cvw/src/uncore/ahbapbbridge.sv
Harshini Srinath 58c617c548
Update ahbapbbridge.sv
Program clean up
2023-06-12 20:49:46 -07:00

106 lines
4.5 KiB
Systemverilog

///////////////////////////////////////////
// ahbapbbridge.sv
//
// Written: David_Harris@hmc.edu & Nic Lucio 7 June 2022
//
// Purpose: AHB to APB bridge
//
// Documentation: RISC-V System on Chip Design Chapter 6
//
// A component of the CORE-V-WALLY configurable RISC-V project.
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
//
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
//
// Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
// may obtain a copy of the License at
//
// https://solderpad.org/licenses/SHL-2.1/
//
// Unless required by applicable law or agreed to in writing, any work distributed under the
// License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
module ahbapbbridge import cvw::*; #(parameter cvw_t P,
parameter PERIPHS = 2) (
input logic HCLK, HRESETn,
input logic [PERIPHS-1:0] HSEL,
input logic [P.PA_BITS-1:0] HADDR,
input logic [P.XLEN-1:0] HWDATA,
input logic [P.XLEN/8-1:0] HWSTRB,
input logic HWRITE,
input logic [1:0] HTRANS,
input logic HREADY,
// input logic [3:0] HPROT, // not used
output logic [P.XLEN-1:0] HRDATA,
output logic HRESP, HREADYOUT,
output logic PCLK, PRESETn,
output logic [PERIPHS-1:0] PSEL,
output logic PWRITE,
output logic PENABLE,
output logic [31:0] PADDR,
output logic [P.XLEN-1:0] PWDATA,
// output logic [2:0] PPROT, // not used
output logic [P.XLEN/8-1:0] PSTRB,
// output logic PWAKEUP // not used
input logic [PERIPHS-1:0] PREADY,
input var [PERIPHS-1:0][P.XLEN-1:0] PRDATA
);
logic initTrans, initTransSel, initTransSelD;
logic nextPENABLE;
logic PREADYOUT;
// convert AHB to APB signals
assign PCLK = HCLK;
assign PRESETn = HRESETn;
// identify start of a transaction
assign initTrans = HTRANS[1] & HREADY; // start a transaction when the bus is ready and an active transaction is requested
assign initTransSel = initTrans & |HSEL; // capture data and address if any of the peripherals are selected
// delay AHB Address phase signals to align with AHB Data phase because APB expects them at the same time
flopen #(32) addrreg(HCLK, HREADY, HADDR[31:0], PADDR);
flopenr #(1) writereg(HCLK, ~HRESETn, HREADY, HWRITE, PWRITE);
flopenr #(PERIPHS) selreg(HCLK, ~HRESETn, HREADY, HSEL & {PERIPHS{initTrans}}, PSEL);
// PPROT[2:0] = {Data/InstrB, Secure, Privileged};
// assign PPROT = {~HPROT[0], 1'b0, HPROT[1]}; // protection not presently used
// assign PWAKEUP = 1'b1; // not used
// AHB Data phase signal doesn't need delay. Note that they are guaranteed to remain stable until READY is asserted
assign PWDATA = HWDATA;
assign PSTRB = HWSTRB;
// enable logic: goes high a cycle after initTrans, then back low on cycle after desired PREADY is asserted
// cycle1: AHB puts HADDR, HWRITE, HSEL on bus. initTrans is 1, and these are captured
// cycle2: AHB puts HWDATA on the bus. This effectively extends the setup phase
// cycle3: bridge raises PENABLE. Peripheral typically responds with PREADY.
// Read occurs by end of cycle. Write occurs at end of cycle.
flopr #(1) inittransreg(HCLK, ~HRESETn, initTransSel, initTransSelD);
assign nextPENABLE = PENABLE ? ~HREADY : initTransSelD;
flopr #(1) enablereg(HCLK, ~HRESETn, nextPENABLE, PENABLE);
// result and ready multiplexer
int i;
always_comb begin
// default: no peripheral selected: read 0, indicate ready during access phase so bus doesn't hang
// *** also could assert ready right away
HRDATA = 0;
PREADYOUT = 1'b1;
for (i=0; i<PERIPHS; i++) begin
if (PSEL[i]) begin // highest numbered peripheral has priority, but multiple PSEL should never be asserted
HRDATA = PRDATA[i];
PREADYOUT = PREADY[i];
end
end
end
assign HREADYOUT = PREADYOUT & ~initTransSelD; // don't raise HREADYOUT before access phase
// resp logic
assign HRESP = 0; // bridge never indicates errors
endmodule