cvw/pipelined/src/ifu/bpred.sv
2022-01-07 12:58:40 +00:00

263 lines
9.7 KiB
Systemverilog

///////////////////////////////////////////
// bpred.sv
//
// Written: Ross Thomposn
// Email: ross1728@gmail.com
// Created: February 12, 2021
// Modified:
//
// Purpose: Branch prediction unit
// Produces a branch prediction based on branch history.
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module bpred
(input logic clk, reset,
input logic StallF, StallD, StallE,
input logic FlushF, FlushD, FlushE,
// Fetch stage
// the prediction
input logic [`XLEN-1:0] PCNextF, // *** forgot to include this one on the I/O list
output logic [`XLEN-1:0] BPPredPCF,
output logic SelBPPredF,
// Update Predictor
input logic [`XLEN-1:0] PCE, // The address of the currently executing instruction
// 1 hot encoding
// return, jump register, jump, branch
// *** after reviewing the compressed instruction set I am leaning towards having the btb predict the instruction class.
// *** the specifics of how this is encode is subject to change.
input logic PCSrcE, // AKA Branch Taken
// Signals required to check the branch prediction accuracy.
input logic [`XLEN-1:0] IEUAdrE, // The branch destination if the branch is taken.
input logic [`XLEN-1:0] PCD, // The address the branch predictor took.
input logic [`XLEN-1:0] PCLinkE, // The address following the branch instruction. (AKA Fall through address)
input logic [4:0] InstrClassE,
// Report branch prediction status
output logic BPPredWrongE,
output logic BPPredDirWrongE,
output logic BTBPredPCWrongE,
output logic RASPredPCWrongE,
output logic BPPredClassNonCFIWrongE
);
logic BTBValidF;
logic [1:0] BPPredF, BPPredD, BPPredE, UpdateBPPredE;
logic [4:0] BPInstrClassF, BPInstrClassD, BPInstrClassE;
logic [`XLEN-1:0] BTBPredPCF, RASPCF;
logic TargetWrongE;
logic FallThroughWrongE;
logic PredictionPCWrongE;
logic PredictionInstrClassWrongE;
// Part 1 branch direction prediction
if (`BPTYPE == "BPTWOBIT") begin:Predictor
twoBitPredictor DirPredictor(.clk(clk),
.reset(reset),
.StallF(StallF),
.LookUpPC(PCNextF),
.Prediction(BPPredF),
// update
.UpdatePC(PCE),
.UpdateEN(InstrClassE[0] & ~StallE),
.UpdatePrediction(UpdateBPPredE));
end else if (`BPTYPE == "BPGLOBAL") begin:Predictor
globalHistoryPredictor DirPredictor(.clk(clk),
.reset(reset),
.*, // Stalls and flushes
.PCNextF(PCNextF),
.BPPredF(BPPredF),
// update
.InstrClassE(InstrClassE),
.BPInstrClassE(BPInstrClassE),
.BPPredDirWrongE(BPPredDirWrongE),
.PCE(PCE),
.PCSrcE(PCSrcE),
.UpdateBPPredE(UpdateBPPredE));
end else if (`BPTYPE == "BPGSHARE") begin:Predictor
gsharePredictor DirPredictor(.clk(clk),
.reset(reset),
.*, // Stalls and flushes
.PCNextF(PCNextF),
.BPPredF(BPPredF),
// update
.InstrClassE(InstrClassE),
.BPInstrClassE(BPInstrClassE),
.BPPredDirWrongE(BPPredDirWrongE),
.PCE(PCE),
.PCSrcE(PCSrcE),
.UpdateBPPredE(UpdateBPPredE));
end
else if (`BPTYPE == "BPLOCALPAg") begin:Predictor
localHistoryPredictor DirPredictor(.clk(clk),
.reset(reset),
.*, // Stalls and flushes
.LookUpPC(PCNextF),
.Prediction(BPPredF),
// update
.UpdatePC(PCE),
.UpdateEN(InstrClassE[0] & ~StallE),
.PCSrcE(PCSrcE),
.UpdatePrediction(UpdateBPPredE));
end
else if (`BPTYPE == "BPLOCALPAg") begin:Predictor
localHistoryPredictor DirPredictor(.clk(clk),
.reset(reset),
.*, // Stalls and flushes
.LookUpPC(PCNextF),
.Prediction(BPPredF),
// update
.UpdatePC(PCE),
.UpdateEN(InstrClassE[0] & ~StallE),
.PCSrcE(PCSrcE),
.UpdatePrediction(UpdateBPPredE));
end
// this predictor will have two pieces of data,
// 1) A direction (1 = Taken, 0 = Not Taken)
// 2) Any information which is necessary for the predictor to built it's next state.
// For a 2 bit table this is the prediction count.
assign SelBPPredF = ((BPInstrClassF[0] & BPPredF[1] & BTBValidF) |
BPInstrClassF[3] |
(BPInstrClassF[2] & BTBValidF) |
BPInstrClassF[1] & BTBValidF) ;
// Part 2 Branch target address prediction
// *** For now the BTB will house the direct and indirect targets
// *** getting to many false positivies from the BTB, we need a partial TAG to reduce this.
BTBPredictor TargetPredictor(.clk(clk),
.reset(reset),
.*, // Stalls and flushes
.LookUpPC(PCNextF),
.TargetPC(BTBPredPCF),
.InstrClass(BPInstrClassF),
.Valid(BTBValidF),
// update
.UpdateEN((|InstrClassE | (PredictionInstrClassWrongE)) & ~StallE),
.UpdatePC(PCE),
.UpdateTarget(IEUAdrE),
.UpdateInvalid(PredictionInstrClassWrongE),
.UpdateInstrClass(InstrClassE));
// Part 3 RAS
// *** need to add the logic to restore RAS on flushes. We will use incr for this.
RASPredictor RASPredictor(.clk(clk),
.reset(reset),
.pop(BPInstrClassF[3] & ~StallF),
.popPC(RASPCF),
.push(InstrClassE[4] & ~StallE),
.incr(1'b0),
.pushPC(PCLinkE));
assign BPPredPCF = BPInstrClassF[3] ? RASPCF : BTBPredPCF;
// The prediction and its results need to be passed through the pipeline
// *** for other predictors will will be different.
flopenr #(2) BPPredRegD(.clk(clk),
.reset(reset),
.en(~StallD),
.d(BPPredF),
.q(BPPredD));
flopenr #(2) BPPredRegE(.clk(clk),
.reset(reset),
.en(~StallE),
.d(BPPredD),
.q(BPPredE));
// pipeline the class
flopenrc #(5) InstrClassRegD(.clk(clk),
.reset(reset),
.en(~StallD),
.clear(FlushD),
.d(BPInstrClassF),
.q(BPInstrClassD));
flopenrc #(5) InstrClassRegE(.clk(clk),
.reset(reset),
.en(~StallE),
.clear(FlushE),
.d(BPInstrClassD),
.q(BPInstrClassE));
// Check the prediction makes execution.
// first check if the target or fallthrough address matches what was predicted.
assign TargetWrongE = IEUAdrE != PCD;
assign FallThroughWrongE = PCLinkE != PCD;
// If the target is taken check the target rather than fallthrough. The instruction needs to be a branch if PCSrcE is selected
// Remember the bpred can incorrectly predict a non cfi instruction as a branch taken. If the real instruction is non cfi
// it must have selected the fall through.
assign PredictionPCWrongE = (PCSrcE & (|InstrClassE) ? TargetWrongE : FallThroughWrongE);
// The branch direction also need to checked.
// However if the direction is wrong then the pc will be wrong. This is only relavent to checking the
// accuracy of the direciton prediction.
assign BPPredDirWrongE = (BPPredE[1] ^ PCSrcE) & InstrClassE[0];
// Finally we need to check if the class is wrong. When the class is wrong the BTB needs to be updated.
// Also we want to track this in a performance counter.
assign PredictionInstrClassWrongE = InstrClassE != BPInstrClassE;
// We want to output to the instruction fetch if the PC fetched was wrong. If by chance the predictor was wrong about
// the direction or class, but correct about the target we don't have the flush the pipeline. However we still
// need this information to verify the accuracy of the predictors.
//assign BPPredWrongE = ((PredictionPCWrongE | BPPredDirWrongE) & (|InstrClassE)) | PredictionInstrClassWrongE;
assign BPPredWrongE = (PredictionPCWrongE & |InstrClassE) | BPPredClassNonCFIWrongE;
// If we have a jump, jump register or jal or jalr and the PC is wrong we need to increment the performance counter.
assign BTBPredPCWrongE = (InstrClassE[4] | InstrClassE[2] | InstrClassE[1]) & PredictionPCWrongE;
// similar with RAS
assign RASPredPCWrongE = InstrClassE[3] & PredictionPCWrongE;
// Finally if the real instruction class is non CFI but the predictor said it was we need to count.
assign BPPredClassNonCFIWrongE = PredictionInstrClassWrongE & ~|InstrClassE;
// Update predictors
satCounter2 BPDirUpdate(.BrDir(PCSrcE),
.OldState(BPPredE),
.NewState(UpdateBPPredE));
endmodule