cvw/wally-pipelined/src/csrc.sv

227 lines
12 KiB
Systemverilog
Raw Normal View History

2021-01-15 04:37:51 +00:00
///////////////////////////////////////////
// csrc.sv
//
// Written: David_Harris@hmc.edu 9 January 2021
// Modified:
//
// Purpose: Counter CSRs
// See RISC-V Privileged Mode Specification 20190608 3.1.10-11
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-macros.sv"
module csrc #(parameter XLEN=64, ZCOUNTERS = 1,
MCYCLE = 12'hB00,
// MTIME = 12'hB01, // address not specified in privileged spec. Consider moving to CLINT to match SiFive
// MTIMECMP = 12'hB21, // not specified in privileged spec. Move to CLINT
MINSTRET = 12'hB02,
MHPMCOUNTER3 = 12'hB03,
MHPMCOUNTER4 = 12'hB04,
// ... more counters
MHPMCOUNTER31 = 12'hB1F,
MCYCLEH = 12'hB80,
// MTIMEH = 12'hB81, // address not specified in privileged spec. Consider moving to CLINT to match SiFive
// MTIMECMPH = 12'hBA1, // not specified in privileged spec. Move to CLINT
MINSTRETH = 12'hB82,
MHPMCOUNTER3H = 12'hB83,
MHPMCOUNTER4H = 12'hB84,
// ... more counters
MHPMCOUNTER31H = 12'hB9F,
MCOUNTERINHIBIT = 12'h320,
MHPMEVENT3 = 12'h323,
MHPMEVENT4 = 12'h324,
// ... more counters
MHPMEVENT31 = 12'h33F,
CYCLE = 12'hC00,
// TIME = 12'hC01, // not specified
INSTRET = 12'hC02,
HPMCOUNTER3 = 12'hC03,
HPMCOUNTER4 = 12'hC04,
// ...more counters
HPMCOUNTER31 = 12'hC1F,
CYCLEH = 12'hC80,
// TIMEH = 12'hC81, // not specified
INSTRETH = 12'hC82,
HPMCOUNTER3H = 12'hC83,
HPMCOUNTER4H = 12'hC84,
// ... more counters
HPMCOUNTER31H = 12'hC9F
) (
input logic clk, reset,
input logic InstrValidW, LoadStallD, CSRMWriteM,
input logic [11:0] CSRAdrM,
input logic [1:0] PrivilegeModeW,
input logic [XLEN-1:0] CSRWriteValM,
input logic [31:0] MCOUNTINHIBIT_REGW, MCOUNTEREN_REGW, SCOUNTEREN_REGW,
output logic [XLEN-1:0] CSRCReadValM,
output logic IllegalCSRCAccessM
);
generate
if (`ZCOUNTERS_SUPPORTED) begin
// logic [63:0] TIME_REGW, TIMECMP_REGW;
logic [63:0] CYCLE_REGW, INSTRET_REGW;
logic [63:0] HPMCOUNTER3_REGW, HPMCOUNTER4_REGW; // add more performance counters here if desired
logic [63:0] CYCLEPlusM, TIMEPlusM, INSTRETPlusM;
logic [63:0] HPMCOUNTER3PlusM, HPMCOUNTER4PlusM;
// logic [XLEN-1:0] NextTIMEM;
logic [XLEN-1:0] NextCYCLEM, NextINSTRETM;
logic [XLEN-1:0] NextHPMCOUNTER3M, NextHPMCOUNTER4M;
logic WriteTIMEM, WriteTIMECMPM, WriteCYCLEM, WriteINSTRETM;
logic WriteHPMCOUNTER3M, WriteHPMCOUNTER4M;
logic [4:0] CounterNumM;
// Write enables
// assign WriteTIMEM = CSRMWriteM && (CSRAdrM == MTIME);
// assign WriteTIMECMPM = CSRMWriteM && (CSRAdrM == MTIMECMP);
assign WriteCYCLEM = CSRMWriteM && (CSRAdrM == MCYCLE);
assign WriteINSTRETM = CSRMWriteM && (CSRAdrM == MINSTRET);
assign WriteHPMCOUNTER3M = CSRMWriteM && (CSRAdrM == MHPMCOUNTER3);
assign WriteHPMCOUNTER4M = CSRMWriteM && (CSRAdrM == MHPMCOUNTER4);
// Counter adders with inhibits for power savings
assign CYCLEPlusM = CYCLE_REGW + {63'b0, ~MCOUNTINHIBIT_REGW[0]};
// assign TIMEPlusM = TIME_REGW + 1; // can't be inhibited
assign INSTRETPlusM = INSTRET_REGW + {63'b0, InstrValidW & ~MCOUNTINHIBIT_REGW[2]};
assign HPMCOUNTER3PlusM = HPMCOUNTER3_REGW + {63'b0, LoadStallD & ~MCOUNTINHIBIT_REGW[3]}; // count load stalls
assign HPMCOUNTER4PlusM = HPMCOUNTER4_REGW + {63'b0, 1'b0 & ~MCOUNTINHIBIT_REGW[4]}; // change to count signals
assign NextCYCLEM = WriteCYCLEM ? CSRWriteValM : CYCLEPlusM[XLEN-1:0];
// assign NextTIMEM = WriteTIMEM ? CSRWriteValM : TIMEPlusM[XLEN-1:0];
assign NextINSTRETM = WriteINSTRETM ? CSRWriteValM : INSTRETPlusM[XLEN-1:0];
assign NextHPMCOUNTER3M = WriteHPMCOUNTER3M ? CSRWriteValM : HPMCOUNTER3PlusM[XLEN-1:0];
assign NextHPMCOUNTER4M = WriteHPMCOUNTER4M ? CSRWriteValM : HPMCOUNTER4PlusM[XLEN-1:0];
// Write / update counters
// Only the Machine mode versions of the counter CSRs are writable
if (XLEN==64) begin// 64-bit counters
// flopr #(64) TIMEreg(clk, reset, WriteTIMEM ? CSRWriteValM : TIME_REGW + 1, TIME_REGW); // may count off a different clock***
// flopenr #(64) TIMECMPreg(clk, reset, WriteTIMECMPM, CSRWriteValM, TIMECMP_REGW);
flopr #(64) CYCLEreg(clk, reset, NextCYCLEM, CYCLE_REGW);
flopr #(64) INSTRETreg(clk, reset, NextINSTRETM, INSTRET_REGW);
flopr #(64) HPMCOUNTER3reg(clk, reset, NextHPMCOUNTER3M, HPMCOUNTER3_REGW);
flopr #(64) HPMCOUNTER4reg(clk, reset, NextHPMCOUNTER4M, HPMCOUNTER4_REGW);
end else begin // 32-bit low and high counters
logic WriteTIMEHM, WriteTIMECMPHM, WriteCYCLEHM, WriteINSTRETHM;
logic WriteHPMCOUNTER3HM, WriteHPMCOUNTER4HM;
logic [XLEN-1:0] NextCYCLEHM, NextTIMEHM, NextINSTRETHM;
logic [XLEN-1:0] NextHPMCOUNTER3HM, NextHPMCOUNTER4HM;
// Write Enables
// assign WriteTIMEHM = CSRMWriteM && (CSRAdrM == MTIMEH);
// assign WriteTIMECMPHM = CSRMWriteM && (CSRAdrM == MTIMECMPH);
assign WriteCYCLEHM = CSRMWriteM && (CSRAdrM == MCYCLEH);
assign WriteINSTRETHM = CSRMWriteM && (CSRAdrM == MINSTRETH);
assign WriteHPMCOUNTER3HM = CSRMWriteM && (CSRAdrM == MHPMCOUNTER3H);
assign WriteHPMCOUNTER4HM = CSRMWriteM && (CSRAdrM == MHPMCOUNTER4H);
assign NextCYCLEHM = WriteCYCLEM ? CSRWriteValM : CYCLEPlusM[63:32];
// assign NextTIMEHM = WriteTIMEHM ? CSRWriteValM : TIMEPlusM[63:32];
assign NextINSTRETHM = WriteINSTRETHM ? CSRWriteValM : INSTRETPlusM[63:32];
assign NextHPMCOUNTER3HM = WriteHPMCOUNTER3HM ? CSRWriteValM : HPMCOUNTER3PlusM[63:32];
assign NextHPMCOUNTER4HM = WriteHPMCOUNTER4HM ? CSRWriteValM : HPMCOUNTER4PlusM[63:32];
// Counter CSRs
// flopr #(32) TIMEreg(clk, reset, NextTIMEM, TIME_REGW); // may count off a different clock***
// flopenr #(32) TIMECMPreg(clk, reset, WriteTIMECMPM, CSRWriteValM, TIMECMP_REGW[31:0]);
flopr #(32) CYCLEreg(clk, reset, NextCYCLEM, CYCLE_REGW[31:0]);
flopr #(32) INSTRETreg(clk, reset, NextINSTRETM, INSTRET_REGW[31:0]);
flopr #(32) HPMCOUNTER3reg(clk, reset, NextHPMCOUNTER3M, HPMCOUNTER3_REGW[31:0]);
flopr #(32) HPMCOUNTER4reg(clk, reset, NextHPMCOUNTER4M, HPMCOUNTER4_REGW[31:0]);
// flopr #(32) TIMEHreg(clk, reset, NextTIMEHM, TIME_REGW); // may count off a different clock***
// flopenr #(32) TIMECMPHreg(clk, reset, WriteTIMECMPHM, CSRWriteValM, TIMECMP_REGW[63:32]);
flopr #(32) CYCLEHreg(clk, reset, NextCYCLEHM, CYCLE_REGW[63:32]);
flopr #(32) INSTRETHreg(clk, reset, NextINSTRETHM, INSTRET_REGW[63:32]);
flopr #(32) HPMCOUNTER3Hreg(clk, reset, NextHPMCOUNTER3HM, HPMCOUNTER3_REGW[63:32]);
flopr #(32) HPMCOUNTER4Hreg(clk, reset, NextHPMCOUNTER4HM, HPMCOUNTER4_REGW[63:32]);
end
// eventually move TIME and TIMECMP to the CLINT
// run TIME off asynchronous reference clock
// synchronize write enable to TIME
// four phase handshake to synchronize reads from TIME
// interrupt on timer compare
// ability to disable optional CSRs
// Read Counters, or cause excepiton if insufficient privilege in light of COUNTEREN flags
assign CounterNumM = CSRAdrM[4:0]; // which counter to read?
if (XLEN==64) // 64-bit counter reads
always_comb
if (PrivilegeModeW == `M_MODE ||
MCOUNTEREN_REGW[CounterNumM] && (PrivilegeModeW == `S_MODE || SCOUNTEREN_REGW[CounterNumM])) begin
IllegalCSRCAccessM = 0;
case (CSRAdrM)
// MTIME: CSRCReadValM = TIME_REGW;
// MTIMECMP: CSRCReadValM = TIMECMP_REGW;
MCYCLE: CSRCReadValM = CYCLE_REGW;
MINSTRET: CSRCReadValM = INSTRET_REGW;
MHPMCOUNTER3: CSRCReadValM = HPMCOUNTER3_REGW;
MHPMCOUNTER4: CSRCReadValM = HPMCOUNTER4_REGW;
// TIME: CSRCReadValM = TIME_REGW;
CYCLE: CSRCReadValM = CYCLE_REGW;
INSTRET: CSRCReadValM = INSTRET_REGW;
HPMCOUNTER3: CSRCReadValM = HPMCOUNTER3_REGW;
HPMCOUNTER4: CSRCReadValM = HPMCOUNTER4_REGW;
default: begin
CSRCReadValM = 0;
IllegalCSRCAccessM = 1;
end
endcase
end else IllegalCSRCAccessM = 1; // no privileges for this coute
else // 32-bit counter reads
always_comb
if (PrivilegeModeW == `M_MODE ||
MCOUNTEREN_REGW[CounterNumM] && (PrivilegeModeW == `S_MODE || SCOUNTEREN_REGW[CounterNumM])) begin
IllegalCSRCAccessM = 0;
case (CSRAdrM)
// MTIME: CSRCReadValM = TIME_REGW[31:0];
// MTIMECMP: CSRCReadValM = TIMECMP_REGW[31:0];
MCYCLE: CSRCReadValM = CYCLE_REGW[31:0];
MINSTRET: CSRCReadValM = INSTRET_REGW[31:0];
MHPMCOUNTER3: CSRCReadValM = HPMCOUNTER3_REGW[31:0];
MHPMCOUNTER4: CSRCReadValM = HPMCOUNTER4_REGW[31:0];
// TIME: CSRCReadValM = TIME_REGW[31:0];
CYCLE: CSRCReadValM = CYCLE_REGW[31:0];
INSTRET: CSRCReadValM = INSTRET_REGW[31:0];
HPMCOUNTER3: CSRCReadValM = HPMCOUNTER3_REGW[31:0];
HPMCOUNTER4: CSRCReadValM = HPMCOUNTER4_REGW[31:0];
// MTIMEH: CSRCReadValM = TIME_REGW[63:32];
// MTIMECMPH: CSRCReadValM = TIMECMP_REGW[63:32];
MCYCLEH: CSRCReadValM = CYCLE_REGW[63:32];
MINSTRETH: CSRCReadValM = INSTRET_REGW[63:32];
MHPMCOUNTER3H: CSRCReadValM = HPMCOUNTER3_REGW[63:32];
MHPMCOUNTER4H: CSRCReadValM = HPMCOUNTER4_REGW[63:32];
// TIMEH: CSRCReadValM = TIME_REGW[63:32];
CYCLEH: CSRCReadValM = CYCLE_REGW[63:32];
INSTRETH: CSRCReadValM = INSTRET_REGW[63:32];
HPMCOUNTER3H: CSRCReadValM = HPMCOUNTER3_REGW[63:32];
HPMCOUNTER4H: CSRCReadValM = HPMCOUNTER4_REGW[63:32];
default: begin
CSRCReadValM = 0;
IllegalCSRCAccessM = 1;
end
endcase
end else IllegalCSRCAccessM = 1;
end else begin
assign CSRCReadValM = 0;
assign IllegalCSRCAccessM = 1;
end
endgenerate
endmodule