cvw/pipelined/src/uncore/gpio_apb.sv

147 lines
5.9 KiB
Systemverilog
Raw Normal View History

2022-06-08 01:31:34 +00:00
///////////////////////////////////////////
// gpio_apb.sv
//
// Written: David_Harris@hmc.edu 14 January 2021
// Modified: bbracker@hmc.edu 15 Apr. 2021
//
// Purpose: General Purpose I/O peripheral
// See FE310-G002-Manual-v19p05 for specifications
// No interrupts, drive strength, or pull-ups supported
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module gpio_apb (
input logic PCLK, PRESETn,
input logic PSEL,
input logic [7:0] PADDR,
input logic [`XLEN-1:0] PWDATA,
input logic PWRITE,
input logic PENABLE,
output logic [`XLEN-1:0] PRDATA,
output logic PREADY,
input logic [31:0] GPIOPinsIn,
output logic [31:0] GPIOPinsOut, GPIOPinsEn,
output logic GPIOIntr);
logic [31:0] input0d, input1d, input2d, input3d;
logic [31:0] input_val, input_en, output_en, output_val;
logic [31:0] rise_ie, rise_ip, fall_ie, fall_ip, high_ie, high_ip, low_ie, low_ip;
logic [7:0] entry;
logic [31:0] Din, Dout;
logic memwrite;
// APB I/O
assign entry = {PADDR[7:2],2'b00}; // 32-bit word-aligned accesses
assign memwrite = PWRITE & PENABLE; // only write in access phase
assign PREADY = PENABLE; // GPIO never takes >1 cycle to respond
// account for subword read/write circuitry
// -- Note GPIO registers are 32 bits no matter what; access them with LW SW.
// (At least that's what I think when FE310 spec says "only naturally aligned 32-bit accesses are supported")
if (`XLEN == 64) begin
assign Din = entry[2] ? PWDATA[63:32] : PWDATA[31:0];
assign PRDATA = entry[2] ? {Dout,32'b0} : {32'b0,Dout};
end else begin // 32-bit
assign Din = PWDATA[31:0];
assign PRDATA = Dout;
end
// register access
always_ff @(posedge PCLK, negedge PRESETn)
if (~PRESETn) begin // asynch reset
input_en <= 0;
output_en <= 0;
// *** synch reset not yet implemented [DH: can we delete this comment? Check if a sync reset is required]
output_val <= #1 0;
rise_ie <= #1 0;
rise_ip <= #1 0;
fall_ie <= #1 0;
fall_ip <= #1 0;
high_ie <= #1 0;
high_ip <= #1 0;
low_ie <= #1 0;
low_ip <= #1 0;
end else begin // writes
// According to FE310 spec: Once the interrupt is pending, it will remain set until a 1 is written to the *_ip register at that bit.
/* verilator lint_off CASEINCOMPLETE */
if (memwrite)
case(entry)
8'h04: input_en <= #1 Din;
8'h08: output_en <= #1 Din;
8'h0C: output_val <= #1 Din;
8'h18: rise_ie <= #1 Din;
8'h20: fall_ie <= #1 Din;
8'h28: high_ie <= #1 Din;
8'h30: low_ie <= #1 Din;
8'h40: output_val <= #1 output_val ^ Din; // OUT_XOR
endcase
/* verilator lint_on CASEINCOMPLETE */
// interrupts can be cleared by writing corresponding bits to a register
if (memwrite & entry == 8'h1C) rise_ip <= rise_ip & ~Din;
else rise_ip <= rise_ip | (input2d & ~input3d);
if (memwrite & (entry == 8'h24)) fall_ip <= fall_ip & ~Din;
else fall_ip <= fall_ip | (~input2d & input3d);
if (memwrite & (entry == 8'h2C)) high_ip <= high_ip & ~Din;
else high_ip <= high_ip | input3d;
if (memwrite & (entry == 8'h34)) low_ip <= low_ip & ~Din;
else low_ip <= low_ip | ~input3d;
case(entry) // flop to sample inputs
8'h00: Dout <= #1 input_val;
8'h04: Dout <= #1 input_en;
8'h08: Dout <= #1 output_en;
8'h0C: Dout <= #1 output_val;
8'h18: Dout <= #1 rise_ie;
8'h1C: Dout <= #1 rise_ip;
8'h20: Dout <= #1 fall_ie;
8'h24: Dout <= #1 fall_ip;
8'h28: Dout <= #1 high_ie;
8'h2C: Dout <= #1 high_ip;
8'h30: Dout <= #1 low_ie;
8'h34: Dout <= #1 low_ip;
8'h40: Dout <= #1 0; // OUT_XOR reads as 0
default: Dout <= #1 0;
endcase
end
// chip i/o
// connect OUT to IN for loopback testing
if (`GPIO_LOOPBACK_TEST) assign input0d = ((output_en & GPIOPinsOut) | (~output_en & GPIOPinsIn)) & input_en;
else assign input0d = GPIOPinsIn & input_en;
// synchroninzer for inputs
flop #(32) sync1(PCLK,input0d,input1d);
flop #(32) sync2(PCLK,input1d,input2d);
flop #(32) sync3(PCLK,input2d,input3d);
assign input_val = input3d;
assign GPIOPinsOut = output_val;
assign GPIOPinsEn = output_en;
assign GPIOIntr = |{(rise_ip & rise_ie),(fall_ip & fall_ie),(high_ip & high_ie),(low_ip & low_ie)};
endmodule