cvw/fpga/README.md

47 lines
1.8 KiB
Markdown
Raw Permalink Normal View History

The FPGA currently only targets the VCU118 board.
* Build Process
cd generator
make
* Description
The generator makefile creates 4 IP blocks; proc_sys_reset, ddr4,
axi_clock_converter, and ahblite_axi_bridge. Then it reads in the 4 IP blocks
and builds wally. fpga/src/fpgaTop.v is the top level which instanciates
wallypipelinedsoc.sv and the 4 IP blocks. The FPGA include and ILA (In logic
analyzer) which provides the current instruction PCM, instrM, etc along with
a large number of debuging signals.
* Programming the flash card
You'll need to write the linux image to the flash card. Use the convert2bin.py
2023-02-02 22:14:11 +00:00
script in linux-testgen/linux-testvectors/ [*** moved?] to convert the ram.txt
file from QEMU's preload to generate the binary. Then to copy
sudo dd if=ram.bin of=<path to flash card>.
* Loading the FPGA
After the build process is complete about 2 hrs on an i9-7900x. Launch vivado's
gui and open the WallyFPGA.xpr project file. Open the hardware manager under
program and debug. Open target and then program with the bit file.
* Test Run
Once the FPGA is programed the 3 MSB LEDs in the upper right corner provide
status of the reset and ddr4 calibration. LED 7 should always be lit.
LED 6 will light if the DDR4 is not calibrated. LED 6 will be lit once
wally begins running.
Next the bootloader program will copy the flash card into the DDR4 memory.
When this done the lower 5 LEDs will blink 5 times and then try to boot
the program loaded in the DDR4 memory at physical address 0x8000_0000.
* Connecting uart
You'll need to connect both usb cables. The first connects the FPGA programer
while the connect connects UART. UART is configured to use 57600 baud with
no parity, 8 data bits, and 1 stop bit. sudo screen /dev/ttyUSB1 57600 should
let you view the com port.