cvw/src/fpu/fsgninj.sv
Harshini Srinath c19ba6c3f4 Update fsgninj.sv
Program clean up
2023-06-11 16:52:00 -07:00

77 lines
3.0 KiB
Systemverilog
Executable File

///////////////////////////////////////////
// fsgninj.sv
//
// Written: me@KatherineParry.com
// Modified: 6/23/2021
//
// Purpose: FPU Sign Injection instructions
//
// Documentation: RISC-V System on Chip Design Chapter 13
//
// A component of the CORE-V-WALLY configurable RISC-V project.
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
//
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
//
// Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
// may obtain a copy of the License at
//
// https://solderpad.org/licenses/SHL-2.1/
//
// Unless required by applicable law or agreed to in writing, any work distributed under the
// License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
module fsgninj import cvw::*; #(parameter cvw_t P) (
input logic Xs, Ys, // X and Y sign bits
input logic [P.FLEN-1:0] X, // X
input logic [P.FMTBITS-1:0] Fmt, // format
input logic [1:0] OpCtrl, // operation control
output logic [P.FLEN-1:0] SgnRes // result
);
logic ResSgn; // result sign
// OpCtrl:
// 00 - fsgnj - directly copy over sign value of Y
// 01 - fsgnjn - negate sign value of Y
// 10 - fsgnjx - XOR sign values of X and Y
// calculate the result's sign
assign ResSgn = (OpCtrl[1] ? Xs : OpCtrl[0]) ^ Ys;
// format final result based on precision
// - uses NaN-blocking format
// - if there are any unused bits the most significant bits are filled with 1s
if (P.FPSIZES == 1)
assign SgnRes = {ResSgn, X[P.FLEN-2:0]};
else if (P.FPSIZES == 2)
assign SgnRes = {~Fmt|ResSgn, X[P.FLEN-2:P.LEN1], Fmt ? X[P.LEN1-1] : ResSgn, X[P.LEN1-2:0]};
else if (P.FPSIZES == 3) begin
logic [2:0] SgnBits;
always_comb
case (Fmt)
P.FMT: SgnBits = {ResSgn, X[P.LEN1-1], X[P.LEN2-1]};
P.FMT1: SgnBits = {1'b1, ResSgn, X[P.LEN2-1]};
P.FMT2: SgnBits = {2'b11, ResSgn};
default: SgnBits = {3{1'bx}};
endcase
assign SgnRes = {SgnBits[2], X[P.FLEN-2:P.LEN1], SgnBits[1], X[P.LEN1-2:P.LEN2], SgnBits[0], X[P.LEN2-2:0]};
end else if (P.FPSIZES == 4) begin
logic [3:0] SgnBits;
always_comb
case (Fmt)
P.Q_FMT: SgnBits = {ResSgn, X[P.D_LEN-1], X[P.S_LEN-1], X[P.H_LEN-1]};
P.D_FMT: SgnBits = {1'b1, ResSgn, X[P.S_LEN-1], X[P.H_LEN-1]};
P.S_FMT: SgnBits = {2'b11, ResSgn, X[P.H_LEN-1]};
P.H_FMT: SgnBits = {3'b111, ResSgn};
endcase
assign SgnRes = {SgnBits[3], X[P.Q_LEN-2:P.D_LEN], SgnBits[2], X[P.D_LEN-2:P.S_LEN], SgnBits[1], X[P.S_LEN-2:P.H_LEN], SgnBits[0], X[P.H_LEN-2:0]};
end
endmodule