H_NE{~ZLen3[`H_LEN-2]&~ZExpZero|ZExpMaxE}}, ZLen3[`H_LEN-3:`H_NF]};
2022-03-23 01:53:37 +00:00
// extract the fraction and add the nessesary trailing zeros
XFracE = {XLen3[`H_NF-1:0], (`Q_NF-`H_NF)'(0)};
YFracE = {YLen3[`H_NF-1:0], (`Q_NF-`H_NF)'(0)};
ZFracE = {ZLen3[`H_NF-1:0], (`Q_NF-`H_NF)'(0)};
end
endcase
end
end
2022-03-23 01:53:37 +00:00
// is the exponent all 0's
assign XExpZero = ~XExpNonzero;
assign YExpZero = ~YExpNonzero;
assign ZExpZero = ~ZExpNonzero;
2022-03-23 01:53:37 +00:00
// is the fraction zero
assign XFracZero = ~|XFracE;
assign YFracZero = ~|YFracE;
assign ZFracZero = ~|ZFracE;
2022-03-23 01:53:37 +00:00
// add the assumed one (or zero if denormal or zero) to create the mantissa
assign XManE = {XExpNonzero, XFracE};
assign YManE = {YExpNonzero, YFracE};
assign ZManE = {ZExpNonzero, ZFracE};
2022-03-23 01:53:37 +00:00
// is X normalized
assign XNormE = ~(XExpMaxE|XExpZero);
2022-03-23 01:53:37 +00:00
// is the input a NaN
// - force to be a NaN if it isn't properly Nan Boxed
assign XNaNE = XExpMaxE & ~XFracZero;
assign YNaNE = YExpMaxE & ~YFracZero;
assign ZNaNE = ZExpMaxE & ~ZFracZero;
2022-03-23 01:53:37 +00:00
// is the input a singnaling NaN
assign XSNaNE = XNaNE&~XFracE[`NF-1];
assign YSNaNE = YNaNE&~YFracE[`NF-1];
assign ZSNaNE = ZNaNE&~ZFracE[`NF-1];
2022-03-23 01:53:37 +00:00
// is the input denormalized
assign XDenormE = XExpZero & ~XFracZero;
assign YDenormE = YExpZero & ~YFracZero;
assign ZDenormE = ZExpZero & ~ZFracZero;
2022-03-23 01:53:37 +00:00
// is the input infinity
assign XInfE = XExpMaxE & XFracZero;
assign YInfE = YExpMaxE & YFracZero;
assign ZInfE = ZExpMaxE & ZFracZero;
2022-03-23 01:53:37 +00:00
// is the input zero
assign XZeroE = XExpZero & XFracZero;
assign YZeroE = YExpZero & YFracZero;
assign ZZeroE = ZExpZero & ZFracZero;
endmodule