cvw/pipelined/src/ebu/ahbmultimanager.sv
2022-09-05 20:49:35 -05:00

205 lines
8.8 KiB
Systemverilog

///////////////////////////////////////////
// abhmultimanager
//
// Written: Ross Thompson August 29, 2022
// ross1728@gmail.com
// Modified:
//
// Purpose: AHB multi manager interface to merge LSU and IFU controls.
// See ARM_HIH0033A_AMBA_AHB-Lite_SPEC 1.0
// Arbitrates requests from instruction and data streams
// Connects core to peripherals and I/O pins on SOC
// Bus width presently matches XLEN
// Anticipate replacing this with an AXI bus interface to communicate with FPGA DRAM/Flash controllers
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module ahbmultimanager
(
input logic clk, reset,
// Signals from IFU
input logic [`PA_BITS-1:0] IFUHADDR,
input logic [2:0] IFUHBURST,
input logic [1:0] IFUHTRANS,
output logic IFUHREADY,
// Signals from LSU
input logic [`PA_BITS-1:0] LSUHADDR,
input logic [`XLEN-1:0] LSUHWDATA, // initially support AHBW = XLEN
input logic [`XLEN/8-1:0] LSUHWSTRB,
input logic [2:0] LSUHSIZE,
input logic [2:0] LSUHBURST,
input logic [1:0] LSUHTRANS,
input logic LSUHWRITE,
output logic LSUHREADY,
// add LSUHWSTRB ***
// AHB-Lite external signals
(* mark_debug = "true" *) input logic HREADY, HRESP,
(* mark_debug = "true" *) output logic HCLK, HRESETn,
(* mark_debug = "true" *) output logic [`PA_BITS-1:0] HADDR, // *** one day switch to a different bus that supports the full physical address
(* mark_debug = "true" *) output logic [`AHBW-1:0] HWDATA,
(* mark_debug = "true" *) output logic [`XLEN/8-1:0] HWSTRB,
(* mark_debug = "true" *) output logic HWRITE,
(* mark_debug = "true" *) output logic [2:0] HSIZE,
(* mark_debug = "true" *) output logic [2:0] HBURST,
(* mark_debug = "true" *) output logic [3:0] HPROT,
(* mark_debug = "true" *) output logic [1:0] HTRANS,
(* mark_debug = "true" *) output logic HMASTLOCK
);
localparam ADRBITS = $clog2(`XLEN/8); // address bits for Byte Mask generator
typedef enum logic [1:0] {IDLE, ARBITRATE} statetype;
statetype CurrState, NextState;
logic LSUGrant;
logic [ADRBITS-1:0] HADDRD;
logic [1:0] HSIZED;
logic [1:0] save, restore, dis, sel;
logic both;
logic [`PA_BITS-1:0] IFUHADDRSave, IFUHADDROut;
logic [1:0] IFUHTRANSSave, IFUHTRANSOut;
logic [2:0] IFUHBURSTSave, IFUHBURSTOut;
logic [2:0] IFUHSIZEOut;
logic IFUHWRITEOut;
logic [`PA_BITS-1:0] LSUHADDRSave, LSUHADDROut;
logic [1:0] LSUHTRANSSave, LSUHTRANSOut;
logic [2:0] LSUHBURSTSave, LSUHBURSTOut;
logic [2:0] LSUHSIZESave, LSUHSIZEOut;
logic LSUHWRITESave, LSUHWRITEOut;
logic IFUReq, LSUReq;
logic IFUActive, LSUActive;
logic BeatCntEn;
logic [4-1:0] NextBeatCount, BeatCount, BeatCountDelayed;
logic FinalBeat;
logic [2:0] LocalBurstType;
logic CntReset;
logic [3:0] Threshold;
assign HCLK = clk;
assign HRESETn = ~reset;
// if two requests come in at once pick one to select and save the others Address phase
// inputs. Abritration scheme is LSU always goes first.
// input stage IFU
managerinputstage IFUInput(.HCLK, .HRESETn, .Save(save[0]), .Restore(restore[0]), .Disable(dis[0]),
.Request(IFUReq), .Active(IFUActive),
.HWRITEin(1'b0), .HSIZEin(3'b010), .HBURSTin(IFUHBURST), .HTRANSin(IFUHTRANS), .HADDRin(IFUHADDR),
.HWRITEOut(IFUHWRITEOut), .HSIZEOut(IFUHSIZEOut), .HBURSTOut(IFUHBURSTOut), .HREADYOut(IFUHREADY),
.HTRANSOut(IFUHTRANSOut), .HADDROut(IFUHADDROut), .HREADYin(HREADY));
// input stage LSU
managerinputstage LSUInput(.HCLK, .HRESETn, .Save(save[1]), .Restore(restore[1]), .Disable(dis[1]),
.Request(LSUReq), .Active(LSUActive),
.HWRITEin(LSUHWRITE), .HSIZEin(LSUHSIZE), .HBURSTin(LSUHBURST), .HTRANSin(LSUHTRANS), .HADDRin(LSUHADDR), .HREADYOut(LSUHREADY),
.HWRITEOut(LSUHWRITEOut), .HSIZEOut(LSUHSIZEOut), .HBURSTOut(LSUHBURSTOut),
.HTRANSOut(LSUHTRANSOut), .HADDROut(LSUHADDROut), .HREADYin(HREADY));
// output mux //*** rewrite for general number of managers.
assign HADDR = sel[1] ? LSUHADDROut : sel[0] ? IFUHADDROut : '0;
assign HSIZE = sel[1] ? LSUHSIZEOut : sel[0] ? 3'b010: '0; // Instruction reads are always 32 bits
assign HBURST = sel[1] ? LSUHBURSTOut : sel[0] ? IFUHBURSTOut : '0; // If doing memory accesses, use LSUburst, else use Instruction burst.
assign HTRANS = sel[1] ? LSUHTRANSOut : sel[0] ? IFUHTRANSOut: '0; // SEQ if not first read or write, NONSEQ if first read or write, IDLE otherwise
assign HWRITE = sel[1] ? LSUHWRITEOut : sel[0] ? 1'b0 : '0;
assign HPROT = 4'b0011; // not used; see Section 3.7
assign HMASTLOCK = 0; // no locking supported
// data phase muxing. This would be a mux if IFU wrote data.
assign HWDATA = LSUHWDATA;
assign HWSTRB = LSUHWSTRB;
// HRDATA is sent to all managers at the core level.
// FSM decides if arbitration needed. Arbitration is held until the last beat of
// a burst is completed.
assign both = LSUActive & IFUActive;
flopenl #(.TYPE(statetype)) busreg(HCLK, ~HRESETn, 1'b1, NextState, IDLE, CurrState);
always_comb
case (CurrState)
IDLE: if (both) NextState = ARBITRATE;
else NextState = IDLE;
ARBITRATE: if (HREADY & FinalBeat & ~(LSUReq & IFUReq)) NextState = IDLE;
else NextState = ARBITRATE;
default: NextState = IDLE;
endcase
// This part is only used when burst mode is supported.
// Manager needs to count beats.
flopenr #(4)
BeatCountReg(.clk(HCLK),
.reset(~HRESETn | CntReset | FinalBeat),
.en(BeatCntEn),
.d(NextBeatCount),
.q(BeatCount));
// Used to store data from data phase of AHB.
flopenr #(4)
BeatCountDelayedReg(.clk(HCLK),
.reset(~HRESETn | CntReset),
.en(BeatCntEn),
.d(BeatCount),
.q(BeatCountDelayed));
assign NextBeatCount = BeatCount + 1'b1;
assign CntReset = NextState == IDLE;
assign FinalBeat = (BeatCountDelayed == Threshold); // Detect when we are waiting on the final access.
assign BeatCntEn = (NextState == ARBITRATE & HREADY);
logic [2:0] HBURSTD;
flopenr #(3) HBURSTReg(.clk(HCLK), .reset(~HRESETn), .en(HTRANS == 2'b10), .d(HBURST), .q(HBURSTD));
// unlike the bus fsm in lsu/ifu, we need to derive the number of beats from HBURST.
always_comb begin
case(HBURSTD)
0: Threshold = 4'b0000;
3: Threshold = 4'b0011; // INCR4
5: Threshold = 4'b0111; // INCR8
7: Threshold = 4'b1111; // INCR16
default: Threshold = 4'b0000; // INCR without end.
endcase
end
// end of burst mode.
// basic arb always selects LSU when both
// replace this block for more sophisticated arbitration as needed.
// Manager 0 (IFU)
assign save[0] = CurrState == IDLE & both;
assign restore[0] = CurrState == ARBITRATE;
assign dis[0] = CurrState == ARBITRATE;
assign sel[0] = (NextState == ARBITRATE) ? 1'b0 : IFUReq;
// Manager 1 (LSU)
assign save[1] = 1'b0;
assign restore[1] = 1'b0;
assign dis[1] = 1'b0;
assign sel[1] = NextState == ARBITRATE ? 1'b1: LSUReq;
endmodule