/////////////////////////////////////////// // abhmultimanager // // Written: Ross Thompson August 29, 2022 // ross1728@gmail.com // Modified: // // Purpose: AHB multi manager interface to merge LSU and IFU controls. // See ARM_HIH0033A_AMBA_AHB-Lite_SPEC 1.0 // Arbitrates requests from instruction and data streams // Connects core to peripherals and I/O pins on SOC // Bus width presently matches XLEN // Anticipate replacing this with an AXI bus interface to communicate with FPGA DRAM/Flash controllers // // A component of the Wally configurable RISC-V project. // // Copyright (C) 2021 Harvey Mudd College & Oklahoma State University // // MIT LICENSE // Permission is hereby granted, free of charge, to any person obtaining a copy of this // software and associated documentation files (the "Software"), to deal in the Software // without restriction, including without limitation the rights to use, copy, modify, merge, // publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons // to whom the Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or // substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR // PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, // TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE // OR OTHER DEALINGS IN THE SOFTWARE. //////////////////////////////////////////////////////////////////////////////////////////////// `include "wally-config.vh" module ahbmultimanager ( input logic clk, reset, // Signals from IFU input logic [`PA_BITS-1:0] IFUHADDR, input logic [2:0] IFUHBURST, input logic [1:0] IFUHTRANS, output logic IFUHREADY, // Signals from LSU input logic [`PA_BITS-1:0] LSUHADDR, input logic [`XLEN-1:0] LSUHWDATA, // initially support AHBW = XLEN input logic [`XLEN/8-1:0] LSUHWSTRB, input logic [2:0] LSUHSIZE, input logic [2:0] LSUHBURST, input logic [1:0] LSUHTRANS, input logic LSUHWRITE, output logic LSUHREADY, // add LSUHWSTRB *** // AHB-Lite external signals (* mark_debug = "true" *) input logic HREADY, HRESP, (* mark_debug = "true" *) output logic HCLK, HRESETn, (* mark_debug = "true" *) output logic [`PA_BITS-1:0] HADDR, // *** one day switch to a different bus that supports the full physical address (* mark_debug = "true" *) output logic [`AHBW-1:0] HWDATA, (* mark_debug = "true" *) output logic [`XLEN/8-1:0] HWSTRB, (* mark_debug = "true" *) output logic HWRITE, (* mark_debug = "true" *) output logic [2:0] HSIZE, (* mark_debug = "true" *) output logic [2:0] HBURST, (* mark_debug = "true" *) output logic [3:0] HPROT, (* mark_debug = "true" *) output logic [1:0] HTRANS, (* mark_debug = "true" *) output logic HMASTLOCK ); localparam ADRBITS = $clog2(`XLEN/8); // address bits for Byte Mask generator typedef enum logic [1:0] {IDLE, ARBITRATE} statetype; statetype CurrState, NextState; logic LSUGrant; logic [ADRBITS-1:0] HADDRD; logic [1:0] HSIZED; logic [1:0] save, restore, dis, sel; logic both; logic [`PA_BITS-1:0] IFUHADDRSave, IFUHADDROut; logic [1:0] IFUHTRANSSave, IFUHTRANSOut; logic [2:0] IFUHBURSTSave, IFUHBURSTOut; logic [2:0] IFUHSIZEOut; logic IFUHWRITEOut; logic [`PA_BITS-1:0] LSUHADDRSave, LSUHADDROut; logic [1:0] LSUHTRANSSave, LSUHTRANSOut; logic [2:0] LSUHBURSTSave, LSUHBURSTOut; logic [2:0] LSUHSIZESave, LSUHSIZEOut; logic LSUHWRITESave, LSUHWRITEOut; logic IFUReq, LSUReq; logic IFUActive, LSUActive; logic BeatCntEn; logic [4-1:0] NextBeatCount, BeatCount, BeatCountDelayed; logic FinalBeat; logic [2:0] LocalBurstType; logic CntReset; logic [3:0] Threshold; assign HCLK = clk; assign HRESETn = ~reset; // if two requests come in at once pick one to select and save the others Address phase // inputs. Abritration scheme is LSU always goes first. // input stage IFU managerinputstage IFUInput(.HCLK, .HRESETn, .Save(save[0]), .Restore(restore[0]), .Disable(dis[0]), .Request(IFUReq), .Active(IFUActive), .HWRITEin(1'b0), .HSIZEin(3'b010), .HBURSTin(IFUHBURST), .HTRANSin(IFUHTRANS), .HADDRin(IFUHADDR), .HWRITEOut(IFUHWRITEOut), .HSIZEOut(IFUHSIZEOut), .HBURSTOut(IFUHBURSTOut), .HREADYOut(IFUHREADY), .HTRANSOut(IFUHTRANSOut), .HADDROut(IFUHADDROut), .HREADYin(HREADY)); // input stage LSU managerinputstage LSUInput(.HCLK, .HRESETn, .Save(save[1]), .Restore(restore[1]), .Disable(dis[1]), .Request(LSUReq), .Active(LSUActive), .HWRITEin(LSUHWRITE), .HSIZEin(LSUHSIZE), .HBURSTin(LSUHBURST), .HTRANSin(LSUHTRANS), .HADDRin(LSUHADDR), .HREADYOut(LSUHREADY), .HWRITEOut(LSUHWRITEOut), .HSIZEOut(LSUHSIZEOut), .HBURSTOut(LSUHBURSTOut), .HTRANSOut(LSUHTRANSOut), .HADDROut(LSUHADDROut), .HREADYin(HREADY)); // output mux //*** rewrite for general number of managers. assign HADDR = sel[1] ? LSUHADDROut : sel[0] ? IFUHADDROut : '0; assign HSIZE = sel[1] ? LSUHSIZEOut : sel[0] ? 3'b010: '0; // Instruction reads are always 32 bits assign HBURST = sel[1] ? LSUHBURSTOut : sel[0] ? IFUHBURSTOut : '0; // If doing memory accesses, use LSUburst, else use Instruction burst. assign HTRANS = sel[1] ? LSUHTRANSOut : sel[0] ? IFUHTRANSOut: '0; // SEQ if not first read or write, NONSEQ if first read or write, IDLE otherwise assign HWRITE = sel[1] ? LSUHWRITEOut : sel[0] ? 1'b0 : '0; assign HPROT = 4'b0011; // not used; see Section 3.7 assign HMASTLOCK = 0; // no locking supported // data phase muxing. This would be a mux if IFU wrote data. assign HWDATA = LSUHWDATA; assign HWSTRB = LSUHWSTRB; // HRDATA is sent to all managers at the core level. // FSM decides if arbitration needed. Arbitration is held until the last beat of // a burst is completed. assign both = LSUActive & IFUActive; flopenl #(.TYPE(statetype)) busreg(HCLK, ~HRESETn, 1'b1, NextState, IDLE, CurrState); always_comb case (CurrState) IDLE: if (both) NextState = ARBITRATE; else NextState = IDLE; ARBITRATE: if (HREADY & FinalBeat & ~(LSUReq & IFUReq)) NextState = IDLE; else NextState = ARBITRATE; default: NextState = IDLE; endcase // This part is only used when burst mode is supported. // Manager needs to count beats. flopenr #(4) BeatCountReg(.clk(HCLK), .reset(~HRESETn | CntReset | FinalBeat), .en(BeatCntEn), .d(NextBeatCount), .q(BeatCount)); // Used to store data from data phase of AHB. flopenr #(4) BeatCountDelayedReg(.clk(HCLK), .reset(~HRESETn | CntReset), .en(BeatCntEn), .d(BeatCount), .q(BeatCountDelayed)); assign NextBeatCount = BeatCount + 1'b1; assign CntReset = NextState == IDLE; assign FinalBeat = (BeatCountDelayed == Threshold); // Detect when we are waiting on the final access. assign BeatCntEn = (NextState == ARBITRATE & HREADY); logic [2:0] HBURSTD; flopenr #(3) HBURSTReg(.clk(HCLK), .reset(~HRESETn), .en(HTRANS == 2'b10), .d(HBURST), .q(HBURSTD)); // unlike the bus fsm in lsu/ifu, we need to derive the number of beats from HBURST. always_comb begin case(HBURSTD) 0: Threshold = 4'b0000; 3: Threshold = 4'b0011; // INCR4 5: Threshold = 4'b0111; // INCR8 7: Threshold = 4'b1111; // INCR16 default: Threshold = 4'b0000; // INCR without end. endcase end // end of burst mode. // basic arb always selects LSU when both // replace this block for more sophisticated arbitration as needed. // Manager 0 (IFU) assign save[0] = CurrState == IDLE & both; assign restore[0] = CurrState == ARBITRATE; assign dis[0] = CurrState == ARBITRATE; assign sel[0] = (NextState == ARBITRATE) ? 1'b0 : IFUReq; // Manager 1 (LSU) assign save[1] = 1'b0; assign restore[1] = 1'b0; assign dis[1] = 1'b0; assign sel[1] = NextState == ARBITRATE ? 1'b1: LSUReq; endmodule